1
|
Day ML. Head-related transfer functions of rabbits within the front horizontal plane. Hear Res 2024; 441:108924. [PMID: 38061267 PMCID: PMC10872353 DOI: 10.1016/j.heares.2023.108924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
The head-related transfer function (HRTF) describes the direction-dependent acoustic filtering by the head that occurs between a source signal in free-field space and the signal at the tympanic membrane. HRTFs contain information on sound source location via interaural differences of their magnitude or phase spectra and via the shapes of their magnitude spectra. The present study characterized HRTFs for source locations in the front horizontal plane for nine rabbits, which are a species commonly used in studies of the central auditory system. HRTF magnitude spectra shared several features across individuals, including a broad spectral peak at 2.6kHz that increased gain by 12 to 23dB depending on source azimuth; and a notch at 7.6kHz and peak at 9.8kHz visible for most azimuths. Overall, frequencies above 4kHz were amplified for sources ipsilateral to the ear and progressively attenuated for frontal and contralateral azimuths. The slope of the magnitude spectrum between 3 and 5kHz was found to be an unambiguous monaural cue for source azimuths ipsilateral to the ear. Average interaural level difference (ILD) between 5 and 16kHz varied monotonically with azimuth over ±31dB despite a relatively small head size. Interaural time differences (ITDs) at 0.5kHz and 1.5kHz also varied monotonically with azimuth over ±358 μs and ±260 μs, respectively. Remeasurement of HRTFs after pinna removal revealed that the large pinnae of rabbits were responsible for all spectral peaks and notches in magnitude spectra and were the main contribution to high-frequency ILDs (5-16kHz), whereas the rest of the head was the main contribution to ITDs and low-frequency ILDs (0.2-1.5kHz). Lastly, inter-individual differences in magnitude spectra were found to be small enough that deviations of individual HRTFs from an average HRTF were comparable in size to measurement error. Therefore, the average HRTF may be acceptable for use in neural or behavioral studies of rabbits implementing virtual acoustic space when measurement of individualized HRTFs is not possible.
Collapse
Affiliation(s)
- Mitchell L Day
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
2
|
Day ML. Head-related transfer functions of rabbits within the front horizontal plane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557943. [PMID: 37745541 PMCID: PMC10516025 DOI: 10.1101/2023.09.15.557943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The head-related transfer function (HRTF) is the direction-dependent acoustic filtering by the head that occurs between a source signal in free-field space and the signal at the tympanic membrane. HRTFs contain information on sound source location via interaural differences of their magnitude or phase spectra and via the shapes of their magnitude spectra. The present study characterized HRTFs for source locations in the front horizontal plane for nine rabbits, which are a species commonly used in studies of the central auditory system. HRTF magnitude spectra shared several features across individuals, including a broad spectral peak at 2.6 kHz that increased gain by 12 to 23 dB depending on source azimuth; and a notch at 7.6 kHz and peak at 9.8 kHz visible for most azimuths. Overall, frequencies above 4 kHz were amplified for sources ipsilateral to the ear and progressively attenuated for frontal and contralateral azimuths. The slope of the magnitude spectrum between 3 and 5 kHz was found to be an unambiguous monaural cue for source azimuths ipsilateral to the ear. Average interaural level difference (ILD) between 5 and 16 kHz varied monotonically with azimuth over ±31 dB despite a relatively small head size. Interaural time differences (ITDs) at 0.5 kHz and 1.5 kHz also varied monotonically with azimuth over ±358 μs and ±260 μs, respectively. Remeasurement of HRTFs after pinna removal revealed that the large pinnae of rabbits were responsible for all spectral peaks and notches in magnitude spectra and were the main contribution to high-frequency ILDs, whereas the rest of the head was the main contribution to ITDs and low-frequency ILDs. Lastly, inter-individual differences in magnitude spectra were found to be small enough that deviations of individual HRTFs from an average HRTF were comparable in size to measurement error. Therefore, the average HRTF may be acceptable for use in neural or behavioral studies of rabbits implementing virtual acoustic space when measurement of individualized HRTFs is not possible.
