1
|
Jahn KN, Wiegand-Shahani BM, Moturi V, Kashiwagura ST, Doak KR. Cochlear-implant simulated spectral degradation attenuates emotional responses to environmental sounds. Int J Audiol 2025; 64:518-524. [PMID: 39146030 PMCID: PMC11833750 DOI: 10.1080/14992027.2024.2385552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVE Cochlear implants (CI) provide users with a spectrally degraded acoustic signal that could impact their auditory emotional experiences. This study evaluated the effects of CI-simulated spectral degradation on emotional valence and arousal elicited by environmental sounds. DESIGN Thirty emotionally evocative sounds were filtered through a noise-band vocoder. Participants rated the perceived valence and arousal elicited by each of the full-spectrum and vocoded stimuli. These ratings were compared across acoustic conditions (full-spectrum, vocoded) and as a function of stimulus type (unpleasant, neutral, pleasant). STUDY SAMPLE Twenty-five young adults (age 19 to 34 years) with normal hearing. RESULTS Emotional responses were less extreme for spectrally degraded (i.e., vocoded) sounds than for full-spectrum sounds. Specifically, spectrally degraded stimuli were perceived as more negative and less arousing than full-spectrum stimuli. CONCLUSION By meticulously replicating CI spectral degradation while controlling for variables that are confounded within CI users, these findings indicate that CI spectral degradation can compress the range of sound-induced emotion independent of hearing loss and other idiosyncratic device- or person-level variables. Future work will characterize emotional reactions to sound in CI users via objective, psychoacoustic, and subjective measures.
Collapse
Affiliation(s)
- Kelly N. Jahn
- Department of Speech, Language, and Hearing, The University
of Texas at Dallas, Richardson, TX 75080, USA
- Callier Center for Communication Disorders, The University
of Texas at Dallas, Dallas, TX 75235, USA
| | - Braden M. Wiegand-Shahani
- Department of Speech, Language, and Hearing, The University
of Texas at Dallas, Richardson, TX 75080, USA
- Callier Center for Communication Disorders, The University
of Texas at Dallas, Dallas, TX 75235, USA
| | - Vaishnavi Moturi
- Department of Speech, Language, and Hearing, The University
of Texas at Dallas, Richardson, TX 75080, USA
| | - Sean Takamoto Kashiwagura
- Department of Speech, Language, and Hearing, The University
of Texas at Dallas, Richardson, TX 75080, USA
- Callier Center for Communication Disorders, The University
of Texas at Dallas, Dallas, TX 75235, USA
| | - Karlee R. Doak
- Department of Speech, Language, and Hearing, The University
of Texas at Dallas, Richardson, TX 75080, USA
- Callier Center for Communication Disorders, The University
of Texas at Dallas, Dallas, TX 75235, USA
| |
Collapse
|
2
|
Ashjaei S, Behroozmand R, Fozdar S, Farrar R, Arjmandi M. Vocal control and speech production in cochlear implant listeners: A review within auditory-motor processing framework. Hear Res 2024; 453:109132. [PMID: 39447319 DOI: 10.1016/j.heares.2024.109132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
A comprehensive literature review is conducted to summarize and discuss prior findings on how cochlear implants (CI) affect the users' abilities to produce and control vocal and articulatory movements within the auditory-motor integration framework of speech. Patterns of speech production pre- versus post-implantation, post-implantation adjustments, deviations from the typical ranges of speakers with normal hearing (NH), the effects of switching the CI on and off, as well as the impact of altered auditory feedback on vocal and articulatory speech control are discussed. Overall, findings indicate that CIs enhance the vocal and articulatory control aspects of speech production at both segmental and suprasegmental levels. While many CI users achieve speech quality comparable to NH individuals, some features still deviate in a group of CI users even years post-implantation. More specifically, contracted vowel space, increased vocal jitter and shimmer, longer phoneme and utterance durations, shorter voice onset time, decreased contrast in fricative production, limited prosodic patterns, and reduced intelligibility have been reported in subgroups of CI users compared to NH individuals. Significant individual variations among CI users have been observed in both the pace of speech production adjustments and long-term speech outcomes. Few controlled studies have explored how the implantation age and the duration of CI use influence speech features, leaving substantial gaps in our understanding about the effects of spectral resolution, auditory rehabilitation, and individual auditory-motor processing abilities on vocal and articulatory speech outcomes in CI users. Future studies under the auditory-motor integration framework are warranted to determine how suboptimal CI auditory feedback impacts auditory-motor processing and precise vocal and articulatory control in CI users.
Collapse
Affiliation(s)
- Samin Ashjaei
- Translational Auditory Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 1705 College Street, Columbia, SC 29208, USA
| | - Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Speech, Language, and Hearing, Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 2811 North Floyd Road, Richardson, TX 75080, USA
| | - Shaivee Fozdar
- Translational Auditory Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 1705 College Street, Columbia, SC 29208, USA
| | - Reed Farrar
- Translational Auditory Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 1705 College Street, Columbia, SC 29208, USA
| | - Meisam Arjmandi
- Translational Auditory Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 1705 College Street, Columbia, SC 29208, USA; Institute for Mind and Brain, University of South Carolina, Barnwell Street, Columbia, SC 29208, USA.
| |
Collapse
|
3
|
Alothman N, Almuhawas F, Badghaish R, Alotaibi AH, Alhabib SF, Alzhrani F, Hagr A. Cochlear Implantation in Pediatrics: The Effect of Cochlear Coverage. J Pers Med 2023; 13:jpm13030562. [PMID: 36983743 PMCID: PMC10051355 DOI: 10.3390/jpm13030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The effect of insertion depth and position of cochlear implant (CI) electrode arrays on speech perception remains unclear. This study aimed to determine the relationship between cochlear coverage and speech performance in children with prelingual hearing loss with CI. Pure tone audiometry (PTA) and speech audiometry, including speech reception threshold (SRT) using spondee words and speech discrimination score (SDS) using phonetically balanced monosyllabic words, were tested. The Categories of Auditory Performance (CAP) and Speech Intelligibility Rating (SIR) scales were also used. Thirty-one ears were implanted with the FLEX 28 electrode array, and 54 with the FORM 24 were included in the current study. For the studied ear, the mean cochlear duct length was 30.82 ± 2.24 mm; the mean cochlear coverage was 82.78 ± 7.49%. Cochlear coverage was a significant negative predictor for the mean pure tone threshold across frequecnies of 0.5, 1, 2, and 4 kHz (PTA4) (p = 0.019). Cochlear coverage was a significant positive predictor of SDS (p = 0.009). In children with cochlear coverage ≥ 82.78%, SDS was significantly better than in those with coverage < 82.78% (p = 0.04). Cochlear coverage was not a significant predictor of the SRT, CAP, or SIR. In conclusion, the cochlear coverage of the CI electrode array has an impact on the users' SDS. Further long-term studies with larger sample sizes should be conducted to address the most critical factors affecting CI recipients' outcomes.
Collapse
Affiliation(s)
- Noura Alothman
- Health Communication Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Fida Almuhawas
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Reem Badghaish
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Al Hanouf Alotaibi
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Salman F Alhabib
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Farid Alzhrani
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Abdulrahman Hagr
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| |
Collapse
|
4
|
Jahn KN, Arenberg JG, Horn DL. Spectral Resolution Development in Children With Normal Hearing and With Cochlear Implants: A Review of Behavioral Studies. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:1646-1658. [PMID: 35201848 PMCID: PMC9499384 DOI: 10.1044/2021_jslhr-21-00307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/09/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE This review article provides a theoretical overview of the development of spectral resolution in children with normal hearing (cNH) and in those who use cochlear implants (CIs), with an emphasis on methodological considerations. The aim was to identify key directions for future research on spectral resolution development in children with CIs. METHOD A comprehensive literature review was conducted to summarize and synthesize previously published behavioral research on spectral resolution development in normal and impaired auditory systems. CONCLUSIONS In cNH, performance on spectral resolution tasks continues to improve through the teenage years and is likely driven by gradual maturation of across-channel intensity resolution. A small but growing body of evidence from children with CIs suggests a more complex relationship between spectral resolution development, patient demographics, and the quality of the CI electrode-neuron interface. Future research should aim to distinguish between the effects of patient-specific variables and the underlying physiology on spectral resolution abilities in children of all ages who are hard of hearing and use auditory prostheses.
Collapse
Affiliation(s)
- Kelly N. Jahn
- Department of Speech, Language, and Hearing, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson
- Callier Center for Communication Disorders, The University of Texas at Dallas
| | - Julie G. Arenberg
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston
| | - David L. Horn
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology – Head and Neck Surgery, University of Washington, Seattle
- Division of Otolaryngology, Seattle Children's Hospital, WA
| |
Collapse
|
5
|
Ramos-de-Miguel A, Falcón-González JC, Ramos-Macias A. Analysis of Neural Interface When Using Modiolar Electrode Stimulation. Radiological Evaluation, Trans-Impedance Matrix Analysis and Effect on Listening Effort in Cochlear Implantation. J Clin Med 2021; 10:jcm10173962. [PMID: 34501410 PMCID: PMC8432261 DOI: 10.3390/jcm10173962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The proximity of the electrode to the modiolar wall may be of interest to investigate the effect of pitch discrimination. This research establishes the relation between these factors and whether perimodiolar positions may provide benefits regarding improved electrode discrimination. Methods: A prospective randomized study including 24 post-lingual deaf adults was performed. A psychoacoustic study was done by using a psychoacoustic research platform. Radiological study, and a cone-beam computed tomography was used to assess post cochlear implantation electrodes’ position. Trans-impedance matrix (TIM) analysis was performed after cochlear implant insertion in all cases, and pupillometry test was also performed. Results: 12 patients received a slim perimodiolar electrode array, and 12 patients received a straight electrode array. Although all the patients showed similar speech test results after 12 months follow-up, those implanted with a perimodiolar electrode obtained better scores in electrode discrimination test and pupillometry test, and showed more homogenous TIM patterns. Conclusions: The better positioning of the electrode array seams to provide a better hearing resolution and less listening effort trans-impedance matrix seems to be a useful tool to analyze positioning of the perimodiolar array.
