1
|
Jia Y, Han S, Li B, Liu C, Ta D. Backscatter measurement of cancellous bone using the ultrasound transit time spectroscopy. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:2670-2686. [PMID: 38639562 DOI: 10.1121/10.0025689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Recently, ultrasound transit time spectroscopy (UTTS) was proposed as a promising method for bone quantitative ultrasound measurement. Studies have showed that UTTS could estimate the bone volume fraction and other trabecular bone structure in ultrasonic through-transmission measurements. The goal of this study was to explore the feasibility of UTTS to be adapted in ultrasonic backscatter measurement and further evaluate the performance of backscattered ultrasound transit time spectrum (BS-UTTS) in the measurement of cancellous bone density and structure. First, taking ultrasonic attenuation into account, the concept of BS-UTTS was verified on ultrasonic backscatter signals simulated from a set of scatterers with different positions and intensities. Then, in vitro backscatter measurements were performed on 26 bovine cancellous bone specimens. After a logarithmic compression of the BS-UTTS, a linear fitting of the log-compressed BS-UTTS versus ultrasonic propagated distance was performed and the slope and intercept of the fitted line for BS-UTTS were determined. The associations between BS-UTTS parameters and cancellous bone features were analyzed using simple linear regression. The results showed that the BS-UTTS could make an accurate deconvolution of the backscatter signal and predict the position and intensity of the simulated scatterers eliminating phase interference, even the simulated backscatter signal was with a relatively low signal-to-noise ratio. With varied positions and intensities of the scatterers, the slope of the fitted line for the log-compressed BS-UTTS versus ultrasonic propagated distance (i.e., slope of BS-UTTS for short) yield a high agreement (r2 = 99.84%-99.96%) with ultrasonic attenuation in simulated backscatter signal. Compared with the high-density cancellous bone, the low-density specimen showed more abundant backscatter impulse response in the BS-UTTS. The slope of BS-UTTS yield a significant correlation with bone mineral density (r = 0.87; p < 0.001), BV/TV (r = 0.87; p < 0.001), and cancellous bone microstructures (r up to 0.87; p < 0.05). The intercept of BS-UTTS was also significantly correlated with bone densities (r = -0.87; p < 0.001) and trabecular structures (|r|=0.43-0.80; p < 0.05). However, the slope of the BS-UTTS underestimated attenuation when measurements were performed experimentally. In addition, a significant non-linear relationship was observed between the measured attenuation and the attenuation estimated by the slope of the BS-UTTS. This study demonstrated that the UTTS method could be adapted to ultrasonic backscatter measurement of cancellous bone. The derived slope and intercept of BS-UTTS could be used in the measurement of bone density and microstructure. The backscattered ultrasound transit time spectroscopy might have potential in the diagnosis of osteoporosis in the clinic.
Collapse
Affiliation(s)
- Yan Jia
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Shuai Han
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Boyi Li
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Chengcheng Liu
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, 201203, China
| | - Dean Ta
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, 201203, China
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200438, China
| |
Collapse
|
2
|
Hoffmeister BK, Lawler BC, Viano AM, Mobley J. Effect of transducer position on ultrasonic backscatter measurements of cancellous bone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2858-2868. [PMID: 37930178 DOI: 10.1121/10.0022324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Ultrasonic backscatter techniques are being developed to detect changes in bone caused by osteoporosis and other diseases. Backscatter measurements performed at peripheral skeletal sites such as the heel may place the interrogated region of bone tissue in the acoustic near field of the transducer. The purpose of this study is to investigate how measurements in the near field affect backscatter parameters used for ultrasonic bone assessment. Ultrasonic measurements were performed in a water tank using a planar 2.25 MHz transducer. Signals were acquired for five transducer-specimen distances: N/4, N/2, 3 N/4, N, and 5 N/4, where N is the near-field distance, a location that represents the transition from the near field to far field. Five backscatter parameters previously identified as potentially useful for ultrasonic bone assessment purposes were measured: apparent integrated backscatter, frequency slope of apparent backscatter (FSAB), frequency intercept of apparent backscatter, normalized mean of the backscatter difference, and backscatter amplitude decay constant. All five parameters depended on transducer-specimen distance to varying degrees with FSAB exhibiting the greatest dependence on distance. These results suggest that laboratory studies of bone should evaluate the performance of backscatter parameters using transducer-specimen distances that may be encountered clinically including distances where the ultrasonically interrogated region is in the near field of the transducer.
