1
|
de la Torre A, Sanchez I, Alvarez IM, Segura JC, Valderrama JT, Muller N, Vargas JL. Multi-response deconvolution of auditory evoked potentials in a reduced representation space. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:3639-3653. [PMID: 38836771 DOI: 10.1121/10.0026228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
The estimation of auditory evoked potentials requires deconvolution when the duration of the responses to be recovered exceeds the inter-stimulus interval. Based on least squares deconvolution, in this article we extend the procedure to the case of a multi-response convolutional model, that is, a model in which different categories of stimulus are expected to evoke different responses. The computational cost of the multi-response deconvolution significantly increases with the number of responses to be deconvolved, which restricts its applicability in practical situations. In order to alleviate this restriction, we propose to perform the multi-response deconvolution in a reduced representation space associated with a latency-dependent filtering of auditory responses, which provides a significant dimensionality reduction. We demonstrate the practical viability of the multi-response deconvolution with auditory responses evoked by clicks presented at different levels and categorized according to their stimulation level. The multi-response deconvolution applied in a reduced representation space provides the least squares estimation of the responses with a reasonable computational load. matlab/Octave code implementing the proposed procedure is included as supplementary material.
Collapse
Affiliation(s)
- Angel de la Torre
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
- Research Centre for Information and Communication Technologies (CITIC-UGR), University of Granada, Granada, Spain
| | - Inmaculada Sanchez
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
- AVVALE España S.L., Madrid, Spain
| | - Isaac M Alvarez
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
- Research Centre for Information and Communication Technologies (CITIC-UGR), University of Granada, Granada, Spain
| | - Jose C Segura
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
- Research Centre for Information and Communication Technologies (CITIC-UGR), University of Granada, Granada, Spain
| | - Joaquin T Valderrama
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
- Research Centre for Information and Communication Technologies (CITIC-UGR), University of Granada, Granada, Spain
- Department of Linguistics, Macquarie University, Sydney, Australia
| | - Nicolas Muller
- ENT Service, Hospital Universitario Clinico San Cecilio, Servicio Andaluz de Salud, Granada, Spain
| | - Jose L Vargas
- ENT Service, Hospital Universitario Clinico San Cecilio, Servicio Andaluz de Salud, Granada, Spain
| |
Collapse
|
2
|
Valderrama JT, de la Torre A, McAlpine D. The hunt for hidden hearing loss in humans: From preclinical studies to effective interventions. Front Neurosci 2022; 16:1000304. [PMID: 36188462 PMCID: PMC9519997 DOI: 10.3389/fnins.2022.1000304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Many individuals experience hearing problems that are hidden under a normal audiogram. This not only impacts on individual sufferers, but also on clinicians who can offer little in the way of support. Animal studies using invasive methodologies have developed solid evidence for a range of pathologies underlying this hidden hearing loss (HHL), including cochlear synaptopathy, auditory nerve demyelination, elevated central gain, and neural mal-adaptation. Despite progress in pre-clinical models, evidence supporting the existence of HHL in humans remains inconclusive, and clinicians lack any non-invasive biomarkers sensitive to HHL, as well as a standardized protocol to manage hearing problems in the absence of elevated hearing thresholds. Here, we review animal models of HHL as well as the ongoing research for tools with which to diagnose and manage hearing difficulties associated with HHL. We also discuss new research opportunities facilitated by recent methodological tools that may overcome a series of barriers that have hampered meaningful progress in diagnosing and treating of HHL.