Collapse
Affiliation(s)
- Angel Ramos-de-Miguel
- Hearing and Balance Laboratory, Las Palmas de Gran Canaria University (SIANI), 35001 Las Palmas, Spain;
- Correspondence:
| | - Juan Carlos Falcón-González
- Department of Otolaryngology, Head and Neck Surgery, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, 35016 Las Palmas, Spain;
| | - Angel Ramos-Macias
- Hearing and Balance Laboratory, Las Palmas de Gran Canaria University (SIANI), 35001 Las Palmas, Spain;
- Department of Otolaryngology, Head and Neck Surgery, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, 35016 Las Palmas, Spain;
| |
Collapse
|
6
|
Nogueira W, Boghdady NE, Langner F, Gaudrain E, Başkent D. Effect of Channel Interaction on Vocal Cue Perception in Cochlear Implant Users. Trends Hear 2021; 25:23312165211030166. [PMID: 34461780 PMCID: PMC8411629 DOI: 10.1177/23312165211030166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Speech intelligibility in multitalker settings is challenging for most cochlear implant (CI) users. One possibility for this limitation is the suboptimal representation of vocal cues in implant processing, such as the fundamental frequency (F0), and the vocal tract length (VTL). Previous studies suggested that while F0 perception depends on spectrotemporal cues, VTL perception relies largely on spectral cues. To investigate how spectral smearing in CIs affects vocal cue perception in speech-on-speech (SoS) settings, adjacent electrodes were simultaneously stimulated using current steering in 12 Advanced Bionics users to simulate channel interaction. In current steering, two adjacent electrodes are simultaneously stimulated forming a channel of parallel stimulation. Three such stimulation patterns were used: Sequential (one current steering channel), Paired (two channels), and Triplet stimulation (three channels). F0 and VTL just-noticeable differences (JNDs; Task 1), in addition to SoS intelligibility (Task 2) and comprehension (Task 3), were measured for each stimulation strategy. In Tasks 2 and 3, four maskers were used: the same female talker, a male voice obtained by manipulating both F0 and VTL (F0+VTL) of the original female speaker, a voice where only F0 was manipulated, and a voice where only VTL was manipulated. JNDs were measured relative to the original voice for the F0, VTL, and F0+VTL manipulations. When spectral smearing was increased from Sequential to Triplet, a significant deterioration in performance was observed for Tasks 1 and 2, with no differences between Sequential and Paired stimulation. Data from Task 3 were inconclusive. These results imply that CI users may tolerate certain amounts of channel interaction without significant reduction in performance on tasks relying on voice perception. This points to possibilities for using parallel stimulation in CIs for reducing power consumption.
Collapse
Affiliation(s)
- Waldo Nogueira
- Department of Otolaryngology, Medical University
Hannover and Cluster of Excellence Hearing4all, Hanover, Germany
| | - Nawal El Boghdady
- Department of Otorhinolaryngology, University Medical
Center Groningen, University of Groningen, Groningen,
Netherlands
- Research School of Behavioral and Cognitive
Neurosciences, University of
Groningen, University of Groningen, Groningen,
Netherlands
| | - Florian Langner
- Department of Otolaryngology, Medical University
Hannover and Cluster of Excellence Hearing4all, Hanover, Germany
| | - Etienne Gaudrain
- Department of Otorhinolaryngology, University Medical
Center Groningen, University of Groningen, Groningen,
Netherlands
- Research School of Behavioral and Cognitive
Neurosciences, University of
Groningen, University of Groningen, Groningen,
Netherlands
- Lyon Neuroscience Research Center, CNRS UMR 5292,
INSERM U1028, University Lyon 1, Lyon, France
| | - Deniz Başkent
- Department of Otorhinolaryngology, University Medical
Center Groningen, University of Groningen, Groningen,
Netherlands
- Research School of Behavioral and Cognitive
Neurosciences, University of
Groningen, University of Groningen, Groningen,
Netherlands
| |
Collapse
|
7
|
Precompensating for spread of excitation in a cochlear implant coding strategy. Hear Res 2020; 395:107977. [PMID: 32653106 DOI: 10.1016/j.heares.2020.107977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/11/2020] [Accepted: 04/15/2020] [Indexed: 11/22/2022]
Abstract
Cochlear implant users' limited ability to understand speech in noisy environments has been linked to the poor spatial resolution and the high degree of spectral smearing associated with the spread of neural excitation. A sound coding algorithm that aims to improve the spectro-temporal representation of the sound signal at the implanted ear by precompensating the electrical stimulation for the spread of excitation is presented in this study. The spread precompensation algorithm was integrated into the standard clinical advanced combination encoder (ACE) strategy and the resulting strategy was called SPACE. SPACE was evaluated acutely with a group of six implant users and was compared to their daily used ACE strategy in terms of preference rating and speech recognition in four-talker babble and stationary speech-shaped noise. While no significant differences in preference rating were observed, speech recognition in four-talker babble was improved by SPACE processing. Analysis of the group results revealed a significant improvement in mean speech reception threshold (SRT) over the ACE strategy of 1.4 dB in four-talker babble, whereas the difference of 0.9 dB in stationary noise did not reach statistical significance. Assessment of individual differences showed that four out of six listeners obtained significant SRT improvements with SPACE and that no subject scored significantly worse compared to ACE. The results suggest that the proposed sound coding strategy has the potential to improve speech perception for cochlear implant users in challenging listening situations.
Collapse
|
8
|
Winn MB, Moore AN. Perceptual weighting of acoustic cues for accommodating gender-related talker differences heard by listeners with normal hearing and with cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:496. [PMID: 32873011 PMCID: PMC7402726 DOI: 10.1121/10.0001672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/31/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Listeners must accommodate acoustic differences between vocal tracts and speaking styles of conversation partners-a process called normalization or accommodation. This study explores what acoustic cues are used to make this perceptual adjustment by listeners with normal hearing or with cochlear implants, when the acoustic variability is related to the talker's gender. A continuum between /ʃ/ and /s/ was paired with naturally spoken vocalic contexts that were parametrically manipulated to vary by numerous cues for talker gender including fundamental frequency (F0), vocal tract length (formant spacing), and direct spectral contrast with the fricative. The goal was to examine relative contributions of these cues toward the tendency to have a lower-frequency acoustic boundary for fricatives spoken by men (found in numerous previous studies). Normal hearing listeners relied primarily on formant spacing and much less on F0. The CI listeners were individually variable, with the F0 cue emerging as the strongest cue on average.
Collapse
Affiliation(s)
- Matthew B Winn
- Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Ashley N Moore
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington 98105, USA
| |
Collapse
|
9
|
Kozin ED, Brown MC, Lee DJ, Stankovic KM. Light-Based Neuronal Activation: The Future of Cranial Nerve Stimulation. Otolaryngol Clin North Am 2020; 53:171-183. [PMID: 31739905 DOI: 10.1016/j.otc.2019.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite advances in implant hardware, neuroprosthetic devices in otolaryngology have sustained evolutionary rather than revolutionary changes over the past half century. Although electrical stimulation has the capacity for facile activation of neurons and high temporal resolution, it has limited spatial selectivity. Alternative strategies for neuronal stimulation are being investigated to improve spatial resolution. In particular, light-based neuronal stimulation is a viable alternative and complement to electrical stimulation. This article provides a broad overview of light-based neuronal stimulation technologies. Specific examples of active research on light-based prostheses, including cochlear implants, auditory brainstem implants, retinal implants, and facial nerve implants, are reviewed.
Collapse
Affiliation(s)
- Elliott D Kozin
- Massachusetts Eye and Ear Infirmary and Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA.
| | - M Christian Brown
- Massachusetts Eye and Ear Infirmary and Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Daniel J Lee
- Massachusetts Eye and Ear Infirmary and Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Konstantina M Stankovic
- Massachusetts Eye and Ear Infirmary and Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| |
Collapse
|
10
|
Dalrymple AN, Huynh M, Nayagam BA, Lee CD, Weiland GR, Petrossians A, J J, Iii W, Fallon JB, Shepherd RK. Electrochemical and biological characterization of thin-film platinum-iridium alloy electrode coatings: a chronic in vivo study. J Neural Eng 2020; 17:036012. [PMID: 32408281 DOI: 10.1088/1741-2552/ab933d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To evaluate the electrochemical properties, biological response, and surface characterization of an electrodeposited Platinum-Iridium (Pt-Ir) electrode coating on cochlear implants subjected to chronic stimulation in vivo. APPROACH Electrochemical impedance spectroscopy (EIS), charge storage capacity (CSC), charge injection limit (CIL), and voltage transient (VT) impedance were measured bench-top before and after implant and in vivo. Coated Pt-Ir and uncoated Pt electrode arrays were implanted into cochlea of normal hearing rats and stimulated for ∼4 h d, 5 d week-1 for 5 weeks at levels within the normal clinical range. Neural function was monitored using electrically-evoked auditory brainstem responses. After explant, the electrode surfaces were assessed, and cochleae examined histologically. MAIN RESULTS When measured on bench-top before and after stimulation, Pt-Ir coated electrodes had significantly lower VT impedance (p < 0.001) and significantly higher CSC (p < 0.001) and CIL (p < 0.001) compared to uncoated Pt electrodes. In vivo, the CSC and CIL of Pt-Ir were significantly higher than Pt throughout the implantation period (p= 0.047 and p< 0.001, respectively); however, the VT impedance (p= 0.3) was not. There was no difference in foreign body response between material cohorts, although cochleae implanted with coated electrodes contained small deposits of Pt-Ir. There was no evidence of increased neural loss or loss of neural function in either group. Surface examination revealed no Pt corrosion on any electrodes. SIGNIFICANCE Electrodeposited Pt-Ir electrodes demonstrated significant improvements in electrochemical performance on the bench-top and in vivo compared to uncoated Pt. Neural function and tissue response to Pt-Ir electrodes were not different from uncoated Pt, despite small deposits of Pt-Ir in the tissue capsule. Electrodeposited Pt-Ir coatings offer promise as an improved electrode coating for active neural prostheses.