Collapse
|
3
|
Capshaw G, Brown AD, Peña JL, Carr CE, Christensen-Dalsgaard J, Tollin DJ, Womack MC, McCullagh EA. The continued importance of comparative auditory research to modern scientific discovery. Hear Res 2023; 433:108766. [PMID: 37084504 PMCID: PMC10321136 DOI: 10.1016/j.heares.2023.108766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 04/23/2023]
Abstract
A rich history of comparative research in the auditory field has afforded a synthetic view of sound information processing by ears and brains. Some organisms have proven to be powerful models for human hearing due to fundamental similarities (e.g., well-matched hearing ranges), while others feature intriguing differences (e.g., atympanic ears) that invite further study. Work across diverse "non-traditional" organisms, from small mammals to avians to amphibians and beyond, continues to propel auditory science forward, netting a variety of biomedical and technological advances along the way. In this brief review, limited primarily to tetrapod vertebrates, we discuss the continued importance of comparative studies in hearing research from the periphery to central nervous system with a focus on outstanding questions such as mechanisms for sound capture, peripheral and central processing of directional/spatial information, and non-canonical auditory processing, including efferent and hormonal effects.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Andrew D Brown
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98105, USA
| | - José L Peña
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Daniel J Tollin
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Molly C Womack
- Department of Biology, Utah State University, Logan, UT 84322, USA.
| | - Elizabeth A McCullagh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
4
|
Zedda M, Brunetti A, Palombo MR. First Attempt to Infer Sound Hearing and Its Paleoenvironmental Implications in the Extinct Insular Canid Cynotherium sardous Studiati, 1857 (Sardinia, Italy). Animals (Basel) 2022; 12:ani12070833. [PMID: 35405823 PMCID: PMC8996844 DOI: 10.3390/ani12070833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary The microtomographic approach allows nondestructive acquisition of anatomical details of the bone labyrinth that houses the inner ear. The petrosal bone can be a gold mine of information for a variety of questions in different research fields, including taxonomic, behavioral, and genetic studies. The semicircular canals provide information on head posture and locomotor ability, whereas the cochlea provides data on hearing ability. The petrosal bone is the hardest structure in the skeleton and could be well preserved in fossil specimens. As a result, it is becoming more and more popular in current archaeological and paleontological studies. In this study, petrosal microtomographic analysis was applied for the first time to Cynotherium sardous, a highly modified endemic canid that inhabited Sardinia during the Middle to Late Pleistocene. Indications about its hearing ability may provide interesting insights to better understand the new lifestyle and behavior this canid acquired during the long evolutionary process it underwent in the peculiar insular ecosystem with a depleted fauna. The poor hearing and echolocalization capabilities of Cynotherium sardous would have been the outcome of reduced competition pressure due to the absence of predators and the abundance of prey, such as the large ochotonid Prolagus sardus, while the high-frequency hearing could be interpreted as an adaptation to detect sounds emitted by its preferred prey. Abstract This is the first study on the bony labyrinth of Cynotherium sardous, an intriguing extinct canid that inhabited Sardinia in the late Middle and Late Pleistocene. The morphological features of the cochlea indicate that C. sardous had a lower number of cochlear turns (2.25) than all extant canids. This feature, as well as the reduced length of the spiral canal, the cochlear curvature rate, and the narrow basal membrane, indicates that C. sardous had poor hearing abilities limited to high-frequency sounds with a low limit of 250 Hz and poor echolocalization skills. From the data available, it is not possible to infer whether C. sardous was unable to echolocalize its prey and relied on other senses (e.g., smell and sight) to locate them or whether the acoustic range of C. sardous was specialized for identifying the sounds produced by its most common prey to transmit signals for predator warnings or group communication. All things considered, the results obtained confirm the utility of cochlea morphological studies in reconstructing the hearing abilities of this species and in providing some suggestions about its ethology, but they fall short of providing any new sound evidence regarding the ecological role of C. sardous in the Late Pleistocene Sardinian ecosystem.