Collapse
Affiliation(s)
- Joaquin T. Valderrama
- National Acoustic Laboratories, Sydney, NSW, Australia
- Department of Linguistics, Macquarie University Hearing, Macquarie University, Sydney, NSW, Australia
| | - Angel de la Torre
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
- Research Centre for Information and Communications Technologies (CITIC-UGR), University of Granada, Granada, Spain
| | - David McAlpine
- Department of Linguistics, Macquarie University Hearing, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
3
|
de la Torre A, Valderrama JT, Segura JC, Alvarez IM, Garcia-Miranda J. Subspace-constrained deconvolution of auditory evoked potentials. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:3745. [PMID: 35778185 DOI: 10.1121/10.0011423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Auditory evoked potentials can be estimated by synchronous averaging when the responses to the individual stimuli are not overlapped. However, when the response duration exceeds the inter-stimulus interval, a deconvolution procedure is necessary to obtain the transient response. The iterative randomized stimulation and averaging and the equivalent randomized stimulation with least squares deconvolution have been proven to be flexible and efficient methods for deconvolving the evoked potentials, with minimum restrictions in the design of stimulation sequences. Recently, a latency-dependent filtering and down-sampling (LDFDS) methodology was proposed for optimal filtering and dimensionality reduction, which is particularly useful when the evoked potentials involve the complete auditory pathway response (i.e., from the cochlea to the auditory cortex). In this case, the number of samples required to accurately represent the evoked potentials can be reduced from several thousand (with conventional sampling) to around 120. In this article, we propose to perform the deconvolution in the reduced representation space defined by LDFDS and present the mathematical foundation of the subspace-constrained deconvolution. Under the assumption that the evoked response is appropriately represented in the reduced representation space, the proposed deconvolution provides an optimal least squares estimation of the evoked response. Additionally, the dimensionality reduction provides a substantial reduction of the computational cost associated with the deconvolution. matlab/Octave code implementing the proposed procedures is included as supplementary material.
Collapse
Affiliation(s)
- Angel de la Torre
- Department of Signal Theory, Telematics, and Communications, University of Granada, Granada, Spain
| | | | - Jose C Segura
- Department of Signal Theory, Telematics, and Communications, University of Granada, Granada, Spain
| | - Isaac M Alvarez
- Department of Signal Theory, Telematics, and Communications, University of Granada, Granada, Spain
| | | |
Collapse
|
4
|
Polonenko MJ, Maddox RK. Optimizing Parameters for Using the Parallel Auditory Brainstem Response to Quickly Estimate Hearing Thresholds. Ear Hear 2022; 43:646-658. [PMID: 34593686 PMCID: PMC8881303 DOI: 10.1097/aud.0000000000001128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Timely assessments are critical to providing early intervention and better hearing and spoken language outcomes for children with hearing loss. To facilitate faster diagnostic hearing assessments in infants, the authors developed the parallel auditory brainstem response (pABR), which presents randomly timed trains of tone pips at five frequencies to each ear simultaneously. The pABR yields high-quality waveforms that are similar to the standard, single-frequency serial ABR but in a fraction of the recording time. While well-documented for standard ABRs, it is yet unknown how presentation rate and level interact to affect responses collected in parallel. Furthermore, the stimuli are yet to be calibrated to perceptual thresholds. Therefore, this study aimed to determine the optimal range of parameters for the pABR and to establish the normative stimulus level correction values for the ABR stimuli. DESIGN Two experiments were completed, each with a group of 20 adults (18-35 years old) with normal-hearing thresholds (≤20 dB HL) from 250 to 8000 Hz. First, pABR electroencephalographic (EEG) responses were recorded for six stimulation rates and two intensities. The changes in component wave V amplitude and latency were analyzed, as well as the time required for all responses to reach a criterion signal-to-noise ratio of 0 dB. Second, behavioral thresholds were measured for pure tones and for the pABR stimuli at each rate to determine the correction factors that relate the stimulus level in dB peSPL to perceptual thresholds in dB nHL. RESULTS The pABR showed some adaptation with increased stimulation rate. A wide range of rates yielded robust responses in under 15 minutes, but 40 Hz was the optimal singular presentation rate. Extending the analysis window to include later components of the response offered further time-saving advantages for the temporally broader responses to low-frequency tone pips. The perceptual thresholds to pABR stimuli changed subtly with rate, giving a relatively similar set of correction factors to convert the level of the pABR stimuli from dB peSPL to dB nHL. CONCLUSIONS The optimal stimulation rate for the pABR is 40 Hz but using multiple rates may prove useful. Perceptual thresholds that subtly change across rate allow for a testing paradigm that easily transitions between rates, which may be useful for quickly estimating thresholds for different configurations of hearing loss. These optimized parameters facilitate expediency and effectiveness of the pABR to estimate hearing thresholds in a clinical setting.