Collapse
|
11
|
Zhao Y, Chakravorti S, Labadie RF, Dawant BM, Noble JH. Automatic graph-based method for localization of cochlear implant electrode arrays in clinical CT with sub-voxel accuracy. Med Image Anal 2019; 52:1-12. [PMID: 30468968 PMCID: PMC6543817 DOI: 10.1016/j.media.2018.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/18/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
Cochlear implants (CIs) are neural prosthetics that provide a sense of sound to people who experience severe to profound hearing loss. Recent studies have demonstrated a correlation between hearing outcomes and intra-cochlear locations of CI electrodes. Our group has been conducting investigations on this correlation and has been developing an image-guided cochlear implant programming (IGCIP) system to program CI devices to improve hearing outcomes. One crucial step that has not been automated in IGCIP is the localization of CI electrodes in clinical CTs. Existing methods for CI electrode localization do not generalize well on large-scale datasets of clinical CTs implanted with different brands of CI arrays. In this paper, we propose a novel method for localizing different brands of CI electrodes in clinical CTs. We firstly generate the candidate electrode positions at sub-voxel resolution in a whole head CT by thresholding an up-sampled feature image and voxel-thinning the result. Then, we use a graph-based path-finding algorithm to find a fixed-length path that consists of a subset of the candidates as the localization result. Validation on a large-scale dataset of clinical CTs shows that our proposed method outperforms the state-of-art CI electrode localization methods and achieves a mean error of 0.12 mm when compared to expert manual localization results. This represents a crucial step in translating IGCIP from the laboratory to large-scale clinical use.
Collapse
Affiliation(s)
- Yiyuan Zhao
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA.
| | - Srijata Chakravorti
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Robert F Labadie
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Benoit M Dawant
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Jack H Noble
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
12
|
Zhao Y, Dawant BM, Labadie RF, Noble JH. Automatic localization of closely spaced cochlear implant electrode arrays in clinical CTs. Med Phys 2018; 45:5030-5040. [PMID: 30218461 PMCID: PMC7185475 DOI: 10.1002/mp.13185] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/24/2018] [Accepted: 08/31/2018] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Cochlear implants (CIs) are neural prosthetic devices that provide a sense of sound to people who experience profound hearing loss. Recent research has indicated that there is a significant correlation between hearing outcomes and the intracochlear locations of the electrodes. We have developed an image-guided cochlear implant programming (IGCIP) system based on this correlation to assist audiologists with programming CI devices. One crucial step in our IGCIP system is the localization of CI electrodes in postimplantation CTs. Existing methods for this step are either not fully automated or not robust. When the CI electrodes are closely spaced, it is more difficult to identify individual electrodes because there is no intensity contrast between them in a clinical CT. The goal of this work is to automatically segment the closely spaced CI electrode arrays in postimplantation clinical CTs. METHODS The proposed method involves firstly identifying a bounding box that contains the cochlea by using a reference CT. Then, the intensity image and the vesselness response of the VOI are used to segment the regions of interest (ROIs) that may contain the electrode arrays. For each ROI, we apply a voxel thinning method to generate the medial axis line. We exhaustively search through all the possible connections of medial axis lines. For each possible connection, we define CI array centerline candidates by selecting two points on the connected medial axis lines as the array endpoints. For each CI array centerline candidate, we use a cost function to evaluate its quality, and the one with the lowest cost is selected as the array centerline. Then, we fit an a priori known geometric model of the array to the centerline to localize the individual electrodes. The method was trained on 28 clinical CTs of CI recipients implanted with three models of closely spaced CI arrays. The localization results are compared with the ground truth localization results manually generated by an expert. RESULTS A validation study was conducted on 129 clinical CTs of CI recipients implanted with three models of closely spaced arrays. Ninety-eight percent of the localization results generated by the proposed method had maximum localization errors lower than one voxel diagonal of the CTs. The mean localization error was 0.13 mm, which was close to the rater's consistency error (0.11 mm). The method also outperformed the existing automatic electrode localization methods in our validation study. CONCLUSION Our validation study shows that our method can localize closely spaced CI arrays with an accuracy close to what is achievable by an expert on clinical CTs. This represents a crucial step toward automating IGCIP and translating it from the laboratory to the clinical workflow.
Collapse
Affiliation(s)
- Yiyuan Zhao
- Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleTN37235USA
| | - Benoit M. Dawant
- Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleTN37235USA
| | - Robert F. Labadie
- Department of Otolaryngology – Head and Neck SurgeryVanderbilt UniversityNashvilleTN37235USA
| | - Jack H. Noble
- Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleTN37235USA
| |
Collapse
|
13
|
Analysis of Different Approaches for Clinical Cochlear Coverage Evaluation After Cochlear Implantation. Otol Neurotol 2018; 39:e642-e650. [DOI: 10.1097/mao.0000000000001904] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Shepherd RK, Wise AK, Enke YL, Carter PM, Fallon JB. Evaluation of focused multipolar stimulation for cochlear implants: a preclinical safety study. J Neural Eng 2018; 14:046020. [PMID: 28607224 DOI: 10.1088/1741-2552/aa7586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Cochlear implants (CIs) have a limited number of independent stimulation channels due to the highly conductive nature of the fluid-filled cochlea. Attempts to develop highly focused stimulation to improve speech perception in CI users includes the use of simultaneous stimulation via multiple current sources. Focused multipolar (FMP) stimulation is an example of this approach and has been shown to reduce interaction between stimulating channels. However, compared with conventional biphasic current pulses generated from a single current source, FMP is a complex stimulus that includes extended periods of stimulation before charge recovery is achieved, raising questions on whether chronic stimulation with this strategy is safe. The present study evaluated the long-term safety of intracochlear stimulation using FMP in a preclinical animal model of profound deafness. APPROACH Six cats were bilaterally implanted with scala tympani electrode arrays two months after deafening, and received continuous unilateral FMP stimulation at levels that evoked a behavioural response for periods of up to 182 d. Electrode impedance, electrically-evoked compound action potentials (ECAPs) and auditory brainstem responses (EABRs) were monitored periodically over the course of the stimulation program from both the stimulated and contralateral control cochleae. On completion of the stimulation program cochleae were examined histologically and the electrode arrays were evaluated for evidence of platinum (Pt) corrosion. MAIN RESULTS There was no significant difference in electrode impedance between control and chronically stimulated electrodes following long-term FMP stimulation. Moreover, there was no significant difference between ECAP and EABR thresholds evoked from control or stimulated cochleae at either the onset of stimulation or at completion of the stimulation program. Chronic FMP stimulation had no effect on spiral ganglion neuron (SGN) survival when compared with unstimulated control cochleae. Long-term implantation typically evoked a mild foreign body reaction proximal to the electrode array; however stimulated cochleae exhibited a small but statistically significant increase in the tissue response. Finally, there was no evidence of Pt corrosion following long-term FMP stimulation; stimulated electrodes exhibited the same surface features as the unstimulated control electrodes. SIGNIFICANCE Chronic intracochlear FMP stimulation at levels used in the present study did not adversely affect electrically-evoked neural thresholds or SGN survival but evoked a small, benign increase in inflammatory response compared to control ears. Moreover chronic FMP stimulation does not affect the surface of Pt electrodes at suprathreshold stimulus levels. These findings support the safe clinical application of an FMP stimulation strategy.
Collapse
Affiliation(s)
- Robert K Shepherd
- The Bionics Institute, East Melbourne 3002, Australia. Department of Medical Bionics, University of Melbourne, East Melbourne 3002, Australia
| | | | | | | | | |
Collapse
|
15
|
Zhao Y, Labadie RF, Dawant BM, Noble JH. Validation of automatic cochlear implant electrode localization techniques using μ CTs. J Med Imaging (Bellingham) 2018; 5:035001. [PMID: 30840722 PMCID: PMC6152538 DOI: 10.1117/1.jmi.5.3.035001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/31/2018] [Indexed: 11/14/2022] Open
Abstract
Cochlear implants (CIs) are standard treatment for patients who experience sensorineural hearing loss. Although these devices have been remarkably successful at restoring hearing, it is rare that they permit to achieve natural fidelity and many patients experience poor outcomes. Our group has developed image-guided CI programming techniques (IGCIP), in which image analysis techniques are used to locate the intracochlear position of CI electrodes to determine patient-customized settings for the CI processor. Clinical studies have shown that IGCIP leads to significantly improved outcomes. A crucial step is the localization of the electrodes, and rigorously quantifying the accuracy of our algorithms requires dedicated datasets. We discuss the creation of a ground truth dataset for electrode position and its use to evaluate the accuracy of our electrode localization techniques. Our final ground truth dataset includes 30 temporal bone specimens that were each implanted with one of four different types of electrode array by an experienced CI surgeon. The arrays were localized in conventional CT images using our automatic methods and manually in high-resolution μ CT images to create the ground truth. The conventional and μ CT images were registered to facilitate comparison between automatic and ground truth electrode localization results. Our technique resulted in mean errors of 0.13 mm in localizing the electrodes across 30 cases. Our approach successfully permitted characterizing the accuracy of our methods, which is critical to understand their limitations for use in IGCIP.
Collapse
Affiliation(s)
- Yiyuan Zhao
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| | - Robert F. Labadie
- Vanderbilt University Medical Center, Department of Otolaryngology—Head and Neck Surgery, Nashville, Tennessee, United States
| | - Benoit M. Dawant
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
| | - Jack H. Noble
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States
- Vanderbilt University Medical Center, Department of Otolaryngology—Head and Neck Surgery, Nashville, Tennessee, United States
| |
Collapse
|
16
|
El Boghdady N, Başkent D, Gaudrain E. Effect of frequency mismatch and band partitioning on vocal tract length perception in vocoder simulations of cochlear implant processing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:3505. [PMID: 29960490 DOI: 10.1121/1.5041261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The vocal tract length (VTL) of a speaker is an important voice cue that aids speech intelligibility in multi-talker situations. However, cochlear implant (CI) users demonstrate poor VTL sensitivity. This may be partially caused by the mismatch between frequencies received by the implant and those corresponding to places of stimulation along the cochlea. This mismatch can distort formant spacing, where VTL cues are encoded. In this study, the effects of frequency mismatch and band partitioning on VTL sensitivity were investigated in normal hearing listeners with vocoder simulations of CI processing. The hypotheses were that VTL sensitivity may be reduced by increased frequency mismatch and insufficient spectral resolution in how the frequency range is partitioned, specifically where formants lie. Moreover, optimal band partitioning might mitigate the detrimental effects of frequency mismatch on VTL sensitivity. Results showed that VTL sensitivity decreased with increased frequency mismatch and reduced spectral resolution near the low frequencies of the band partitioning map. Band partitioning was independent of mismatch, indicating that if a given partitioning is suboptimal, a better partitioning might improve VTL sensitivity despite the degree of mismatch. These findings suggest that customizing the frequency partitioning map may enhance VTL perception in individual CI users.