Collapse
Affiliation(s)
| | - Blake C Lawler
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Ann M Viano
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Joel Mobley
- Department of Physics and Astronomy/National Center for Physical Acoustics, University of Mississippi, University, Mississippi 38677, USA
| |
Collapse
|
3
|
Hoffmeister BK, Delahunt SI, Downey KL, Viano AM, Thomas DM, Georgiou LA, Gray AJ, Newman WR, Main EN, Pirro G. In Vivo Comparison of Backscatter Techniques for Ultrasonic Bone Assessment at the Femoral Neck. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:997-1009. [PMID: 35282987 DOI: 10.1016/j.ultrasmedbio.2022.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/15/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Ultrasonic techniques are being developed to detect changes in cancellous bone caused by osteoporosis. The goal of this study was to test the relative in vivo performance of eight backscatter parameters developed over the last several years for ultrasonic bone assessment: apparent integrated backscatter (AIB), frequency slope of apparent backscatter (FSAB), frequency intercept of apparent backscatter (FIAB), normalized mean of the backscatter difference (nMBD), normalized slope of the backscatter difference (nSBD), normalized intercept of the backscatter difference (nIBD), normalized backscatter amplitude ratio (nBAR) and backscatter amplitude decay constant (BADC). Backscatter measurements were performed on the left and right femoral necks of 80 adult volunteers (age = 25 ± 11 y) using an imaging system equipped with a convex array transducer. For comparison, additional ultrasonic measurements were performed at the left and right heel using a commercially available heel-bone ultrasonometer that measured the stiffness index. Six of the eight backscatter parameters (all but nSBD and nIBD) exhibited similar and highly significant (p < 0.000001) left-right correlations (0.51 ≤ R ≤ 0.68), indicating sensitivity to naturally occurring variations in bone tissue. Left-right correlations for the stiffness index measured at the heel (R = 0.75) were not significantly better than those produced by AIB, FSAB and FIAB. The short-term precisions of AIB, nMBD, nBAR and BADC (7.8%-11.7%) were comparable to that of the stiffness index measured with the heel-bone ultrasonometer (7.5%).
Collapse
Affiliation(s)
| | | | - Kiera L Downey
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Ann M Viano
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Doni M Thomas
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | | | - Aubrey J Gray
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Will R Newman
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Evan N Main
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Gia Pirro
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Wear K. Scattering in Cancellous Bone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:163-175. [DOI: 10.1007/978-3-030-91979-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Viano AM, Ankersen JP, Hoffmeister BK, Huang J, Fairbanks LC. Ultrasonic Bone Assessment: Ability of Apparent Backscatter Techniques to Detect Changes in the Microstructure of Human Cancellous Bone. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3309-3325. [PMID: 34138705 DOI: 10.1109/tuffc.2021.3090359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultrasonic backscatter techniques may offer a useful approach for detecting changes in bone caused by osteoporosis. The goal of this study was to investigate how bone mineral density (BMD) and the microstructure of human cancellous bone affect three ultrasonic backscatter parameters that have been identified as potentially useful for ultrasonic bone assessment purposes: the apparent integrated backscatter (AIB), the frequency slope of apparent backscatter (FSAB), and the frequency intercept of apparent backscatter (FIAB). Ultrasonic measurements were performed with a 3.5-MHz broadband transducer on 54 specimens of human cancellous bone prepared from the proximal femur. Microstructural parameters and BMD were measured using X-ray microcomputed tomography (micro-CT). Relationships between AIB, FSAB, FIAB, and the micro-CT parameters were investigated using univariate and multivariate statistical analysis techniques. Moderate-to-strong univariate correlations were observed between the backscatter parameters and microstructure and BMD in many cases. The partial correlation analysis indicated that the backscatter parameters are dependent on microstructure independently of BMD in some cases. Multiple stepwise linear regression analysis used to generate multivariate models found that microstructure was a significant predictor of the backscatter parameters in most cases.
Collapse
|
6
|
Hoffmeister BK, Gray AJ, Sharp PC, Fairbanks LC, Huang J. Ultrasonic Bone Assessment Using the Backscatter Amplitude Decay Constant. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2412-2423. [PMID: 32553693 DOI: 10.1016/j.ultrasmedbio.2020.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/29/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Ultrasonic backscatter techniques are being developed to detect changes in bone caused by osteoporosis. The present study introduces a new technique that measures the exponential decay in the amplitude of the backscatter signal quantified by a parameter called the backscatter amplitude decay constant (BADC). Measurements were performed on 54 specimens of cancellous bone from 14 human femurs using a 3.5-MHz transducer. Six methods were tested to determine BADC. The recommended method measures the time slope of the natural log of the rectified signal. Measured values of BADC ranged from approximately 0.1 μs-1 to 0.6 μs-1. Moderate to strong correlations (Spearman's ρ >0.7) were found between BADC and the density and microstructural characteristics of the specimens determined using X-ray microcomputed tomography. The results of this study suggest that BADC may be able to detect changes in the density and microstructure of cancellous bone caused by osteoporosis and other diseases.
