1
|
Abstract
Cochlear implants have been the most successful neural prosthesis, with one million users globally. Researchers used the source-filter model and speech vocoder to design the modern multi-channel implants, allowing implantees to achieve 70%-80% correct sentence recognition in quiet, on average. Researchers also used the cochlear implant to help understand basic mechanisms underlying loudness, pitch, and cortical plasticity. While front-end processing advances improved speech recognition in noise, the unilateral implant speech recognition in quiet has plateaued since the early 1990s. This lack of progress calls for action on re-designing the cochlear stimulating interface and collaboration with the general neurotechnology community.
Collapse
Affiliation(s)
- Fan-Gang Zeng
- Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology-Head and Neck Surgery and Center for Hearing Research, University of California, 110 Medical Sciences E, Irvine, California 92697, USA
| |
Collapse
|
2
|
Su Y, Chung Y, Goodman DFM, Hancock KE, Delgutte B. Rate and Temporal Coding of Regular and Irregular Pulse Trains in Auditory Midbrain of Normal-Hearing and Cochlear-Implanted Rabbits. J Assoc Res Otolaryngol 2021; 22:319-347. [PMID: 33891217 DOI: 10.1007/s10162-021-00792-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/09/2021] [Indexed: 01/07/2023] Open
Abstract
Although pitch is closely related to temporal periodicity, stimuli with a degree of temporal irregularity can evoke a pitch sensation in human listeners. However, the neural mechanisms underlying pitch perception for irregular sounds are poorly understood. Here, we recorded responses of single units in the inferior colliculus (IC) of normal hearing (NH) rabbits to acoustic pulse trains with different amounts of random jitter in the inter-pulse intervals and compared with responses to electric pulse trains delivered through a cochlear implant (CI) in a different group of rabbits. In both NH and CI animals, many IC neurons demonstrated tuning of firing rate to the average pulse rate (APR) that was robust against temporal jitter, although jitter tended to increase the firing rates for APRs ≥ 1280 Hz. Strength and limiting frequency of spike synchronization to stimulus pulses were also comparable between periodic and irregular pulse trains, although there was a slight increase in synchronization at high APRs with CI stimulation. There were clear differences between CI and NH animals in both the range of APRs over which firing rate tuning was observed and the prevalence of synchronized responses. These results suggest that the pitches of regular and irregular pulse trains are coded differently by IC neurons depending on the APR, the degree of irregularity, and the mode of stimulation. In particular, the temporal pitch produced by periodic pulse trains lacking spectral cues may be based on a rate code rather than a temporal code at higher APRs.
Collapse
Affiliation(s)
- Yaqing Su
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA. .,Department of Biomedical Engineering, Boston University, Boston, MA, USA. .,Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
| | - Yoojin Chung
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, USA
| | - Dan F M Goodman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, USA.,Present Address: Department of Electrical and Electronic Engineering, Imperial College London, London, England
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, USA
| | - Bertrand Delgutte
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA. .,Department of Otolaryngology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Pieper SH, Bahmer A. Rate pitch discrimination in cochlear implant users with the use of double pulses and different interpulse intervals. Cochlear Implants Int 2019; 20:312-323. [PMID: 31448701 DOI: 10.1080/14670100.2019.1656847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The rate pitch discrimination ability of cochlear implant (CI) users is poor compared to normal-hearing (NH) listeners. At low pulse rates, the just noticeable difference (JND) is on average 20% of the base rate, while NH listeners can discriminate small frequency differences of 0.2% at 1 kHz. Recent investigations suggest that double pulses with short interpulse intervals (IPIs) may have a beneficial effect on rate pitch discrimination in CI users. In a first experiment psychophysical tests were carried out to establish whether rate pitch in CI users could be improved by applying double pulses with equal amplitude and short IPIs. Pulse trains with base rates of 200 and 400 pps, composed of either single pulses or double pulses with IPIs of 15, 50, and 150 μs were presented. In a second experiment pairwise comparisons were carried out between pitch of a pulse train composed of alternating double and single pulses with pitch of pulse trains composed of single pulses. The alternating pulse train had a base rate of 400 pps, the pulse trains with solely single pulses had base rates of 200, 300, and 400 pps. The loudness and pitch perception of the different stimulus types were evaluated and compared. A significant loudness difference was found between single and double pulses for both pulse rates. The JND for pitch discrimination between double-pulse IPIs had a high inter-subject variability, and no significant group effect was found. No subject reported a pitch change between double pulse and single pulse stimulation. In contrast, most of the subjects recognized a change in pitch between single-pulse trains and pulse trains with alternating double and single pulses. The latter was lower in pitch than the single-pulse train stimulation. To conclude, using (equal amplitude) double pulses instead of single pulses in a pulse train does not effect pitch perception. Instead, loudness differs between double pulses and single pulses with the same amplitude.