Collapse
Affiliation(s)
- Nawal El Boghdady
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, Groningen, The Netherlands
| | - Deniz Başkent
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, Groningen, The Netherlands
| | - Etienne Gaudrain
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, Groningen, The Netherlands
| |
Collapse
|
17
|
Imaging evaluation of electrode placement and effect on electrode discrimination on different cochlear implant electrode arrays. Eur Arch Otorhinolaryngol 2018; 275:1385-1394. [PMID: 29610960 DOI: 10.1007/s00405-018-4943-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/19/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The aim of the present study is to evaluate the effect of electrode discrimination based on electrode to modiolus distance in different cochlear implant models, using image information to estimate the outcomes after an implantation on electrode discrimination METHODS: A descriptive prospective randomized study performed during 16 months. A psychoacoustic platform was used to evaluate patients' electrode discrimination capabilities of patients. For the acquisition of the images, a cone beam computed tomography was used to assess postcochlear implantation of electrodes' position. We considered two other new measurements: the intracochlear position index, which indicates how far is the electrode from the modiolar wall, and the homogeneity factor (HF), which provides us with information about the distance between the electrodes and the modiolus RESULTS: 21 postlingually deaf adults showing different CI models [CI522 (n = 7), CI512 (n = 7), and CI532 (n = 7)] that corresponded to the lateral and perimodiolar array electrodes. The average success rate of the CI522 group was 47%, of the CI512 group was 48%, and of the CI532 group was 77%. There is statistically significant difference between groups CI532-CI522 (p = 0.0033) and CI532-CI512 (p = 0.0027) CONCLUSION: The Nucleus CI532 offers a better perimodiolar placement. HF and IPI measurements provide information about the electrodes location inside the cochlea, being related to electrode discrimination.
Collapse
|
18
|
Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization. Ear Hear 2018; 37:e377-e390. [PMID: 27438871 DOI: 10.1097/aud.0000000000000328] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study was conducted to measure auditory perception by cochlear implant users in the spectral and temporal domains, using tests of either categorization (using speech-based cues) or discrimination (using conventional psychoacoustic tests). The authors hypothesized that traditional nonlinguistic tests assessing spectral and temporal auditory resolution would correspond to speech-based measures assessing specific aspects of phonetic categorization assumed to depend on spectral and temporal auditory resolution. The authors further hypothesized that speech-based categorization performance would ultimately be a superior predictor of speech recognition performance, because of the fundamental nature of speech recognition as categorization. DESIGN Nineteen cochlear implant listeners and 10 listeners with normal hearing participated in a suite of tasks that included spectral ripple discrimination, temporal modulation detection, and syllable categorization, which was split into a spectral cue-based task (targeting the /ba/-/da/ contrast) and a timing cue-based task (targeting the /b/-/p/ and /d/-/t/ contrasts). Speech sounds were manipulated to contain specific spectral or temporal modulations (formant transitions or voice onset time, respectively) that could be categorized. Categorization responses were quantified using logistic regression to assess perceptual sensitivity to acoustic phonetic cues. Word recognition testing was also conducted for cochlear implant listeners. RESULTS Cochlear implant users were generally less successful at utilizing both spectral and temporal cues for categorization compared with listeners with normal hearing. For the cochlear implant listener group, spectral ripple discrimination was significantly correlated with the categorization of formant transitions; both were correlated with better word recognition. Temporal modulation detection using 100- and 10-Hz-modulated noise was not correlated either with the cochlear implant subjects' categorization of voice onset time or with word recognition. Word recognition was correlated more closely with categorization of the controlled speech cues than with performance on the psychophysical discrimination tasks. CONCLUSIONS When evaluating people with cochlear implants, controlled speech-based stimuli are feasible to use in tests of auditory cue categorization, to complement traditional measures of auditory discrimination. Stimuli based on specific speech cues correspond to counterpart nonlinguistic measures of discrimination, but potentially show better correspondence with speech perception more generally. The ubiquity of the spectral (formant transition) and temporal (voice onset time) stimulus dimensions across languages highlights the potential to use this testing approach even in cases where English is not the native language.
Collapse
|
19
|
Ehlers E, Goupell MJ, Zheng Y, Godar SP, Litovsky RY. Binaural sensitivity in children who use bilateral cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:4264. [PMID: 28618809 PMCID: PMC5464955 DOI: 10.1121/1.4983824] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 05/29/2023]
Abstract
Children who are deaf and receive bilateral cochlear implants (BiCIs) perform better on spatial hearing tasks using bilateral rather than unilateral inputs; however, they underperform relative to normal-hearing (NH) peers. This gap in performance is multi-factorial, including the inability of speech processors to reliably deliver binaural cues. Although much is known regarding binaural sensitivity of adults with BiCIs, less is known about how the development of binaural sensitivity in children with BiCIs compared to NH children. Sixteen children (ages 9-17 years) were tested using synchronized research processors. Interaural time differences and interaural level differences (ITDs and ILDs, respectively) were presented to pairs of pitch-matched electrodes. Stimuli were 300-ms, 100-pulses-per-second, constant-amplitude pulse trains. In the first and second experiments, discrimination of interaural cues (either ITDs or ILDs) was measured using a two-interval left/right task. In the third experiment, subjects reported the perceived intracranial position of ITDs and ILDs in a lateralization task. All children demonstrated sensitivity to ILDs, possibly due to monaural level cues. Children who were born deaf had weak or absent sensitivity to ITDs; in contrast, ITD sensitivity was noted in children with previous exposure to acoustic hearing. Therefore, factors such as auditory deprivation, in particular, lack of early exposure to consistent timing differences between the ears, may delay the maturation of binaural circuits and cause insensitivity to binaural differences.
Collapse
Affiliation(s)
- Erica Ehlers
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Yi Zheng
- Beijing Advanced Innovation Center for Future Education, Beijing Normal University, Beijing 100875, China
| | - Shelly P Godar
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Ruth Y Litovsky
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|
20
|
Winn MB. Rapid Release From Listening Effort Resulting From Semantic Context, and Effects of Spectral Degradation and Cochlear Implants. Trends Hear 2016; 20:2331216516669723. [PMID: 27698260 PMCID: PMC5051669 DOI: 10.1177/2331216516669723] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 11/15/2022] Open
Abstract
People with hearing impairment are thought to rely heavily on context to compensate for reduced audibility. Here, we explore the resulting cost of this compensatory behavior, in terms of effort and the efficiency of ongoing predictive language processing. The listening task featured predictable or unpredictable sentences, and participants included people with cochlear implants as well as people with normal hearing who heard full-spectrum/unprocessed or vocoded speech. The crucial metric was the growth of the pupillary response and the reduction of this response for predictable versus unpredictable sentences, which would suggest reduced cognitive load resulting from predictive processing. Semantic context led to rapid reduction of listening effort for people with normal hearing; the reductions were observed well before the offset of the stimuli. Effort reduction was slightly delayed for people with cochlear implants and considerably more delayed for normal-hearing listeners exposed to spectrally degraded noise-vocoded signals; this pattern of results was maintained even when intelligibility was perfect. Results suggest that speed of sentence processing can still be disrupted, and exertion of effort can be elevated, even when intelligibility remains high. We discuss implications for experimental and clinical assessment of speech recognition, in which good performance can arise because of cognitive processes that occur after a stimulus, during a period of silence. Because silent gaps are not common in continuous flowing speech, the cognitive/linguistic restorative processes observed after sentences in such studies might not be available to listeners in everyday conversations, meaning that speech recognition in conventional tests might overestimate sentence-processing capability.
Collapse
Affiliation(s)
- Matthew B. Winn
- Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
21
|
Hughes ML, Goehring JL, Baudhuin JL, Schmid KK. Effects of stimulus level and rate on psychophysical thresholds for interleaved pulse trains in cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:2297. [PMID: 27794318 PMCID: PMC6910005 DOI: 10.1121/1.4963903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
This study examined channel interactions using interleaved pulse trains to assess masking and potential facilitative effects in cochlear-implant recipients using clinically relevant stimuli. Psychophysical thresholds were measured for two adjacent mid-array electrodes; one served as the masker and the other as the probe. Two rates representative of those found in present-day strategies were tested: 1700 and 3400 pulses per second per channel. Four masker levels ranging from sub-threshold to loud-but-comfortable were tested. It was hypothesized that low-level maskers would produce facilitative effects, shifting to masking effects at high levels, and that faster rates would yield smaller masking effects due to greater stochastic neural firing patterns. Twenty-nine ears with Cochlear or Advanced Bionics devices were tested. High-level maskers produced more masking than low-level maskers, as expected. Facilitation was not observed for sub-threshold or threshold-level maskers in most cases. High masker levels yielded reduced probe thresholds for two Advanced Bionics subjects. This was partly eliminated with a longer temporal offset between each masker-probe pulse pair, as was used with Cochlear subjects. These findings support the use of temporal gaps between stimulation of subsequent electrodes to reduce channel interactions.
Collapse
Affiliation(s)
- Michelle L Hughes
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - Jenny L Goehring
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - Jacquelyn L Baudhuin
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - Kendra K Schmid
- Department of Biostatistics, 984375 University of Nebraska Medical Center, Omaha, Nebraska 68198-4375, USA
| |
Collapse
|
22
|
Zhao Y, Dawant BM, Noble JH. Automatic selection of the active electrode set for image-guided cochlear implant programming. J Med Imaging (Bellingham) 2016; 3:035001. [PMID: 27704031 DOI: 10.1117/1.jmi.3.3.035001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/30/2016] [Indexed: 11/14/2022] Open
Abstract
Cochlear implants (CIs) are neural prostheses that restore hearing by stimulating auditory nerve pathways within the cochlea using an implanted electrode array. Research has shown when multiple electrodes stimulate the same nerve pathways, competing stimulation occurs and hearing outcomes decline. Recent clinical studies have indicated that hearing outcomes can be significantly improved by using an image-guided active electrode set selection technique we have designed, in which electrodes that cause competing stimulation are identified and deactivated. In tests done to date, an expert is needed to perform the electrode selection step with the assistance of a method to visualize the spatial relationship between electrodes and neural sites determined using image analysis techniques. We propose to automate the electrode selection step by optimizing a cost function that captures the heuristics used by the expert. Further, we propose an approach to estimate the values of parameters used in the cost function using an existing database of expert electrode selections. We test this method with different electrode array models from three manufacturers. Our automatic approach generates acceptable active electrode sets in 98.3% of the subjects tested. This approach represents a crucial step toward clinical translation of our image-guided CI programming system.