Collapse
Affiliation(s)
- Melissa J Polonenko
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, NY, USA
- Center for Visual Sciences, University of Rochester, NY, USA
| | - Ross K Maddox
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, NY, USA
- Center for Visual Sciences, University of Rochester, NY, USA
| |
Collapse
|
5
|
Martinez M, Valderrama JT, Alvarez IM, de la Torre A, Vargas JL. Auditory brainstem responses obtained with randomised stimulation level. Int J Audiol 2022; 62:368-375. [PMID: 35297731 DOI: 10.1080/14992027.2022.2047233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To present randomised stimulation level (RSL) - a stimulation paradigm in which the level of the stimuli is randomised, rather than presented sequentially as in the conventional paradigm. DESIGN The value of RSL was evaluated by (i) comparing the morphology of auditory brainstem responses (ABRs) elicited by the conventional and RSL paradigms, and by (ii) an online survey investigating the hearing comfort of the stimulus sequence. STUDY SAMPLE ABRs were obtained from 11 normal-hearing adults (8 females, 25-29 years). The online survey was administered to 238 adults from the general community. RESULTS Results showed that (i) both stimulation paradigms elicit ABR signals of similar morphology, (ii) RSL provides a faster comprehensive representation of the ABR session, and that (iii) the general population found RSL stimuli to be more comfortable. CONCLUSIONS The simultaneous evaluation of all ABR traces of the session provided by RSL has potential to improve the identification of ABR components by enabling clinicians to make use of the response tracking strategy from the start of the test, which is critical in situations where ABRs present an abnormal morphology. New research opportunities and the clinical potential of RSL are discussed.
Collapse
Affiliation(s)
- Marta Martinez
- ENT Service, San Cecilio University Hospital, Granada, Spain.,ibs.GRANADA Health Research Institute, Granada, Spain.,Otology & Neurotology Group CTS495, Center for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Joaquin T Valderrama
- National Acoustic Laboratories, Sydney, Australia.,Department of Linguistics, Macquarie University, Sydney, Australia
| | - Isaac M Alvarez
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain.,Research Centre for Information and Communications Technologies (CITIC-UGR), University of Granada, Granada, Spain
| | - Angel de la Torre
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain.,Research Centre for Information and Communications Technologies (CITIC-UGR), University of Granada, Granada, Spain
| | - Jose L Vargas
- ENT Service, San Cecilio University Hospital, Granada, Spain
| |
Collapse
|
6
|
Characteristics of the Deconvolved Transient AEP from 80 Hz Steady-State Responses to Amplitude Modulation Stimulation. J Assoc Res Otolaryngol 2021; 22:741-753. [PMID: 34415469 DOI: 10.1007/s10162-021-00806-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/02/2021] [Indexed: 10/20/2022] Open
Abstract
This study aimed to validate the existence and investigate the characteristics of the transient responses from conventional auditory steady-state responses (ASSRs) using deconvolution methods capable of dealing with amplitude modulated (AM) stimulation. Conventional ASSRs to seven stimulus rates were recorded from 17 participants. A deconvolution method was selected and modified to accommodate the AM stimulation. The calculated responses were examined in terms of temporal features with respect to different combinations of stimulus rates. Stable transient responses consisting of early stage brainstem responses and middle latency responses were reconstructed consistently for all rate combinations, which indicates that the superposition hypothesis is applicable to the generation of approximately 80 Hz ASSRs evoked by AM tones (AM-ASSRs). The new transient responses are characterized by three pairs of peak-troughs named as n0p0, n1p1, and n2p2 within 40 ms. Compared with conventional ABR-MLRs, the n0p0 indicates the first neural activity where p0 might represent the main ABR components; the n1 is the counterpart of N10; the p2 is corresponding to the robust Pa at about 30 ms; the p1 and n2 are absent of real counterparts. The peak-peak amplitudes show a slight decrease with increasing stimulation rate from 75 to 95 Hz whereas the peak latencies change differently, which is consistent with the known rate-effect on AEPs. This is direct evidence for a transient response derived from AM-ASSRs for the first time. The characteristic components offer insight into the constitution of AM-ASSRs and may be promising in clinical applications and fundamental studies.