Collapse
Affiliation(s)
| | - Aubrey J Gray
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | - Phoebe C Sharp
- Department of Physics, Rhodes College, Memphis, Tennessee, USA
| | | | - Jinsong Huang
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
7
|
A Combined Ultrasonic Backscatter Parameter for Bone Status Evaluation in Neonates. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:3187268. [PMID: 32411279 PMCID: PMC7211244 DOI: 10.1155/2020/3187268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/30/2020] [Indexed: 11/18/2022]
Abstract
Metabolic bone disease (MBD) is one of the major complications of prematurity. Ultrasonic backscatter technique has the potential to be a portable and noninvasive method for early diagnosis of MBD. This study firstly applied CAS to neonates, which was defined as a linear combination of the apparent integrated backscatter coefficient (AIB) and spectral centroid shift (SCS). The objective was to evaluate the feasibility of ultrasonic backscatter technique for assessing neonatal bone health using AIB, SCS, and CAS. Ultrasonic backscatter measurements at 3.5 MHz, 5.0 MHz, and 7.5 MHz were performed on a total of 505 newborns within 48 hours after birth. The values of backscatter parameters were calculated and compared among gestational age groups. Correlations between backscatter parameters, gestational age, anthropometric indices, and biochemical markers were analyzed. The optimal predicting models for CAS were determined. The results showed term infants had lower SCS and higher AIB and CAS than preterm infants. Gestational age and anthropometric indices were negatively correlated with SCS (|r| = 0.45 – 0.57, P < 0.001), and positively correlated with AIB (|r| = 0.36 – 0.60, P < 0.001) and CAS (|r| = 0.56 – 0.69, P < 0.001). Biochemical markers yielded weak or nonsignificant correlations with backscatter parameters. CAS had relatively stronger correlations with the neonatal variables than AIB and SCS. At 3.5 MHz and 5.0 MHz, only gestational age (P < 0.001) independently contributed to the measurements of CAS, and could explain up to 40.5% – 44.3% of CAS variation. At 7.5 MHz, the combination of gestational age (P < 0.001), head circumference (P = 0.002), and serum calcium (P = 0.037) explained up to 40.3% of CAS variation. This study suggested ultrasonic backscatter technique was feasible to evaluate neonatal bone status. CAS was a promising parameter to provide more information about bone health than AIB or SCS alone.
Collapse
|
8
|
Wear KA. Mechanisms of Interaction of Ultrasound With Cancellous Bone: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:454-482. [PMID: 31634127 PMCID: PMC7050438 DOI: 10.1109/tuffc.2019.2947755] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ultrasound is now a clinically accepted modality in the management of osteoporosis. The most common commercial clinical devices assess fracture risk from measurements of attenuation and sound speed in cancellous bone. This review discusses fundamental mechanisms underlying the interaction between ultrasound and cancellous bone. Because of its two-phase structure (mineralized trabecular network embedded in soft tissue-marrow), its anisotropy, and its inhomogeneity, cancellous bone is more difficult to characterize than most soft tissues. Experimental data for the dependencies of attenuation, sound speed, dispersion, and scattering on ultrasound frequency, bone mineral density, composition, microstructure, and mechanical properties are presented. The relative roles of absorption, scattering, and phase cancellation in determining attenuation measurements in vitro and in vivo are delineated. Common speed of sound metrics, which entail measurements of transit times of pulse leading edges (to avoid multipath interference), are greatly influenced by attenuation, dispersion, and system properties, including center frequency and bandwidth. However, a theoretical model has been shown to be effective for correction for these confounding factors in vitro and in vivo. Theoretical and phantom models are presented to elucidate why cancellous bone exhibits negative dispersion, unlike soft tissue, which exhibits positive dispersion. Signal processing methods are presented for separating "fast" and "slow" waves (predicted by poroelasticity theory and supported in cancellous bone) even when the two waves overlap in time and frequency domains. Models to explain dependencies of scattering on frequency and mean trabecular thickness are presented and compared with measurements. Anisotropy, the effect of the fluid filler medium (marrow in vivo or water in vitro), phantoms, computational modeling of ultrasound propagation, acoustic microscopy, and nonlinear properties in cancellous bone are also discussed.