Collapse
Affiliation(s)
- Yiyuan Zhao
- Vanderbilt University , Department of Electrical Engineering and Computer Science, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
| | - Benoit M Dawant
- Vanderbilt University , Department of Electrical Engineering and Computer Science, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
| | - Jack H Noble
- Vanderbilt University , Department of Electrical Engineering and Computer Science, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
| |
Collapse
|
23
|
Abstract
HYPOTHESIS Image-guided cochlear implant (CI) programming can improve hearing outcomes for pediatric CI recipients. BACKGROUND CIs have been highly successful for children with severe-to-profound hearing loss, offering potential for mainstreamed education and auditory-oral communication. Despite this, a significant number of recipients still experience poor speech understanding, language delay, and, even among the best performers, restoration to normal auditory fidelity is rare. Although significant research efforts have been devoted to improving stimulation strategies, few developments have led to significant hearing improvement over the past two decades. Recently introduced techniques for image-guided CI programming (IGCIP) permit creating patient-customized CI programs by making it possible, for the first time, to estimate the position of implanted CI electrodes relative to the nerves they stimulate using CT images. This approach permits identification of electrodes with high levels of stimulation overlap and to deactivate them from a patient's map. Previous studies have shown that IGCIP can significantly improve hearing outcomes for adults with CIs. METHODS The IGCIP technique was tested for 21 ears of 18 pediatric CI recipients. Participants had long-term experience with their CI (5 mo to 13 yr) and ranged in age from 5 to 17 years old. Speech understanding was assessed after approximately 4 weeks of experience with the IGCIP map. RESULTS Using a two-tailed Wilcoxon signed-rank test, statistically significant improvement (p < 0.05) was observed for word and sentence recognition in quiet and noise, as well as pediatric self-reported quality-of-life (QOL) measures. CONCLUSION Our results indicate that image guidance significantly improves hearing and QOL outcomes for pediatric CI recipients.
Collapse
|
24
|
Abstract
Auditory brainstem implants (ABIs) provide auditory perception in patients with profound hearing loss who are not candidates for the cochlear implant (CI) because of anatomic constraints or failed CI surgery. Herein, the authors discuss (1) preoperative evaluation of pediatric ABI candidates, (2) surgical approaches, and (3) contemporary ABI devices and their use in the pediatric population. The authors also review the surgical and audiologic outcomes following pediatric ABI surgery. The authors' institutional experience and the nearly 200 cases performed in Europe and the United States indicate that ABI surgery in children can be safe and effective.
Collapse
Affiliation(s)
- Sidharth V Puram
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA; Department of Otology and Laryngology, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Daniel J Lee
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA; Department of Otology and Laryngology, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Ehlers E, Kan A, Winn MB, Stoelb C, Litovsky RY. Binaural hearing in children using Gaussian enveloped and transposed tones. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:1724. [PMID: 27106319 PMCID: PMC4826377 DOI: 10.1121/1.4945588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Children who use bilateral cochlear implants (BiCIs) show significantly poorer sound localization skills than their normal hearing (NH) peers. This difference has been attributed, in part, to the fact that cochlear implants (CIs) do not faithfully transmit interaural time differences (ITDs) and interaural level differences (ILDs), which are known to be important cues for sound localization. Interestingly, little is known about binaural sensitivity in NH children, in particular, with stimuli that constrain acoustic cues in a manner representative of CI processing. In order to better understand and evaluate binaural hearing in children with BiCIs, the authors first undertook a study on binaural sensitivity in NH children ages 8-10, and in adults. Experiments evaluated sound discrimination and lateralization using ITD and ILD cues, for stimuli with robust envelope cues, but poor representation of temporal fine structure. Stimuli were spondaic words, Gaussian-enveloped tone pulse trains (100 pulse-per-second), and transposed tones. Results showed that discrimination thresholds in children were adult-like (15-389 μs for ITDs and 0.5-6.0 dB for ILDs). However, lateralization based on the same binaural cues showed higher variability than seen in adults. Results are discussed in the context of factors that may be responsible for poor representation of binaural cues in bilaterally implanted children.
Collapse
Affiliation(s)
- Erica Ehlers
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Alan Kan
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Matthew B Winn
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Corey Stoelb
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Ruth Y Litovsky
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|
26
|
Abstract
OBJECTIVES This study measured the impact of auditory spectral resolution on listening effort. Systematic degradation in spectral resolution was hypothesized to elicit corresponding systematic increases in pupil dilation, consistent with the notion of pupil dilation as a marker of cognitive load. DESIGN Spectral resolution of sentences was varied with two different vocoders: (1) a noise-channel vocoder with a variable number of spectral channels; and (2) a vocoder designed to simulate front-end processing of a cochlear implant, including peak-picking channel selection with variable synthesis filter slopes to simulate spread of neural excitation. Pupil dilation was measured after subject-specific luminance adjustment and trial-specific baseline measures. Mixed-effects growth curve analysis was used to model pupillary responses over time. RESULTS For both types of vocoder, pupil dilation grew with each successive degradation in spectral resolution. Within each condition, pupillary responses were not related to intelligibility scores, and the effect of spectral resolution on pupil dilation persisted even when only analyzing trials in which responses were 100% correct. CONCLUSIONS Intelligibility scores alone were not sufficient to quantify the effort required to understand speech with poor resolution. Degraded spectral resolution results in increased effort required to understand speech, even when intelligibility is at 100%. Pupillary responses were a sensitive and highly granular measurement to reveal changes in listening effort. Pupillary responses might potentially reveal the benefits of aural prostheses that are not captured by speech intelligibility performance alone as well as the disadvantages that are overcome by increased listening effort.
Collapse
|
27
|
Hanekom T, Hanekom JJ. Three-dimensional models of cochlear implants: A review of their development and how they could support management and maintenance of cochlear implant performance. NETWORK (BRISTOL, ENGLAND) 2016; 27:67-106. [PMID: 27136100 DOI: 10.3109/0954898x.2016.1171411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Three-dimensional (3D) computational modeling of the auditory periphery forms an integral part of modern-day research in cochlear implants (CIs). These models consist of a volume conduction description of implanted stimulation electrodes and the current distribution around these, coupled with auditory nerve fiber models. Cochlear neural activation patterns can then be predicted for a given input stimulus. The objective of this article is to present the context of 3D modeling within the field of CIs, the different models, and approaches to models that have been developed over the years, as well as the applications and potential applications of these models. The process of development of 3D models is discussed, and the article places specific emphasis on the complementary roles of generic models and user-specific models, as the latter is important for translation of these models into clinical application.
Collapse
Affiliation(s)
- Tania Hanekom
- a Bioengineering, Department of Electrical, Electronic and Computer Engineering , University of Pretoria , Pretoria , South Africa
| | - Johan J Hanekom
- a Bioengineering, Department of Electrical, Electronic and Computer Engineering , University of Pretoria , Pretoria , South Africa
| |
Collapse
|
28
|
George SS, Shivdasani MN, Wise AK, Shepherd RK, Fallon JB. Electrophysiological channel interactions using focused multipolar stimulation for cochlear implants. J Neural Eng 2015; 12:066005. [DOI: 10.1088/1741-2560/12/6/066005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
George SS, Wise AK, Shivdasani MN, Shepherd RK, Fallon JB. Evaluation of focused multipolar stimulation for cochlear implants in acutely deafened cats. J Neural Eng 2015; 11:065003. [PMID: 25420148 DOI: 10.1088/1741-2560/11/6/065003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The conductive nature of the fluids and tissues of the cochlea can lead to broad activation of spiral ganglion neurons using contemporary cochlear implant stimulation configurations such as monopolar (MP) stimulation. The relatively poor spatial selectivity is thought to limit implant performance, particularly in noisy environments. Several current focusing techniques have been proposed to reduce the spread of activation with the aim towards achieving improved clinical performance. APPROACH The present research evaluated the efficacy of focused multipolar (FMP) stimulation, a relatively new focusing technique in the cochlea, and compared its efficacy to both MP stimulation and tripolar (TP) stimulation. The spread of neural activity across the inferior colliculus (IC), measured by recording the spatial tuning curve, was used as a measure of spatial selectivity. Adult cats (n = 6) were acutely deafened and implanted with an intracochlear electrode array before multi-unit responses were recorded across the cochleotopic gradient of the contralateral IC. Recordings were made in response to acoustic and electrical stimulation using the MP, TP and FMP configurations. MAIN RESULTS FMP and TP stimulation resulted in greater spatial selectivity than MP stimulation. However, thresholds were significantly higher (p < 0.001) for FMP and TP stimulation compared to MP stimulation. There were no differences found in spatial selectivity and threshold between FMP and TP stimulation. SIGNIFICANCE The greater spatial selectivity of FMP and TP stimulation would be expected to result in improved clinical performance. However, further research will be required to demonstrate the efficacy of these modes of stimulation after longer durations of deafness.
Collapse
|
30
|
Winn MB, Litovsky RY. Using speech sounds to test functional spectral resolution in listeners with cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:1430-1442. [PMID: 25786954 PMCID: PMC4368591 DOI: 10.1121/1.4908308] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/26/2014] [Accepted: 01/20/2015] [Indexed: 05/31/2023]
Abstract
In this study, spectral properties of speech sounds were used to test functional spectral resolution in people who use cochlear implants (CIs). Specifically, perception of the /ba/-/da/ contrast was tested using two spectral cues: Formant transitions (a fine-resolution cue) and spectral tilt (a coarse-resolution cue). Higher weighting of the formant cues was used as an index of better spectral cue perception. Participants included 19 CI listeners and 10 listeners with normal hearing (NH), for whom spectral resolution was explicitly controlled using a noise vocoder with variable carrier filter widths to simulate electrical current spread. Perceptual weighting of the two cues was modeled with mixed-effects logistic regression, and was found to systematically vary with spectral resolution. The use of formant cues was greatest for NH listeners for unprocessed speech, and declined in the two vocoded conditions. Compared to NH listeners, CI listeners relied less on formant transitions, and more on spectral tilt. Cue-weighting results showed moderately good correspondence with word recognition scores. The current approach to testing functional spectral resolution uses auditory cues that are known to be important for speech categorization, and can thus potentially serve as the basis upon which CI processing strategies and innovations are tested.