Collapse
Affiliation(s)
- Marco Zedda
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
- Correspondence: ; Tel.: +39-079-229-583
| | - Antonio Brunetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Maria Rita Palombo
- CNR-IGAG c/o Department of Earth Sciences, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
5
|
Pavão R, Sussman ES, Fischer BJ, Peña JL. Natural ITD statistics predict human auditory spatial perception. eLife 2020; 9:e51927. [PMID: 33043884 PMCID: PMC7661036 DOI: 10.7554/elife.51927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/09/2020] [Indexed: 11/28/2022] Open
Abstract
A neural code adapted to the statistical structure of sensory cues may optimize perception. We investigated whether interaural time difference (ITD) statistics inherent in natural acoustic scenes are parameters determining spatial discriminability. The natural ITD rate of change across azimuth (ITDrc) and ITD variability over time (ITDv) were combined in a Fisher information statistic to assess the amount of azimuthal information conveyed by this sensory cue. We hypothesized that natural ITD statistics underlie the neural code for ITD and thus influence spatial perception. To test this hypothesis, sounds with invariant statistics were presented to measure human spatial discriminability and spatial novelty detection. Human auditory spatial perception showed correlation with natural ITD statistics, supporting our hypothesis. Further analysis showed that these results are consistent with classic models of ITD coding and can explain the ITD tuning distribution observed in the mammalian brainstem.
Collapse
Affiliation(s)
- Rodrigo Pavão
- Dominick P. Purpura Department of Neuroscience - Albert Einstein College of MedicineNew YorkUnited States
- Centro de Matemática, Computação e Cognição - Universidade Federal do ABCSanto AndréBrazil
| | - Elyse S Sussman
- Dominick P. Purpura Department of Neuroscience - Albert Einstein College of MedicineNew YorkUnited States
| | - Brian J Fischer
- Department of Mathematics - Seattle UniversitySeattleUnited States
| | - José L Peña
- Dominick P. Purpura Department of Neuroscience - Albert Einstein College of MedicineNew YorkUnited States
| |
Collapse
|
6
|
Abstract
The neural coding metaphor is so ubiquitous that we tend to forget its metaphorical nature. What do we mean when we assert that neurons encode and decode? What kind of causal and representational model of the brain does the metaphor entail? What lies beneath the neural coding metaphor, I argue, is a bureaucratic model of the brain.
Collapse
|
7
|
Yin TC, Smith PH, Joris PX. Neural Mechanisms of Binaural Processing in the Auditory Brainstem. Compr Physiol 2019; 9:1503-1575. [DOI: 10.1002/cphy.c180036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
3D Tune-In Toolkit: An open-source library for real-time binaural spatialisation. PLoS One 2019; 14:e0211899. [PMID: 30856198 PMCID: PMC6411112 DOI: 10.1371/journal.pone.0211899] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/22/2019] [Indexed: 12/05/2022] Open
Abstract
The 3D Tune-In Toolkit (3DTI Toolkit) is an open-source standard C++ library which includes a binaural spatialiser. This paper presents the technical details of this renderer, outlining its architecture and describing the processes implemented in each of its components. In order to put this description into context, the basic concepts behind binaural spatialisation are reviewed through a chronology of research milestones in the field in the last 40 years. The 3DTI Toolkit renders the anechoic signal path by convolving sound sources with Head Related Impulse Responses (HRIRs), obtained by interpolating those extracted from a set that can be loaded from any file in a standard audio format. Interaural time differences are managed separately, in order to be able to customise the rendering according the head size of the listener, and to reduce comb-filtering when interpolating between different HRIRs. In addition, geometrical and frequency-dependent corrections for simulating near-field sources are included. Reverberation is computed separately using a virtual loudspeakers Ambisonic approach and convolution with Binaural Room Impulse Responses (BRIRs). In all these processes, special care has been put in avoiding audible artefacts produced by changes in gains and audio filters due to the movements of sources and of the listener. The 3DTI Toolkit performance, as well as some other relevant metrics such as non-linear distortion, are assessed and presented, followed by a comparison between the features offered by the 3DTI Toolkit and those found in other currently available open- and closed-source binaural renderers.