Collapse
Affiliation(s)
- Sabrina H Pieper
- Clinic for Otolaryngology, Comprehensive Hearing Center, University of Würzburg , Würzburg 97080 , Germany
| | - Andreas Bahmer
- Clinic for Otolaryngology, Comprehensive Hearing Center, University of Würzburg , Würzburg 97080 , Germany
| |
Collapse
|
4
|
Litovsky RY, Goupell MJ, Kan A, Landsberger DM. Use of Research Interfaces for Psychophysical Studies With Cochlear-Implant Users. Trends Hear 2019; 21:2331216517736464. [PMID: 29113579 PMCID: PMC5764139 DOI: 10.1177/2331216517736464] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A growing number of laboratories are using research interfaces to conduct experiments with cochlear-implant (CI) users. Because these interfaces bypass a subject’s clinical sound processor, several concerns exist regarding safety and stimulation levels. Here we suggest best-practice approaches for how to safely and ethically perform this type of research and highlight areas of limited knowledge where further research is needed to help clarify safety limits. The article is designed to provide an introductory level of technical detail about the devices and the effects of electrical stimulation on perception and neurophysiology. From this, we summarize what should be the best practices in the field, based on the literature and our experience. Findings from the review of the literature suggest that there are three main safety concerns: (a) to prevent biological or neural damage, (b) to avoid presentation of uncomfortably loud sounds, and (c) to ensure that subjects have control over stimulus presentation. Researchers must pay close attention to the software–hardware interface to ensure that the three main safety concerns are closely monitored. An important area for future research will be the determination of the amount of biological damage that can occur from electrical stimulation from a CI placed in the cochlea, not in direct contact with neural tissue. As technology used in research with CIs evolve, some of these approaches may change. However, the three main safety principles outlined here are not anticipated to undergo change with technological advances.
Collapse
Affiliation(s)
| | - Matthew J Goupell
- 2 Department of Hearing and Speech Sciences, University of Maryland-College Park, MD, USA
| | - Alan Kan
- 1 University of Wisconsin-Madison, WI, USA
| | | |
Collapse
|
5
|
Is there a fundamental 300 Hz limit to pulse rate discrimination in cochlear implants? J Assoc Res Otolaryngol 2014; 15:849-66. [PMID: 24942704 DOI: 10.1007/s10162-014-0468-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 05/28/2014] [Indexed: 10/25/2022] Open
Abstract
Literature often refers to a 300 pps limit for cochlear implant (CI) electrical stimulation, above which pulse rate discrimination deteriorates or above which rate pitch is not perceived to increase. The present study investigated the effect on pulse rate difference limens (PRDLs) when using compound stimuli in which identical pulse trains were applied to multiple electrodes across the length of the electrode array and compared the results to those of single-electrode stimuli. PRDLs of seven CI users were determined in two stimulus pulse phase conditions, one in which the phase delays between pulses on different electrodes were minimised (burst mode) and a second in which they were maximised (spread mode). PRDLs were measured at base rates of 100 to 600 pps in 100 pps intervals, using compound stimuli on one, two, five, nine and 18 electrodes. As smaller PRDLs were expected to reflect improved rate pitch perception, 18-electrode spread mode stimuli were also included in a pitch ranking task. PRDLs improved markedly when multi-electrode compound stimuli were used, with average spread mode PRDLs across listeners between 6 and 8 % of the base rate in the whole range tested (i.e. up to 600 pps). PRDLs continued to improve as more electrodes were included, up to at least nine electrodes in the compound stimulus. Stimulus pulse phase had a significant influence on the results, with PRDLs being smaller in spread mode. Results indicate that pulse rate discrimination may be manipulated with stimulus parameter choice so that previously observed deterioration of PRDLs at 300 pps probably does not reflect a fundamental limitation to rate discrimination. However, rate pitch perception did not improve in the conditions that resulted in smaller PRDLs. This may indicate that listeners used cues other than pitch to perform the rate discrimination task or may reflect limitations in the electrically evoked neural excitation patterns presented to a rate pitch extraction mechanism.