Collapse
|
7
|
de la Torre A, Valderrama JT, Segura JC, Alvarez IM. Latency-dependent filtering and compact representation of the complete auditory pathway response. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:599. [PMID: 32873047 DOI: 10.1121/10.0001673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Auditory evoked potentials (AEPs) include the auditory brainstem response (ABR), middle latency response (MLR), and cortical auditory evoked potentials (CAEPs), each one covering a specific latency range and frequency band. For this reason, ABR, MLR, and CAEP are usually recorded separately using different protocols. This article proposes a procedure providing a latency-dependent filtering and down-sampling of the AEP responses. This way, each AEP component is appropriately filtered, according to its latency, and the complete auditory pathway response is conveniently represented (with the minimum number of samples, i.e., without unnecessary redundancies). The compact representation of the complete response facilitates a comprehensive analysis of the evoked potentials (keeping the natural continuity related to the neural activity transmission along the auditory pathway), which provides a new perspective in the design and analysis of AEP experiments. Additionally, the proposed compact representation reduces the storage or transmission requirements when large databases are manipulated for clinical or research purposes. The analysis of the AEP responses shows that a compact representation with 40 samples/decade (around 120 samples) is enough for accurately representing the response of the complete auditory pathway and provides appropriate latency-dependent filtering. MatLab/Octave code implementing the proposed procedure is included in the supplementary materials.
Collapse
Affiliation(s)
- Angel de la Torre
- Department of Signal Theory, Telematics, and Communications, University of Granada, Granada, Spain
| | | | - Jose C Segura
- Department of Signal Theory, Telematics, and Communications, University of Granada, Granada, Spain
| | - Isaac M Alvarez
- Department of Signal Theory, Telematics, and Communications, University of Granada, Granada, Spain
| |
Collapse
|
8
|
de la Torre A, Valderrama JT, Segura JC, Alvarez IM. Matrix-based formulation of the iterative randomized stimulation and averaging method for recording evoked potentials. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4545. [PMID: 31893705 DOI: 10.1121/1.5139639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The iterative randomized stimulation and averaging (IRSA) method was proposed for recording evoked potentials when the individual responses are overlapped. The main inconvenience of IRSA is its computational cost, associated with a large number of iterations required for recovering the evoked potentials and the computation required for each iteration [involving the whole electroencephalogram (EEG)]. This article proposes a matrix-based formulation of IRSA, which is mathematically equivalent and saves computational load (because each iteration involves just a segment with the length of the response, instead of the whole EEG). Additionally, it presents an analysis of convergence that demonstrates that IRSA converges to the least-squares (LS) deconvolution. Based on the convergence analysis, some optimizations for the IRSA algorithm are proposed. Experimental results (configured for obtaining the full-range auditory evoked potentials) show the mathematical equivalence of the different IRSA implementations and the LS-deconvolution and compare the respective computational costs of these implementations under different conditions. The proposed optimizations allow the practical use of IRSA for many clinical and research applications and provide a reduction of the computational cost, very important with respect to the conventional IRSA, and moderate with respect to the LS-deconvolution. matlab/Octave implementations of the different methods are provided as supplementary material.