Collapse
Affiliation(s)
- Matthew B Winn
- Waisman Center and Department of Surgery, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705
| | - Ruth Y Litovsky
- Waisman Center, Department of Communication Sciences and Disorders and Department of Surgery, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705
| |
Collapse
|
31
|
Hight AE, Kozin ED, Darrow K, Lehmann A, Boyden E, Brown MC, Lee DJ. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant. Hear Res 2015; 322:235-41. [PMID: 25598479 DOI: 10.1016/j.heares.2015.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/06/2014] [Accepted: 01/08/2015] [Indexed: 12/16/2022]
Abstract
Contemporary auditory brainstem implant (ABI) performance is limited by reliance on electrical neurostimulation with its accompanying channel cross talk and current spread to non-auditory neurons. A new generation ABI based on optogenetic technology may ameliorate limitations fundamental to electrical stimulation. The most widely studied opsin is channelrhodopsin-2 (ChR2); however, its relatively slow kinetic properties may prevent the encoding of auditory information at high stimulation rates. In the present study, we compare the temporal resolution of light-evoked responses of ChR2 to a recently developed fast opsin, Chronos, to ChR2 in a murine ABI model. Viral mediated gene transfer via a posterolateral craniotomy was used to express Chronos or ChR2 in the cochlear nucleus (CN). Following a four to eight week incubation period, blue light (473 nm) was delivered via an optical fiber placed directly on the surface of the infected CN, and neural activity was recorded in the contralateral inferior colliculus (IC). Both ChR2 and Chronos evoked sustained responses to all stimuli, even at high pulse rates. In addition, optical stimulation evoked excitatory responses throughout the tonotopic axis of the IC. Synchrony of the light-evoked response to stimulus rates of 14-448 pulses/s was higher in Chronos compared to ChR2 mice (p < 0.05 at 56, 168, and 224 pulses/s). Our results demonstrate that Chronos has the ability to drive the auditory system at higher stimulation rates than ChR2 and may be a more ideal opsin for manipulation of auditory pathways in future optogenetic-based neuroprostheses. This article is part of a Special Issue entitled "Lasker Award".
Collapse
Affiliation(s)
- Ariel Edward Hight
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
| | - Elliott D Kozin
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Keith Darrow
- Department of Communication Sciences and Disorders, Worcester State University, Worcester, MA, USA
| | - Ashton Lehmann
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Edward Boyden
- Departments of Brain and Cognitive Sciences and Biological Engineering, MIT Media Lab and McGovern Institute, MIT, Cambridge, MA, USA
| | - M Christian Brown
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Daniel J Lee
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Noble JH, Gifford RH, Hedley-Williams AJ, Dawant BM, Labadie RF. Clinical evaluation of an image-guided cochlear implant programming strategy. Audiol Neurootol 2014; 19:400-11. [PMID: 25402603 DOI: 10.1159/000365273] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 06/16/2014] [Indexed: 11/19/2022] Open
Abstract
The cochlear implant (CI) has been labeled the most successful neural prosthesis. Despite this success, a significant number of CI recipients experience poor speech understanding, and, even among the best performers, restoration to normal auditory fidelity is rare. While significant research efforts have been devoted to improving stimulation strategies, few developments have led to significant hearing improvement over the past two decades. We have recently introduced image processing techniques that open a new direction for advancement in this field by making it possible, for the first time, to determine the position of implanted CI electrodes relative to the nerves they stimulate using computed tomography images. In this article, we present results of an image-guided, patient-customized approach to stimulation that utilizes the electrode position information our image processing techniques provide. This approach allows us to identify electrodes that cause overlapping stimulation patterns and to deactivate them from a patient's map. This individualized mapping strategy yields significant improvement in speech understanding in both quiet and noise as well as improved spectral resolution in the 68 adult CI recipients studied to date. Our results indicate that image guidance can improve hearing outcomes for many existing CI recipients without requiring additional surgery or the use of 'experimental' stimulation strategies, hardware or software.
Collapse
Affiliation(s)
- Jack H Noble
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tenn., USA
| | | | | | | | | |
Collapse
|
33
|
Won JH, Humphrey EL, Yeager KR, Martinez AA, Robinson CH, Mills KE, Johnstone PM, Moon IJ, Woo J. Relationship among the physiologic channel interactions, spectral-ripple discrimination, and vowel identification in cochlear implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:2714-25. [PMID: 25373971 DOI: 10.1121/1.4895702] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The hypothesis of this study was that broader patterns of physiological channel interactions in the local region of the cochlea are associated with poorer spectral resolution in the same region. Electrically evoked compound action potentials (ECAPs) were measured for three to six probe electrodes per subject to examine the channel interactions in different regions across the electrode array. To evaluate spectral resolution at a confined location within the cochlea, spectral-ripple discrimination (SRD) was measured using narrowband ripple stimuli with the bandwidth spanning five electrodes: Two electrodes apical and basal to the ECAP probe electrode. The relationship between the physiological channel interactions, spectral resolution in the local cochlear region, and vowel identification was evaluated. Results showed that (1) there was within- and across-subject variability in the widths of ECAP channel interaction functions and in narrowband SRD performance, (2) significant correlations were found between the widths of the ECAP functions and narrowband SRD thresholds, and between mean bandwidths of ECAP functions averaged across multiple probe electrodes and broadband SRD performance across subjects, and (3) the global spectral resolution reflecting the entire electrode array, not the local region, predicts vowel identification.
Collapse
Affiliation(s)
- Jong Ho Won
- University of Tennessee Health Science Center, Knoxville, Tennessee 37996
| | | | - Kelly R Yeager
- University of Tennessee Health Science Center, Knoxville, Tennessee 37996
| | - Alexis A Martinez
- University of Tennessee Health Science Center, Knoxville, Tennessee 37996
| | - Camryn H Robinson
- University of Tennessee Health Science Center, Knoxville, Tennessee 37996
| | - Kristen E Mills
- University of Tennessee Health Science Center, Knoxville, Tennessee 37996
| | - Patti M Johnstone
- University of Tennessee Health Science Center, Knoxville, Tennessee 37996
| | - Il Joon Moon
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, 135-710, South Korea
| | - Jihwan Woo
- Department of Biomedical Engineering, University of Ulsan, Ulsan, 680-749, South Korea
| |
Collapse
|
34
|
Abstract
OBJECTIVES A finite element model of the human coiled cochlea was used to model the voltage distribution due to stimulation by the individual electrodes of a cochlear implant. The scalar position of the electrode array was also varied in order to investigate its effect on the voltage distribution. Multi-electrode current focusing methods were then investigated, with the aim of increasing spatial selectivity. METHODS Simultaneous current focusing is initially achieved, as in previous publications, by calculating the input currents to the 22 electrodes that best separates the voltages at these electrode positions. The benefits of this electrode focusing strategy do not, however, entirely carry over to the predicted voltage distributions at the position of the spiral ganglion cells, where excitation is believed to occur. A novel focusing strategy is then simulated, which compensates for the impedances between the currents at the electrode sites and the voltage distribution directly at the position of the spiral ganglion cells. RESULTS The new strategy produces much better focusing at the sites of the spiral ganglion cells, as expected, but at the cost of increased current requirements. Regularization was introduced in order to reduce current requirements, which also reduced the sensitivity of the solution to uncertainties in the impedance matrix, so that improved focusing was achieved with similar current requirements to that of electrode focusing. DISCUSSION Although such focusing strategies cannot be achieved in practice at the moment, since the responses from the electrodes to the neural sites cannot be determined with currently available recording methods, these results do support the feasibility of a more effective focusing strategy, which may provide improved spectral resolution leading to improved perception of sound.
Collapse
|
35
|
Is there a fundamental 300 Hz limit to pulse rate discrimination in cochlear implants? J Assoc Res Otolaryngol 2014; 15:849-66. [PMID: 24942704 DOI: 10.1007/s10162-014-0468-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 05/28/2014] [Indexed: 10/25/2022] Open
Abstract
Literature often refers to a 300 pps limit for cochlear implant (CI) electrical stimulation, above which pulse rate discrimination deteriorates or above which rate pitch is not perceived to increase. The present study investigated the effect on pulse rate difference limens (PRDLs) when using compound stimuli in which identical pulse trains were applied to multiple electrodes across the length of the electrode array and compared the results to those of single-electrode stimuli. PRDLs of seven CI users were determined in two stimulus pulse phase conditions, one in which the phase delays between pulses on different electrodes were minimised (burst mode) and a second in which they were maximised (spread mode). PRDLs were measured at base rates of 100 to 600 pps in 100 pps intervals, using compound stimuli on one, two, five, nine and 18 electrodes. As smaller PRDLs were expected to reflect improved rate pitch perception, 18-electrode spread mode stimuli were also included in a pitch ranking task. PRDLs improved markedly when multi-electrode compound stimuli were used, with average spread mode PRDLs across listeners between 6 and 8 % of the base rate in the whole range tested (i.e. up to 600 pps). PRDLs continued to improve as more electrodes were included, up to at least nine electrodes in the compound stimulus. Stimulus pulse phase had a significant influence on the results, with PRDLs being smaller in spread mode. Results indicate that pulse rate discrimination may be manipulated with stimulus parameter choice so that previously observed deterioration of PRDLs at 300 pps probably does not reflect a fundamental limitation to rate discrimination. However, rate pitch perception did not improve in the conditions that resulted in smaller PRDLs. This may indicate that listeners used cues other than pitch to perform the rate discrimination task or may reflect limitations in the electrically evoked neural excitation patterns presented to a rate pitch extraction mechanism.
Collapse
|
36
|
Noble JH, Labadie RF, Gifford RH, Dawant BM. Image-guidance enables new methods for customizing cochlear implant stimulation strategies. IEEE Trans Neural Syst Rehabil Eng 2013; 21:820-9. [PMID: 23529109 DOI: 10.1109/tnsre.2013.2253333] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the last 20 years, cochlear implants (CIs) have become what is arguably the most successful neural prosthesis to date. Despite this success, a significant number of CI recipients experience marginal hearing restoration, and, even among the best performers, restoration to normal fidelity is rare. In this paper, we present image processing techniques that can be used to detect, for the first time, the positions of implanted CI electrodes and the nerves they stimulate for individual CI users. These techniques permit development of new, customized CI stimulation strategies. We present one such strategy and show that it leads to significant hearing improvement in an experiment conducted with 11 CI recipients. These results indicate that image-guidance can be used to improve hearing outcomes for many existing CI recipients without requiring additional surgical procedures.