Collapse
|
9
|
Brown AD, Benichoux V, Jones HG, Anbuhl KL, Tollin DJ. Spatial variation in signal and sensory precision both constrain auditory acuity at high frequencies. Hear Res 2018; 370:65-73. [PMID: 30326382 DOI: 10.1016/j.heares.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
Sensory performance is constrained by the information in the stimulus and the precision of the involved sensory system(s). Auditory spatial acuity is robust across a broad range of sound frequencies and source locations, but declines at eccentric lateral angles. The basis of such variation is not fully understood. Low-frequency auditory spatial acuity is mediated by sensitivity to interaural time difference (ITD) cues. While low-frequency spatial acuity varies across azimuth and some physiological models predict strong medial bias in the precision of ITD sensitivity, human psychophysical ITD sensitivity appears to vary only slightly with reference ITD magnitude. Correspondingly, recent analyses suggest that spatial variation in human low-frequency acuity is well-accounted for by acoustic factors alone. Here we examine the matter of high-frequency auditory acuity, which is mediated by sensitivity to interaural level difference (ILD) cues. Using two different psychophysical tasks in human subjects, we demonstrate decreasing ILD acuity with increasing ILD magnitude. We then demonstrate that the multiplicative combination of spatially variant sensory precision and physical cue information (local slope of the ILD cue) provides improved prediction of classic high-frequency spatial acuity data. Finally, we consider correlates of magnitude dependent acuity in neurons that are sensitive to ILDs.
Collapse
Affiliation(s)
- Andrew D Brown
- University of Washington, Department of Speech and Hearing Sciences, Seattle, WA, 98015, USA.
| | - Victor Benichoux
- Institut Pasteur/INSERM, Unité de Génétique et Physiologie de l'Audition, 75015, Paris, France
| | - Heath G Jones
- U.S. Army Aeromedical Research Laboratory, Auditory Protection and Performance Division, Fort Rucker, AL, 36362, USA
| | - Kelsey L Anbuhl
- New York University, Center for Neural Science, New York, NY, 10003, USA
| | - Daniel J Tollin
- University of Colorado School of Medicine, Department of Physiology & Biophysics, Aurora, CO, 80045, USA
| |
Collapse
|
10
|
Across Species "Natural Ablation" Reveals the Brainstem Source of a Noninvasive Biomarker of Binaural Hearing. J Neurosci 2018; 38:8563-8573. [PMID: 30126974 DOI: 10.1523/jneurosci.1211-18.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 02/05/2023] Open
Abstract
The binaural interaction component (BIC) of the auditory brainstem response is a noninvasive electroencephalographic signature of neural processing of binaural sounds. Despite its potential as a clinical biomarker, the neural structures and mechanism that generate the BIC are not known. We explore here the hypothesis that the BIC emerges from excitatory-inhibitory interactions in auditory brainstem neurons. We measured the BIC in response to click stimuli while varying interaural time differences (ITDs) in subjects of either sex from five animal species. Species had head sizes spanning a 3.5-fold range and correspondingly large variations in the sizes of the auditory brainstem nuclei known to process binaural sounds [the medial superior olive (MSO) and the lateral superior olive (LSO)]. The BIC was reliably elicited in all species, including those that have small or inexistent MSOs. In addition, the range of ITDs where BIC was elicited was independent of animal species, suggesting that the BIC is not a reflection of the processing of ITDs per se. Finally, we provide a model of the amplitude and latency of the BIC peak, which is based on excitatory-inhibitory synaptic interactions, without assuming any specific arrangement of delay lines. Our results show that the BIC is preserved across species ranging from mice to humans. We argue that this is the result of generic excitatory-inhibitory synaptic interactions at the level of the LSO, and thus best seen as reflecting the integration of binaural inputs as opposed to their spatial properties.SIGNIFICANCE STATEMENT Noninvasive electrophysiological measures of sensory system activity are critical for the objective clinical diagnosis of human sensory processing deficits. The binaural component of sound-evoked auditory brainstem responses is one such measure of binaural auditory coding fidelity in the early stages of the auditory system. Yet, the precise neurons that lead to this evoked potential are not fully understood. This paper provides a comparative study of this potential in different mammals and shows that it is preserved across species, from mice to men, despite large variations in morphology and neuroanatomy. Our results confirm its relevance to the assessment of binaural hearing integrity in humans and demonstrates how it can be used to bridge the gap between rodent models and humans.