Collapse
Affiliation(s)
- Angel de la Torre
- Department of Signal Theory, Telematics, and Communications, University of Granada, Granada, Spain
| | | | - Jose C Segura
- Department of Signal Theory, Telematics, and Communications, University of Granada, Granada, Spain
| | - Isaac M Alvarez
- Department of Signal Theory, Telematics, and Communications, University of Granada, Granada, Spain
| |
Collapse
|
9
|
Finneran JJ, Mulsow J, Burkard RF. Signal-to-noise ratio of auditory brainstem responses (ABRs) across click rate in the bottlenose dolphin (Tursiops truncatus). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:1143. [PMID: 30823818 DOI: 10.1121/1.5091794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Although the maximum length sequence (MLS) and iterative randomized stimulation and averaging (I-RSA) methods allow auditory brainstem response (ABR) measurements at high rates, it is not clear if high rates allow ABRs of a given quality to be measured in less time than conventional (CONV) averaging (i.e., fixed interstimulus intervals) at lower rates. In the present study, ABR signal-to-noise ratio (SNR) was examined in six bottlenose dolphins as a function of measurement time and click rate using CONV averaging at rates of 25 and 100 Hz and the MLS/I-RSA approaches at rates from 100 to 1250 Hz. Residual noise in the averaged ABR was estimated using (1) waveform amplitude following the ABR, (2) waveform amplitude after subtracting two subaverage ABRs (i.e., the "±average"), and (3) amplitude variance at a single time point. Results showed that high stimulus rates can be used to obtain dolphin ABRs with a desired SNR in less time than CONV averaging. Optimal SNRs occurred at rates of 500-750 Hz, but were only a few dB higher than that for CONV averaging at 100 Hz. Nonetheless, a 1-dB improvement in SNR could result in a 25% time savings in reaching criterion SNR.
Collapse
Affiliation(s)
- James J Finneran
- United States Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific Code 71510, 53560 Hull Street, San Diego, California 92152, USA
| | - Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive Number 200, San Diego, California 92106, USA
| | - Robert F Burkard
- Department of Rehabilitation Science, University at Buffalo, 626 Kimball Tower, Buffalo, New York 14214, USA
| |
Collapse
|
10
|
Polonenko MJ, Maddox RK. The Parallel Auditory Brainstem Response. Trends Hear 2019; 23:2331216519871395. [PMID: 31516096 PMCID: PMC6852359 DOI: 10.1177/2331216519871395] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022] Open
Abstract
The frequency-specific tone-evoked auditory brainstem response (ABR) is an indispensable tool in both the audiology clinic and research laboratory. Most frequently, the toneburst ABR is used to estimate hearing thresholds in infants, toddlers, and other patients for whom behavioral testing is not feasible. Therefore, results of the ABR exam form the basis for decisions regarding interventions and hearing habilitation with implications extending far into the child's future. Currently, responses are elicited by periodic sequences of toneburst stimuli presented serially to one ear at a time, which take a long time to measure multiple frequencies and intensities, and provide incomplete information if the infant wakes up early. Here, we describe a new method, the parallel ABR (pABR), which uses randomly timed toneburst stimuli to simultaneously acquire ABR waveforms to five frequencies in both ears. Here, we describe the pABR and quantify its effectiveness in addressing the greatest drawback of current methods: test duration. We show that in adults with normal hearing the pABR yields high-quality waveforms over a range of intensities, with similar morphology to the standard ABR in a fraction of the recording time. Furthermore, longer latencies and smaller amplitudes for low frequencies at a high intensity evoked by the pABR versus serial ABR suggest that responses may have better place specificity due to the masking provided by the other simultaneous toneburst sequences. Thus, the pABR has substantial potential for facilitating faster accumulation of more diagnostic information that is important for timely identification and treatment of hearing loss.
Collapse
Affiliation(s)
- Melissa J. Polonenko
- Department of Biomedical Engineering, University of Rochester, NY, USA
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, NY, USA
| | - Ross K. Maddox
- Department of Biomedical Engineering, University of Rochester, NY, USA
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, NY, USA
| |
Collapse
|
11
|
Burkard R, Finneran JJ, Mulsow J. Comparison of maximum length sequence and randomized stimulation and averaging methods on the bottlenose dolphin auditory brainstem response. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:308. [PMID: 30075678 DOI: 10.1121/1.5046069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
The purpose of the present study was to compare auditory brainstem responses (ABRs) using two approaches that allow the use of high stimulation rates, but with different temporal variability in the interstimulus interval: maximum length sequences (MLS) and iterative randomized stimulation and averaging (I-RSA). ABRs were obtained to click stimuli in six bottlenose dolphins (Tursiops truncatus). In experiment 1, click level was held constant and click rate varied from 25 to 1250 Hz. For MLS, interstimulus intervals varied by a factor of 6 at each rate, while for I-RSA the interstimulus intervals varied by ± 0.5 ms regardless of rate. In experiment 2, stimulus rates ranged from 100 to 1000 Hz and click level varied from 105 to 135 dB re: 1 μPa. For experiment 1, MLS and I-RSA showed similar decreases in ABR peak amplitudes and increases in ABR peak latencies and interwave intervals with increasing rate. For experiment 2, there was an increase in peak latency and a decrease in peak amplitude with decreasing click level; however, the effects of click level were reduced at higher rates. The results indicate that the greater jitter for MLS compared to I-RSA does not substantially affect the dolphin ABR.