Collapse
|
37
|
Jones GL, Won JH, Drennan WR, Rubinstein JT. Relationship between channel interaction and spectral-ripple discrimination in cochlear implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:425-33. [PMID: 23297914 PMCID: PMC3548834 DOI: 10.1121/1.4768881] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cochlear implant (CI) users can achieve remarkable speech understanding, but there is great variability in outcomes that is only partially accounted for by age, residual hearing, and duration of deafness. Results might be improved with the use of psychophysical tests to predict which sound processing strategies offer the best potential outcomes. In particular, the spectral-ripple discrimination test offers a time-efficient, nonlinguistic measure that is correlated with perception of both speech and music by CI users. Features that make this "one-point" test time-efficient, and thus potentially clinically useful, are also connected to controversy within the CI field about what the test measures. The current work examined the relationship between thresholds in the one-point spectral-ripple test, in which stimuli are presented acoustically, and interaction indices measured under the controlled conditions afforded by direct stimulation with a research processor. Results of these studies include the following: (1) within individual subjects there were large variations in the interaction index along the electrode array, (2) interaction indices generally decreased with increasing electrode separation, and (3) spectral-ripple discrimination improved with decreasing mean interaction index at electrode separations of one, three, and five electrodes. These results indicate that spectral-ripple discrimination thresholds can provide a useful metric of the spectral resolution of CI users.
Collapse
Affiliation(s)
- Gary L Jones
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
38
|
Schoenecker MC, Bonham BH, Stakhovskaya OA, Snyder RL, Leake PA. Monopolar intracochlear pulse trains selectively activate the inferior colliculus. J Assoc Res Otolaryngol 2012; 13:655-72. [PMID: 22722899 PMCID: PMC3441950 DOI: 10.1007/s10162-012-0333-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 04/23/2012] [Indexed: 10/28/2022] Open
Abstract
Previous cochlear implant studies using isolated electrical stimulus pulses in animal models have reported that intracochlear monopolar stimulus configurations elicit broad extents of neuronal activation within the central auditory system-much broader than the activation patterns produced by bipolar electrode pairs or acoustic tones. However, psychophysical and speech reception studies that use sustained pulse trains do not show clear performance differences for monopolar versus bipolar configurations. To test whether monopolar intracochlear stimulation can produce selective activation of the inferior colliculus, we measured activation widths along the tonotopic axis of the inferior colliculus for acoustic tones and 1,000-pulse/s electrical pulse trains in guinea pigs and cats. Electrical pulse trains were presented using an array of 6-12 stimulating electrodes distributed longitudinally on a space-filling silicone carrier positioned in the scala tympani of the cochlea. We found that for monopolar, bipolar, and acoustic stimuli, activation widths were significantly narrower for sustained responses than for the transient response to the stimulus onset. Furthermore, monopolar and bipolar stimuli elicited similar activation widths when compared at stimulus levels that produced similar peak spike rates. Surprisingly, we found that in guinea pigs, monopolar and bipolar stimuli produced narrower sustained activation than 60 dB sound pressure level acoustic tones when compared at stimulus levels that produced similar peak spike rates. Therefore, we conclude that intracochlear electrical stimulation using monopolar pulse trains can produce activation patterns that are at least as selective as bipolar or acoustic stimulation.
Collapse
Affiliation(s)
- Matthew C. Schoenecker
- Department of Bioengineering, University of California San Francisco, San Francisco, CA 94143-0526 USA
| | - Ben H. Bonham
- Department of Otolaryngology–HNS, University of California San Francisco, San Francisco, CA 94143-0526 USA
| | - Olga A. Stakhovskaya
- Department of Hearing & Speech Sciences, University of Maryland at College Park, College Park, MD 94143-0526 USA
| | - Russell L. Snyder
- Department of Otolaryngology–HNS, University of California San Francisco, San Francisco, CA 94143-0526 USA
- Department of Psychology, Utah State University, Logan, UT 84322 USA
| | - Patricia A. Leake
- Department of Otolaryngology–HNS, University of California San Francisco, San Francisco, CA 94143-0526 USA
| |
Collapse
|
39
|
Horsager A, Boynton GM, Greenberg RJ, Fine I. Temporal interactions during paired-electrode stimulation in two retinal prosthesis subjects. Invest Ophthalmol Vis Sci 2011; 52:549-57. [PMID: 20720224 DOI: 10.1167/iovs.10-5282] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Since 2002, six blind patients have undergone implantation of an epiretinal 4 × 4 electrode array designed to directly stimulate the remaining cells of the retina after severe photoreceptor degeneration due to retinitis pigmentosa. This study was conducted to investigate how the brightness of percepts is affected by pulse timing across electrodes in two of these patients. METHODS Subjects compared the perceived brightness of a standard stimulus (synchronous pulse trains presented across pairs of electrodes) to the perceived brightness of a test stimulus (pulse trains across the electrode pair phase shifted by 0.075, 0.375, 1.8, or 9 ms). The current amplitude necessary for each phase-shifted test stimulus to match the brightness of the standard was determined. RESULTS Depending on the electrode pair, interactions between electrodes were either facilitatory (the perceived brightness produced by stimulating the pair of electrodes was greater than that produced by stimulating either electrode alone) or suppressive (the perceived brightness produced by stimulating the pair of electrodes was less than that produced by stimulating either electrode alone). The amount of interaction between electrodes decreased as a function of increased separation both in time (the phase-shift between pulse trains) and space (center-to-center distance between the electrode pair). CONCLUSIONS For visual prostheses to represent visual scenes that are changing in both space and time requires the development of spatiotemporal models describing the effects of stimulation across multiple electrodes. During multielectrode stimulation, interactions between electrodes have a significant influence on subjective brightness that includes both facilitatory and suppressive effects, and these interactions can be described with a simple computational model. (ClinicalTrials.gov number, NCT00279500.).
Collapse
Affiliation(s)
- Alan Horsager
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | |
Collapse
|
40
|
Merfeld DM, Priesol A, Lee D, Lewis RF. Potential solutions to several vestibular challenges facing clinicians. J Vestib Res 2010; 20:71-7. [PMID: 20555169 PMCID: PMC2888506 DOI: 10.3233/ves-2010-0347] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Among other problems, patients with vestibular problems suffer imbalance, spatial disorientation, and blurred vision. These problems lead to varying degrees of disability and can be debilitating. Unfortunately, a large number of patients with vestibular complaints cannot be diagnosed with the clinical tests available today. Nor do we have treatments for all patients that we can diagnose. These clinical problems provide challenges to and opportunities for the field of vestibular research. In this paper, we discuss some new diagnostic and treatment options that could become available for tomorrow's patients. As a new diagnostic, we have begun measuring patient's perceptual direction-detection thresholds. Preliminary results appear encouraging; patients diagnosed with bilateral loss have yaw rotation thresholds almost ten times greater than normals, while patients diagnosed with migraine associated vertigo have roll tilt thresholds well below normal at 0.1 Hz. As a new treatment, we have performed animal studies looking at responses evoked by electrical stimulation provided by a vestibular prosthesis. Results measuring the VOR demonstrate promise and preliminary studies of balance and perception are also encouraging. While electrical stimulation is a standard means of stimulation, optical stimulation is also being investigated as a way to improve prosthetic stimulation specificity.
Collapse
Affiliation(s)
- Daniel M Merfeld
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
41
|
Buechner A, Frohne-Buechner C, Boyle P, Battmer RD, Lenarz T. A high rate n-of-m speech processing strategy for the first generation Clarion cochlear implant. Int J Audiol 2009; 48:868-75. [DOI: 10.3109/14992020903095783] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Brendel M, Frohne-Buechner C, Stoever T, Lenarz T, Buechner A. Investigation of pitch discrimination and the effect of learning for virtual channels realized by current steering. Acta Otolaryngol 2009; 129:1425-33. [PMID: 19922093 DOI: 10.3109/00016480902725205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION As virtual channels could be perceived by the majority of implant users, they promise potential for advanced speech coding strategies, providing enhanced spectral resolution. An improvement in resolution was found from first stimulation up to 6 months afterwards. OBJECTIVE Independent current sources allow distribution of the current between adjacent electrode contacts in a defined ratio, thus steering the current. The goal of our study was to investigate a) whether all users were able to distinguish between adjacent physical channels, b) how many users could perceive a distinct pitch as the current was steered between two adjacent contacts and c) whether a learning effect was observed. SUBJECTS AND METHODS A pitch ranking measurement was performed during an acute test session for a group of 39 cochlear implant users. The results were analysed with respect to the implanted electrode system. The learning process during the first 6 months after implantation was investigated for a selected subgroup. RESULTS About half of the study participants were able to perceive intermediate channels; 5% were able to discriminate more than eight intermediate channels, which correspond to half of the physical channels. A wide variation was found across the array.
Collapse
Affiliation(s)
- Martina Brendel
- Medical University of Hannover, Department of Otolaryngology, Hannover, Germany
| | | | | | | | | |
Collapse
|
43
|
Horsager A, Greenberg RJ, Fine I. Spatiotemporal interactions in retinal prosthesis subjects. Invest Ophthalmol Vis Sci 2009; 51:1223-33. [PMID: 19741248 DOI: 10.1167/iovs.09-3746] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Vision loss due to retinitis pigmentosa affects an estimated 15 million people worldwide. Through collaboration between Second Sight Medical Products, Inc., and the Doheny Eye Institute, six blind human subjects underwent implantation with epiretinal 4 x 4 electrode arrays designed to directly stimulate the remaining cells of the retina, with the goal of restoring functional vision by applying spatiotemporal patterns of stimulation. To better understand spatiotemporal interactions between electrodes during synchronous and asynchronous stimulation, the authors investigated how percepts changed as a function of pulse timing across the electrodes. METHODS Pulse trains (20, 40, 80, and 160 Hz) were presented on groups of electrodes with 800, 1600, or 2400 microm center-to-center separation. Stimulation was either synchronous (pulses were presented simultaneously across electrodes) or asynchronous (pulses were phase shifted). Using a same-different discrimination task, the authors were able to evaluate how the perceptual quality of the stimuli changed as a function of phase shifts across multiple electrodes. RESULTS Even after controlling for electric field interactions, subjects could discriminate between spatiotemporal pulse train patterns based on differences of phase across electrodes as small as 3 ms. These findings suggest that the quality of the percept is affected not only by electric field interactions but also by spatiotemporal interactions at the neural level. CONCLUSIONS During multielectrode stimulation, interactions between electrodes have a significant influence on the quality of the percept. Understanding how these spatiotemporal interactions at the neural level influence percepts during multielectrode stimulation is fundamental to the successful design of a retinal prosthesis.