Collapse
|
11
|
Interaction of interaural cues and their contribution to the lateralisation of Mongolian gerbils (Meriones unguiculatus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:435-448. [PMID: 29476321 DOI: 10.1007/s00359-018-1253-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 10/18/2022]
Abstract
The main sound localisation cues in the horizontal plane are interaural time and level differences (ITDs and ILDs, respectively). ITDs are thought to be the dominant cue in the low-frequency range, ILDs the dominant cue in the high-frequency range. ITDs and ILDs co-occur. Their interaction and contribution to the lateralisation of pure tones by Mongolian gerbils was investigated behaviourally using cross-talk cancellation techniques for presenting ITDs and ILDs independently. First, ITDs were applied to pure tones with frequencies ≤ 2 kHz to the ongoing waveform, at the onsets and offsets, or in both the ongoing waveform and at the onsets and offsets. Gerbils could lateralise tones only if ongoing ITDs were present indicating that ongoing ITDs are decisive for the lateralisation of low-frequency tones. Second, an ITD was added to 2-to-6-kHz tones with varying ILD. Gerbils' lateralisation was unaffected by the ITD indicating that a large ILD provides a strong lateralisation cue at those frequencies. Finally, small ILDs were applied to 2-kHz tones with an ongoing ITD, pointing either to the same or opposing sides as the ITD. Gerbils' lateralisation was driven by the ITD but strongly affected by the ILD indicating that both interaural cues contribute to the lateralisation.
Collapse
|
12
|
Anbuhl KL, Benichoux V, Greene NT, Brown AD, Tollin DJ. Development of the head, pinnae, and acoustical cues to sound location in a precocial species, the guinea pig (Cavia porcellus). Hear Res 2017; 356:35-50. [PMID: 29128159 PMCID: PMC5705338 DOI: 10.1016/j.heares.2017.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/23/2017] [Accepted: 10/30/2017] [Indexed: 11/26/2022]
Abstract
The morphology of the head and pinna shape the spatial and frequency dependence of sound propagation that give rise to the acoustic cues to sound source location. During early development, the physical dimensions of the head and pinna increase rapidly. Thus, the binaural (interaural time and level differences, ITD and ILD) and monaural (spectral shape) cues are also hypothesized to change rapidly. Complex interactions between the size and shape of the head and pinna limit the accuracy of simple acoustical models (e.g. spherical) and necessitate empirical measurements. Here, we measured the cues to location in the developing guinea pig, a precocial species commonly used for studies of the auditory system. We measured directional transfer functions (DTFs) and the dimensions of the head and pinna in guinea pigs from birth (P0) through adulthood. Dimensions of the head and pinna increased by 87% and 48%, respectively, reaching adult values by ∼8 weeks (P56). The monaural acoustic gain produced by the head and pinna increased with frequency and age, with maximum gains at higher frequencies (>8 kHz) reaching values of 10-21 dB for all ages. The center frequency of monaural spectral notches also decreased with age, from higher frequencies (∼17 kHz) at P0 to lower frequencies (∼12 kHz) in adults. In all animals, ILDs and ITDs were dependent on both frequency and spatial location. Over development, the maximum ILD magnitude increased from ∼15 dB at P0 to ∼30 dB in adults (at frequencies >8 kHz), while the maximum low frequency ITDs increased from ∼185 μs at P0 to ∼300 μs in adults. These results demonstrate that the changes in the acoustical cues are directly related to changes in head and pinna morphology.
Collapse
Affiliation(s)
- Kelsey L Anbuhl
- Neuroscience Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Victor Benichoux
- Department of Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nathaniel T Greene
- Department of Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andrew D Brown
- Department of Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel J Tollin
- Neuroscience Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
13
|
Schoenmaker E, Sutojo S, van de Par S. Better-ear rating based on glimpsing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:1466. [PMID: 28964056 DOI: 10.1121/1.5002684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The better ear of a listener is the ear that benefits most from head shadow effects in a setting with spatially separated sources. Traditionally, the better ear is considered to be the ear that receives a signal at the best signal-to-noise ratio. For a speech target in interfering speech, the concept of rating the better ear based on glimpses was explored. The laterality of the expected better ear was shown to be well represented by metrics based on glimpsing. When employing better-ear glimpsing as a microscopic predictor for speech intelligibility, a strong relation was found between the amount of glimpsed target speech received by the better ear and the performance on a consonant recognition task. This relation was investigated for two spatial processing methods that included or excluded the possibility to use better-ear listening. It was shown that the amount of glimpses at the better ear plus an effect of angular separation of speech sources could account for a substantial part of the performance, but that a small, additional role of the contralateral ear may need to be considered.