Collapse
Affiliation(s)
- Robert Burkard
- Department of Rehabilitation Science, University at Buffalo, 626 Kimball Tower, Buffalo, New York 14214, USA
| | - James J Finneran
- United States Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152, USA
| | - Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| |
Collapse
|
12
|
Finneran JJ. Conditioned attenuation of auditory brainstem responses in dolphins warned of an intense noise exposure: Temporal and spectral patterns. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:795. [PMID: 29495733 DOI: 10.1121/1.5022784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Conditioned reductions in hearing sensitivity were elicited in two bottlenose dolphins by pairing a 10-kHz tone (the conditioned stimulus) with a more intense tone (the unconditioned stimulus) at 20, 40, or 80 kHz. Hearing was assessed via noninvasive measurement of auditory brainstem responses (ABRs) to 20 - to 133-kHz tone bursts presented at randomized intervals from 1 to 3 ms. ABRs within each trial were obtained by averaging the instantaneous electroencephalogram, time-locked to tone burst onsets, over 2- to 3-s time intervals. In initial testing, ABR amplitudes were reduced (relative to baseline values) in one dolphin after the conditioned stimulus, but before the unconditioned stimulus, demonstrating conditioned hearing attenuation. In subsequent testing with both dolphins, ABRs were attenuated throughout the entire 31-s trial. Maximum ABR threshold shifts occurred at and above the unconditioned stimulus frequency and were above 40 dB for some conditions. The results (1) confirm that dolphins can be conditioned to reduce hearing sensitivity when warned of an impending noise exposure, (2) show that hearing attenuation occurs within the cochlea or auditory nerve, and (3) support the hypothesis that toothed whales can "self-mitigate" some effects of noise if warned of an impending exposure.
Collapse
Affiliation(s)
- James J Finneran
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific Code 71510, 53560 Hull Street, San Diego, California 92152, USA
| |
Collapse
|
13
|
Tan X, Fu Q, Yuan H, Ding L, Wang T. Improved Transient Response Estimations in Predicting 40 Hz Auditory Steady-State Response Using Deconvolution Methods. Front Neurosci 2018; 11:697. [PMID: 29311778 PMCID: PMC5732975 DOI: 10.3389/fnins.2017.00697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/27/2017] [Indexed: 11/23/2022] Open
Abstract
The auditory steady-state response (ASSR) is one of the main approaches in clinic for health screening and frequency-specific hearing assessment. However, its generation mechanism is still of much controversy. In the present study, the linear superposition hypothesis for the generation of ASSRs was investigated by comparing the relationships between the classical 40 Hz ASSR and three synthetic ASSRs obtained from three different templates for transient auditory evoked potential (AEP). These three AEPs are the traditional AEP at 5 Hz and two 40 Hz AEPs derived from two deconvolution algorithms using stimulus sequences, i.e., continuous loop averaging deconvolution (CLAD) and multi-rate steady-state average deconvolution (MSAD). CLAD requires irregular inter-stimulus intervals (ISIs) in the sequence while MSAD uses the same ISIs but evenly-spaced stimulus sequences which mimics the classical 40 Hz ASSR. It has been reported that these reconstructed templates show similar patterns but significant difference in morphology and distinct frequency characteristics in synthetic ASSRs. The prediction accuracies of ASSR using these templates show significant differences (p < 0.05) in 45.95, 36.28, and 10.84% of total time points within four cycles of ASSR for the traditional, CLAD, and MSAD templates, respectively, as compared with the classical 40 Hz ASSR, and the ASSR synthesized from the MSAD transient AEP suggests the best similarity. And such a similarity is also demonstrated at individuals only in MSAD showing no statistically significant difference (Hotelling's T2 test, T2 = 6.96, F = 0.80, p = 0.592) as compared with the classical 40 Hz ASSR. The present results indicate that both stimulation rate and sequencing factor (ISI variation) affect transient AEP reconstructions from steady-state stimulation protocols. Furthermore, both auditory brainstem response (ABR) and middle latency response (MLR) are observed in contributing to the composition of ASSR but with variable weights in three templates. The significantly improved prediction accuracy of ASSR achieved by MSAD strongly supports the linear superposition mechanism of ASSR if an accurate template of transient AEPs can be reconstructed. The capacity in obtaining both ASSR and its underlying transient components accurately and simultaneously has the potential to contribute significantly to diagnosis of patients with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xiaodan Tan