Collapse
Affiliation(s)
- Alan Horsager
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90033, USA.
| | | | | |
Collapse
|
44
|
Hughes ML, Stille LJ. Psychophysical and physiological measures of electrical-field interaction in cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 125:247-60. [PMID: 19173412 PMCID: PMC2633105 DOI: 10.1121/1.3035842] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 05/24/2023]
Abstract
The primary purpose of this study was to determine whether the electrically evoked compound action potential (ECAP) can be used to predict psychophysical electrical-field interaction patterns obtained with simultaneous stimulation of intracochlear electrodes. The second goal was to determine whether ECAP patterns are affected by recording location because differences might influence the relation between ECAP and psychophysical measures. The third goal was to investigate whether symmetrical threshold shifts are produced with phase inversion of the interaction stimulus. Nine adults with Advanced Bionics cochlear implants participated. ECAP and psychophysical thresholds were obtained for basal, middle, and apical probe electrodes in the presence of a subthreshold interaction stimulus delivered simultaneously to each of seven to eight interaction electrodes per probe. The results showed highly significant correlations between ECAP and psychophysical threshold shifts for all nine subjects, which suggests that the ECAP can adequately predict psychophysical electrical-field interaction patterns for subthreshold stimuli. ECAP thresholds were significantly higher for recordings from the basal (versus apical) side of the probe, which suggests that recording location may affect relations between ECAP and psychophysical measures. Interaction stimulus phase inversion generally produced symmetrical threshold shifts for psychophysical measures but not for half of ECAP measures.
Collapse
Affiliation(s)
- Michelle L Hughes
- Boys Town National Research Hospital, Lied Learning and Technology Center, Omaha, Nebraska 68131, USA
| | | |
Collapse
|
45
|
Psychophysical versus physiological spatial forward masking and the relation to speech perception in cochlear implants. Ear Hear 2008; 29:435-52. [PMID: 18344869 DOI: 10.1097/aud.0b013e31816a0d3d] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The primary goal of this study was to determine if physiological forward masking patterns in cochlear implants are predictive of psychophysical forward masking (PFM) patterns. It was hypothesized that the normalized amount of physiological masking would be positively correlated with the normalized amount of psychophysical masking for different masker-probe electrode separations. A secondary goal was to examine the relation between the spatial forward masking patterns and speech perception performance. It was hypothesized that subjects with less channel interaction overall (either psychophysically or physiologically) would have better speech perception ability because of better spectral resolution. DESIGN Data were collected for 18 adult cochlear implant recipients [N = 9 Clarion CII or HiRes 90K, N = 9 Nucleus 24R(CS)]. Physiological spatial forward masking patterns were obtained with the electrically evoked compound action potential (ECAP) through the implant telemetry system. PFM patterns were obtained using a three-interval, two-alternative forced-choice adaptive procedure. Both measures used a fixed probe electrode with varied masker location. For each subject, spatial forward masking patterns were obtained for three probe electrodes with five masker locations per probe. RESULTS On an individual basis, the correlation between ECAP FM and PFM was strong for 10 subjects (r = 0.68-0.85, p <or= 0.02), moderately strong for two subjects (r = 0.54-0.55, p = 0.06-0.07), and poor for six subjects (r = 0.13-0.45, p > 0.14). Results across subjects and electrodes showed a highly significant correlation between ECAP FM and PFM (r = 0.55, p < 0.0001); the correlation was strongest for basal electrodes. There was no significant correlation between speech perception and ECAP FM or PFM. Subjects whose ECAP FM patterns correlated well with PFM patterns generally had the poorest speech perception and subjects with the poorest correlations had the best speech perception. CONCLUSIONS ECAP FM and PFM patterns correlated well for two-thirds of the subjects. Although the group correlation was statistically significant, ECAP FM patterns only accounted for 30% of the variance in the PFM measures. This suggests that the ECAP measures alone are not sufficient for accurately predicting PFM patterns for individual subjects.
Collapse
|
46
|
Middlebrooks JC, Snyder RL. Intraneural stimulation for auditory prosthesis: Modiolar trunk and intracranial stimulation sites. Hear Res 2008; 242:52-63. [DOI: 10.1016/j.heares.2008.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/11/2008] [Accepted: 04/02/2008] [Indexed: 11/30/2022]
|
47
|
Middlebrooks JC. Cochlear-implant high pulse rate and narrow electrode configuration impair transmission of temporal information to the auditory cortex. J Neurophysiol 2008; 100:92-107. [PMID: 18450583 PMCID: PMC2493502 DOI: 10.1152/jn.01114.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 04/25/2008] [Indexed: 11/22/2022] Open
Abstract
In the most commonly used cochlear prosthesis systems, temporal features of sound are signaled by amplitude modulation of constant-rate pulse trains. Several convincing arguments predict that speech reception should be optimized by use of pulse rates > or approximately 2,000 pulses per second (pps) and by use of intracochlear electrode configurations that produce restricted current spread (e.g., bipolar rather than monopolar configurations). Neither of those predictions has been borne out in consistent improvements in speech reception. Neurons in the auditory cortex of anesthetized guinea pigs phase lock to the envelope of sine-modulated electric pulse trains presented through a cochlear implant. The present study used that animal model to quantify the effects of carrier pulse rate, electrode configuration, current level, and modulator wave shape on transmission of temporal information from a cochlear implant to the auditory cortex. Modulation sensitivity was computed using a signal-detection analysis of cortical phase-locking vector strengths. Increasing carrier pulse rate in 1-octave steps from 254 to 4,069 pps resulted in systematic decreases in sensitivity. Comparison of sine- versus square-wave modulator waveforms demonstrated that some, but not all, of the loss of modulation sensitivity at high pulse rates was a result of the decreasing size of pulse-to-pulse current steps at the higher rates. Use of a narrow bipolar electrode configuration, compared with the monopolar configuration, produced a marked decrease in modulation sensitivity. Results from this animal model suggest explanations for the failure of high pulse rates and/or bipolar electrode configurations to produce hoped-for improvements in speech reception.
Collapse
Affiliation(s)
- John C Middlebrooks
- Department of Otolaryngology Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
48
|
Bingabr M, Espinoza-Varas B, Loizou PC. Simulating the effect of spread of excitation in cochlear implants. Hear Res 2008; 241:73-9. [PMID: 18556160 DOI: 10.1016/j.heares.2008.04.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 04/26/2008] [Accepted: 04/28/2008] [Indexed: 10/22/2022]
Abstract
A model was developed to simulate acoustically the effects of excitation spread in cochlear implants (CI). Based on neurophysiologic data, the proposed model simulates the electrical-current decay rate associated with broad and narrow types of excitation, such as those produced by monopolar and bipolar electrode configurations. The effect of excitation spread on speech intelligibility was simulated in normal-hearing subjects by varying the slopes of the synthesis bands in the noise vocoder. Sentences and monosyllabic words processed via 4-16 channels of stimulation with varying degrees of excitation spread were presented to normal-hearing listeners for identification. Results showed significant interaction between spectral resolution (number of channels) and spread of excitation. The effect of narrowing the excitation spread was minimal when the spectral resolution was sufficiently good (>8 channels) but it was significant when the spectral resolution was poor (4 channels). A significant decrement in performance was observed for extremely narrow excitation spread. This outcome is partly consistent with behavioral data obtained with cochlear implant studies in that CI users tend to do as well or better with monopolar stimulation than with bipolar stimulation.
Collapse
Affiliation(s)
- Mohamed Bingabr
- Department of Engineering and Physics, University of Central Oklahoma, 100 North University Drive, Edmond, OK 73034, USA.
| | | | | |
Collapse
|
49
|
Smith ZM, Delgutte B. Sensitivity of inferior colliculus neurons to interaural time differences in the envelope versus the fine structure with bilateral cochlear implants. J Neurophysiol 2008; 99:2390-407. [PMID: 18287556 DOI: 10.1152/jn.00751.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bilateral cochlear implantation seeks to improve hearing by taking advantage of the binaural processing of the central auditory system. Cochlear implants typically encode sound in each spectral channel by amplitude modulating (AM) a fixed-rate pulse train, thus interaural time differences (ITD) are only delivered in the envelope. We investigated the ITD sensitivity of inferior colliculus (IC) neurons with sinusoidally AM pulse trains. ITD was introduced independently to the AM and/or carrier pulses to measure the relative efficacy of envelope and fine structure for delivering ITD information. We found that many IC cells are sensitive to ITD in both the envelope (ITD(env)) and fine structure (ITD(fs)) for appropriate modulation frequencies and carrier rates. ITD(env) sensitivity was generally similar to that seen in normal-hearing animals with AM tones. ITD(env) tuning generally improved with increasing modulation frequency up to the maximum modulation frequency that elicited a sustained response in a neuron (tested </=160 Hz). ITD(fs) sensitivity was present in about half the neurons for 1,000 pulse/s (pps) carriers and was nonexistent at 5,000 pps. The neurons that were sensitive to ITD(fs) at 1,000 pps were those that showed the best ITD sensitivity to low-rate pulse trains. Overall, the best ITD sensitivity was found for ITD contained in the fine structure of a moderate rate AM pulse train (1,000 pps). These results suggest that the interaural timing of current pulses should be accurately controlled in a bilateral cochlear implant processing strategy that provides salient ITD cues.
Collapse
Affiliation(s)
- Zachary M Smith
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.
| | | |
Collapse
|
50
|
van den Honert C, Kelsall DC. Focused intracochlear electric stimulation with phased array channels. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 121:3703-16. [PMID: 17552721 DOI: 10.1121/1.2722047] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A method is described for producing focused intracochlear electric stimulation using an array of N electrodes. For each electrode site, N weights are computed that define the ratios of positive and negative electrode currents required to produce cancellation of the voltage within scala tympani at all of the N-1 other sites. Multiple sites can be stimulated simultaneously by superposition of their respective current vectors. The method allows N independent stimulus waveforms to be delivered to each of the N electrode sites without spatial overlap. Channel interaction from current spread associated with monopolar stimulation is substantially eliminated. The method operates by inverting the spread functions of individual monopoles as measured with the other electrodes. The method was implemented and validated with data from three human subjects implanted with 22-electrode perimodiolar arrays. Results indicate that (1) focusing is realizable with realistic precision; (2) focusing comes at the cost of increased total stimulation current; (3) uncanceled voltages that arise beyond the ends of the array are weak except when stimulating the two end channels; and (4) close perimodiolar positioning of the electrodes may be important for minimizing stimulation current and sensitivity to measurement errors.
Collapse
|