Collapse
|
9
|
Li Y, Li B, Li Y, Liu C, Xu F, Zhang R, Ta D, Wang W. The Ability of Ultrasonic Backscatter Parametric Imaging to Characterize Bovine Trabecular Bone. ULTRASONIC IMAGING 2019; 41:271-289. [PMID: 31307317 DOI: 10.1177/0161734619862190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ultrasonic backscatter technique holds the promise of characterizing bone density and microstructure. This paper conducts ultrasonic backscatter parametric imaging based on measurements of apparent integrated backscatter (AIB), spectral centroid shift (SCS), frequency slope of apparent backscatter (FSAB), and frequency intercept of apparent backscatter (FIAB) for representing trabecular bone mass and microstructure. We scanned 33 bovine trabecular bone samples using a 7.5 MHz focused transducer in a 20 mm × 20 mm region of interest (ROI) with a step interval of 0.05 mm. Images based on the ultrasonic backscatter parameters (i.e., AIB, SCS, FSAB, and FIAB) were constructed to compare with photographic images of the specimens as well as two-dimensional (2D) μ-CT images from approximately the same depth and location of the specimen. Similar structures and trabecular alignments can be observed among these images. Statistical analyses demonstrated that the means and standard deviations of the ultrasonic backscatter parameters exhibited significant correlations with bone density (|R| = 0.45-0.78, p < 0.01) and bone microstructure (|R| = 0.44-0.87, p < 0.001). Some bovine trabecular bone microstructure parameters were independently associated with the ultrasonic backscatter parameters (ΔR2 = 4.18%-44.45%, p < 0.05) after adjustment for bone apparent density (BAD). The results show that ultrasonic backscatter parametric imaging can provide a direct view of the trabecular microstructure and can reflect information about the density and microstructure of trabecular bone.
Collapse
Affiliation(s)
- Ying Li
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Boyi Li
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Yifang Li
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Chengcheng Liu
- 2 Institute of Acoustics, Tongji University, Shanghai, China
| | - Feng Xu
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Rong Zhang
- 3 Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Dean Ta
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
- 4 Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, China
- 5 Human Phenome Institute, Fudan University, Shanghai, China
| | - Weiqi Wang
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Liu C, Li B, Diwu Q, Li Y, Zhang R, Ta D, Wang W. Relationships of Ultrasonic Backscatter With Bone Densities and Microstructure in Bovine Cancellous Bone. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2311-2321. [PMID: 30575524 DOI: 10.1109/tuffc.2018.2872084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study was designed to investigate the associations among ultrasonic backscatter, bone densities, and microstructure in bovine cancellous bone. Ultrasonic backscatter measurements were performed on 33 bovine cancellous bone specimens with a 2.25-MHz transducer. Ultrasonic apparent backscatter parameters ("apparent" means not compensating for ultrasonic attenuation and diffraction) were calculated with optimal signals of interest. The results showed that ultrasonic backscatter was significantly related to bone densities and microstructure ( R2 = 0.17 -0.88 and ). After adjusting the correlations by bone mineral density (BMD), the bone apparent density (BAD) and some trabecular structural features still contributed significantly to the adjusted correlations, with moderate additional variance explained ( ∆R2 = 9.7 % at best). Multiple linear regressions revealed that both BAD and trabecular structure contributed significantly and independently to the prediction of ultrasound backscatter (adjusted R2 = 0.75 -0.89 and ), explaining an additional 14% of the variance at most, compared with that of BMD measurements alone. The results proved that ultrasonic backscatter was primarily determined by BAD, not BMD, but the combination of bone structure and densities could achieve encouragingly better performances (89% of the variance explained at best) in predicting backscatter properties. This study demonstrated that ultrasonic apparent backscatter might provide additional density and structural features unrelated to current BMD measurement. Therefore, we suggest that ultrasonic backscatter measurement could play a more important role in cancellous bone evaluation.