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Qiuyang Fu
- Department of Otolaryngology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Han Yuan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States
| | - Lei Ding
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States
| | - Tao Wang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
14
|
Finneran JJ. Bottlenose dolphin (Tursiops truncatus) auditory brainstem responses recorded using conventional and randomized stimulation and averaging. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:1034. [PMID: 28863595 DOI: 10.1121/1.4999072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Auditory brainstem response (ABR) measurements using conventional averaging (i.e., constant interstimulus interval, ISI) are limited to stimulus rates low enough to prevent overlapping of the ABRs to successive stimuli. To overcome this limitation, stimuli may be presented at high rates using pseudorandom sequences (e.g., maximum length sequences) or quasi-periodic sequences; however, these methods restrict the available stimulus sequences and require deconvolution to recover the ABR from the overlapping responses. Randomized stimulation and averaging (RSA) is an alternate method where evoked responses at high rates are obtained by averaging responses to stimuli with ISIs drawn from a random distribution. The RSA method enables precise control over stimulus jitter, is flexible with respect to stimulus sequence parameters, and does not require deconvolution to extract the ABR waveform. In this study, ABRs were measured in three normal-hearing dolphins using conventional averaging and RSA. Results show the RSA method to be effective in dolphins if the ISI jitter ≥ ∼1.5 ms and that the influence of stimulus artifacts in the averaged ABR can be substantially reduced by alternating stimulus polarity on successive presentations rather than employing digital blanking or iterative processes.
Collapse
Affiliation(s)
- James J Finneran
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific Code 71510, 53560 Hull Street, San Diego, California 92152, USA
| |
Collapse
|
15
|
Valderrama JT, de la Torre A, Medina C, Segura JC, Thornton ARD. Selective processing of auditory evoked responses with iterative-randomized stimulation and averaging: A strategy for evaluating the time-invariant assumption. Hear Res 2016; 333:66-76. [DOI: 10.1016/j.heares.2015.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/21/2015] [Accepted: 12/02/2015] [Indexed: 11/29/2022]
|
16
|
Tan XD, Peng X, Zhan CA, Wang T. Comparison of Auditory Middle-Latency Responses From Two Deconvolution Methods at 40 Hz. IEEE Trans Biomed Eng 2015; 63:1157-66. [PMID: 26441440 DOI: 10.1109/tbme.2015.2485273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GOAL Auditory middle-latency responses (MLRs) are reported to be particularly susceptible to stimulation rate. Deconvolution methods are necessary to unwrap the overlapping responses at a high rate under the linear superposition assumption. This study aims to investigate and compare the MLR characteristics at high and conventional stimulation rates. METHODS The characteristics were examined in healthy adults by using two closely related deconvolution paradigms, namely continuous-loop averaging deconvolution and multirate steady-state averaging deconvolution at a mean rate of 40 Hz, and a conventional low rate of 5 Hz. RESULTS The morphology and stability of the MLRs can benefit from a high-rate stimulation. It appears that stimulation sequencing strategies of deconvolution methods exerted divergent rate effects on MLR characteristics, which might be associated with different adaptation mechanisms. CONCLUSION MLRs obtained by two deconvolution methods and the conventional reference feature differently from one another. SIGNIFICANCE These findings have critical implications in our current understanding of the rate effects on MLR characteristics which may inspire further studies to explore the characteristics of evoked responses at high rates and deconvolution paradigms.
Collapse
|