Collapse
Affiliation(s)
- Esther Schoenmaker
- Acoustics Group, Cluster of Excellence Hearing4all, Carl von Ossietzky University, 26111 Oldenburg, Germany
| | - Sarinah Sutojo
- Acoustics Group, Cluster of Excellence Hearing4all, Carl von Ossietzky University, 26111 Oldenburg, Germany
| | - Steven van de Par
- Acoustics Group, Cluster of Excellence Hearing4all, Carl von Ossietzky University, 26111 Oldenburg, Germany
| |
Collapse
|
14
|
Andreopoulou A, Katz BFG. Identification of perceptually relevant methods of inter-aural time difference estimation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:588. [PMID: 28863557 DOI: 10.1121/1.4996457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The inter-aural time difference (ITD) is a fundamental cue for human sound localization. Over the past decades several methods have been proposed for its estimation from measured head-related impulse response (HRIR) data. Nevertheless, inter-method variations in ITD calculation have been found to exceed the known just noticeable differences (JNDs), leading to possible perceptible artifacts in virtual binaural auditory scenes, when personalized HRIRs are being used. In the absence of an objective means for validating ITD estimations, this paper examines which methods lead to the most perceptually relevant results. A subjective lateralization study compared objective ITDs to perceptually evaluated inter-aural pure delay offsets. Results clearly indicate the first-onset threshold detection method, using a low relative threshold of -30 dB, applied on 3 kHz low-pass filtered HRIRs as consistently the most perceptually relevant procedure across various metrics. Several alternative threshold values and methods based on the maximum or centroid of the inter-aural cross correlation of similarly filtered HRIR or HRIR envelopes also provided reasonable results. On the contrary, phase-based methods employing the integrated relative group delay or auditory model were not found to perform as well.
Collapse
Affiliation(s)
- Areti Andreopoulou
- Audio and Acoustic Group, LIMSI, CNRS, Université Paris-Saclay, Orsay, France
| | - Brian F G Katz
- Sorbonne Universités, UPMC Universite Paris 06, CNRS, Institut d'Alembert, Paris, France
| |
Collapse
|
15
|
Representation of Multidimensional Stimuli: Quantifying the Most Informative Stimulus Dimension from Neural Responses. J Neurosci 2017; 37:7332-7346. [PMID: 28663198 DOI: 10.1523/jneurosci.0318-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/09/2017] [Accepted: 06/17/2017] [Indexed: 11/21/2022] Open
Abstract
A common way to assess the function of sensory neurons is to measure the number of spikes produced by individual neurons while systematically varying a given dimension of the stimulus. Such measured tuning curves can then be used to quantify the accuracy of the neural representation of the stimulus dimension under study, which can in turn be related to behavioral performance. However, tuning curves often change shape when other dimensions of the stimulus are varied, reflecting the simultaneous sensitivity of neurons to multiple stimulus features. Here we illustrate how one-dimensional information analyses are misleading in this context, and propose a framework derived from Fisher information that allows the quantification of information carried by neurons in multidimensional stimulus spaces. We use this method to probe the representation of sound localization in auditory neurons of chinchillas and guinea pigs of both sexes, and show how heterogeneous tuning properties contribute to a representation of sound source position that is robust to changes in sound level.SIGNIFICANCE STATEMENT Sensory neurons' responses are typically modulated simultaneously by numerous stimulus properties, which can result in an overestimation of neural acuity with existing one-dimensional neural information transmission measures. To overcome this limitation, we develop new, compact expressions of Fisher information-derived measures that bound the robust encoding of separate stimulus dimensions in the context of multidimensional stimuli. We apply this method to the problem of the representation of sound source location in the face of changes in sound source level by neurons of the auditory midbrain.
Collapse
|