Collapse
|
11
|
Hoffmeister BK, Viano AM, Huang J, Fairbanks LC, Ebron SC, Moore JT, Ankersen JP, Huber MT, Diaz AA. Ultrasonic backscatter difference measurements of cancellous bone from the human femur: Relation to bone mineral density and microstructure. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:3642. [PMID: 29960442 PMCID: PMC6014850 DOI: 10.1121/1.5043385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/21/2018] [Accepted: 06/02/2018] [Indexed: 05/26/2023]
Abstract
Ultrasonic backscatter techniques are being developed to detect changes in cancellous bone caused by osteoporosis. One technique, called the backscatter difference technique, measures the power difference between two portions of a backscatter signal. The goal of the present study is to investigate how bone mineral density (BMD) and the microstructure of human cancellous bone influence four backscatter difference parameters: the normalized mean of the backscatter difference (nMBD) spectrum, the normalized slope of the backscatter difference spectrum, the normalized intercept of the backscatter difference spectrum, and the normalized backscatter amplitude ratio (nBAR). Ultrasonic measurements were performed with a 3.5 MHz broadband transducer on 54 specimens of human cancellous bone from the proximal femur. Volumetric BMD and the microstructural characteristics of the specimens were measured using x-ray micro-computed tomography. Of the four ultrasonic parameters studied, nMBD and nBAR demonstrated the strongest univariate correlations with density and microstructure. Multivariate analyses indicated that nMBD and nBAR depended on trabecular separation and possibly other microstructural characteristics of the specimens independently of BMD. These findings suggest that nMBD and nBAR may be sensitive to changes in the density and microstructure of bone caused by osteoporosis.
Collapse
Affiliation(s)
| | - Ann M Viano
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Jinsong Huang
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Luke C Fairbanks
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Sheldon C Ebron
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Joshua T Moore
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Jordan P Ankersen
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Matthew T Huber
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Abel A Diaz
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| |
Collapse
|
12
|
Hoffmeister BK, Huber MT, Viano AM, Huang J. Characterization of a polymer, open-cell rigid foam that simulates the ultrasonic properties of cancellous bone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:911. [PMID: 29495707 PMCID: PMC5812744 DOI: 10.1121/1.5023219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 05/28/2023]
Abstract
Materials that simulate the ultrasonic properties of tissues are used widely for clinical and research purposes. However, relatively few materials are known to simulate the ultrasonic properties of cancellous bone. The goal of the present study was to investigate the suitability of using a polymer, open-cell rigid foam (OCRF) produced by Sawbones®. Measurements were performed on OCRF specimens with four different densities. Ultrasonic speed of sound and normalized broadband ultrasonic attenuation were measured with a 0.5 MHz transducer. Three backscatter parameters were measured with a 5 MHz transducer: apparent integrated backscatter, frequency slope of apparent backscatter, and normalized mean of the backscatter difference. X-ray micro-computed tomography was used to measure the microstructural characteristics of the OCRF specimens. The trabecular thickness and relative bone volume of the OCRF specimens were similar to those of human cancellous bone, but the trabecular separation was greater. In most cases, the ultrasonic properties of the OCRF specimens were similar to values reported in the literature for cancellous bone, including dependence on density. In addition, the OCRF specimens exhibited an ultrasonic anisotropy similar to that reported for cancellous bone.
Collapse
Affiliation(s)
| | - Matthew T Huber
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Ann M Viano
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Jinsong Huang
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| |
Collapse
|
13
|
Hoffmeister BK, Viano AM, Fairbanks LC, Ebron SC, McPherson JA, Huber MT. Effect of gate choice on backscatter difference measurements of cancellous bone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:540. [PMID: 28863582 PMCID: PMC5552398 DOI: 10.1121/1.4996140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 05/28/2023]
Abstract
A variety of ultrasonic techniques have been developed to detect changes in bone caused by osteoporosis. One approach, called the backscatter difference technique, analyzes the power difference between two different portions of a backscatter signal. Analysis gates with a certain delay τd, width τw, and separation τs are used to define portions of the backscatter signal for analysis. The goal of the present study was to investigate how different choices of τd, τw, and τs affect four backscatter difference parameters: the normalized mean of the backscatter difference (nMBD), the normalized slope of the backscatter difference (nSBD), the normalized intercept of the backscatter difference (nIBD), and the normalized backscatter amplitude ratio (nBAR). Backscatter measurements were performed on 54 cube shaped specimens of human cancellous bone. nMBD, nSBD, nIBD, and nBAR were determined for 34 different combinations of τd, τw, and τs for each specimen. nMBD and nBAR demonstrated the strongest correlations with apparent bone density (0.48 ≤ Rs ≤ 0.90). Generally, the correlations were found to improve as τw + τs was increased and as τd was decreased. Among the four backscatter difference parameters, the measured values of nMBD were least sensitive to gate choice (<16%).
Collapse
Affiliation(s)
| | - Ann M Viano
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Luke C Fairbanks
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | - Sheldon C Ebron
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| | | | - Matthew T Huber
- Department of Physics, Rhodes College, Memphis, Tennessee 38112, USA
| |
Collapse
|