Collapse
|
6
|
Bahmer A, Baumann U. Psychometric function of jittered rate pitch discrimination. Hear Res 2014; 313:47-54. [PMID: 24821551 DOI: 10.1016/j.heares.2014.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
The impact of jitter on rate pitch discrimination (JRPD) is still a matter of debate. Previous studies have used adaptive procedures to assess pitch discrimination abilities of jittered rate pulses (Dobie and Dillier, 1985; Chen et al., 2005) or have used jitter detection thresholds (Fearn, 2001). Previous studies were conducted in a relatively small number of subjects using either a single-electrode cochlear implant (Dobie and Dillier, 1985, n = 2) or the Nucleus multi-channel devices (Fearn, 2001, n = 3; Chen et al., 2005, n = 5). The successful application of an adaptive procedure requires a monotone psychometric function to achieve asymptotic results. The underlying psychometric function of rate jitter has not been investigated so far. In order to close this knowledge gap, the present study determines psychometric functions by measuring of JRPD with a fixed stimulus paradigm. A rather large range of temporal, Gaussian distributed jitter standard deviation 0, 1, 2, 3, 4 ms was applied to electrical pulse patterns. Since the shape of the underlying probability density function (PDF) may also effect JRPD, a uniform PDF was alternatively applied. 7 CI users (8 ears, high-level performers with open-speech perception, MED-EL Pulsar/Sonata devices, Innsbruck, Austria) served as subjects for the experiment. JRPD was assessed with a two-stage forced choice procedure. Gross results showed decreasing JRPD with increasing amounts of jitter independent of the applied jitter distribution. In conclusion, pulse rate jitter affects JRPD and therefore should be considered in current coding strategies.
Collapse
Affiliation(s)
- Andreas Bahmer
- University of Frankfurt Main, Clinic for Otolaryngology, Audiological Acoustics, 60590 Frankfurt, Germany.
| | - Uwe Baumann
- University of Frankfurt Main, Clinic for Otolaryngology, Audiological Acoustics, 60590 Frankfurt, Germany.
| |
Collapse
|
7
|
Binaural jitter improves interaural time-difference sensitivity of cochlear implantees at high pulse rates. Proc Natl Acad Sci U S A 2008; 105:814-7. [PMID: 18182489 DOI: 10.1073/pnas.0709199105] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interaural time difference (ITD) arises whenever a sound outside of the median plane arrives at the two ears. There is evidence that ITD in the rapidly varying fine structure of a sound is most important for sound localization and for understanding speech in noise. Cochlear implants (CIs), neural prosthetic devices that restore hearing in the profoundly deaf, are increasingly implanted to both ears to provide implantees with the advantages of binaural hearing. CI listeners have been shown to be sensitive to fine structure ITD at low pulse rates, but their sensitivity declines at higher pulse rates that are required for speech coding. We hypothesize that this limitation in electric stimulation is at least partially due to binaural adaptation associated with periodic stimulation. Here, we show that introducing binaurally synchronized jitter in the stimulation timing causes large improvements in ITD sensitivity at higher pulse rates. Our experimental results demonstrate that a purely temporal trigger can cause recovery from binaural adaptation. Thus, binaurally jittered stimulation may improve several aspects of binaural hearing in bilateral recipients of neural auditory prostheses.
Collapse
|
8
|
Abstract
Cochlear implants provide functional hearing to the majority of recipients and have gained widespread acceptance clinically, but the range of performance remains great and largely unexplained. Designs for implanted electrodes and electronics have converged, whereas novel speech processing strategies have proliferated. For each patient, the fitting audiologist must sort empirically through options that produce large but idiosyncratic differences in both objective performance and subjective preference. This review and analysis suggests that the place-pitch and rate-pitch theories on which cochlear implants have been designed are incomplete. The missing component may be related to the phase-locking of auditory nerve activity to both acoustic and electrical stimulation. This component is likely to be highly distorted by electrical stimulation but its importance as one of several different pitch encoding mechanisms may vary widely among patients. Systematic means to control these putative phase effects using modern, high-speed, and high-density cochlear implants may make it possible to identify more efficiently the best strategy for a given patient and to minimize the perceptual confusion that arises from conflicting cues.
Collapse
Affiliation(s)
- Gerald E Loeb
- Department of Biomedical Engineering, Viterbi School of Engineering and A. E. Mann Institute for Biomedical Engineering, University of Southern California, Los Angeles 90089-1112, USA.
| |
Collapse
|