1
|
Park M, O'Beirne GA, Bird PA, Maslin MRD. Auditory cortical and brainstem response dynamics in quiet and noise amongst unilaterally deaf adults with and without tinnitus. Clin Neurophysiol 2025; 172:81-90. [PMID: 40048903 DOI: 10.1016/j.clinph.2025.02.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/05/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025]
Abstract
OBJECTIVE Cortical auditory evoked potentials (CAEPs) and Auditory Brainstem Responses (ABRs) elicited by sounds in quiet and in noise were compared between unilaterally deaf adults with and without associated tinnitus (UD+T and UD-T). CAEP amplitudes were hypothesised to primarily vary with absolute stimulus levels in UD+T listeners rather than signal-to-noise ratio (SNR), whereas ABR amplitudes would reflect both level and SNR regardless of tinnitus status. METHODS Responses were recorded at 60 and 45 dB nHL with white noise set to give 0 and +10 dB SNR. Participants were 8 UD-T, 13 UD+T listeners, and 13 binaurally hearing controls. RESULTS The UD-T group CAEP amplitudes showed an additive effect of stimulus level (p = 0.025) and SNR (p = 0.002) while UD+T and control listeners showed only the effect of SNR (p = 0.004). ABR amplitudes reflected the additive effects of level and SNR in all groups. CONCLUSIONS The primary determinant of CAEP amplitudes to signals in noise is SNR not stimulus level. This effect was not apparent in UD-T listeners, whose amplitudes were determined by both level and SNR, similarly to the brainstem potentials. SIGNIFICANCE The findings suggest altered processing of neural noise in unilaterally deaf adult listeners without tinnitus.
Collapse
Affiliation(s)
- MinChul Park
- University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Eisdell Moore Centre, Auckland, New Zealand.
| | - Greg A O'Beirne
- University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Eisdell Moore Centre, Auckland, New Zealand.
| | - Philip A Bird
- Eisdell Moore Centre, Auckland, New Zealand; Department of Otolaryngology, Head and Neck Surgery and Audiology, Christchurch Hospital, Christchurch, New Zealand; Department of Surgery, University of Otago, Christchurch, New Zealand.
| | - Michael R D Maslin
- University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Eisdell Moore Centre, Auckland, New Zealand.
| |
Collapse
|
2
|
Mulsow J, Finneran JJ, Strahan MG, Houser DS, Burkard RF. Input compensation of dolphin and sea lion auditory brainstem responses using frequency-modulated up-chirps. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:739-750. [PMID: 37556567 DOI: 10.1121/10.0020566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
Frequency-modulated "chirp" stimuli that offset cochlear dispersion (i.e., input compensation) have shown promise for increasing auditory brainstem response (ABR) amplitudes relative to traditional sound stimuli. To enhance ABR methods with marine mammal species known or suspected to have low ABR signal-to-noise ratios, the present study examined the effects of broadband chirp sweep rate and level on ABR amplitude in bottlenose dolphins and California sea lions. "Optimal" chirps were designed based on previous estimates of cochlear traveling wave speeds (using high-pass subtractive masking methods) in these species. Optimal chirps increased ABR peak amplitudes by compensating for cochlear dispersion; however, chirps with similar (or higher) frequency-modulation rates produced comparable results. The optimal chirps generally increased ABR amplitudes relative to noisebursts as threshold was approached, although this was more obvious when sound pressure level was used to equate stimulus levels (as opposed to total energy). Chirps provided progressively less ABR amplitude gain (relative to noisebursts) as stimulus level increased and produced smaller ABRs at the highest levels tested in dolphins. Although it was previously hypothesized that chirps would provide larger gains in sea lions than dolphins-due to the lower traveling wave speed in the former-no such pattern was observed.
Collapse
Affiliation(s)
- Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - James J Finneran
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific Code 56710, 53560 Hull Street, San Diego, California 92152, USA
| | - Madelyn G Strahan
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - Dorian S Houser
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - Robert F Burkard
- Department of Rehabilitation Science, University at Buffalo, 626 Kimball Tower, Buffalo, New York 14214, USA
| |
Collapse
|
3
|
Morell M, Raverty SA, Mulsow J, Haulena M, Barrett-Lennard L, Nordstrom CA, Venail F, Shadwick RE. Combining Cochlear Analysis and Auditory Evoked Potentials in a Beluga Whale With High-Frequency Hearing Loss. Front Vet Sci 2020; 7:534917. [PMID: 33330679 PMCID: PMC7672125 DOI: 10.3389/fvets.2020.534917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022] Open
Abstract
Correlations between inner ear morphology and auditory sensitivity in the same individual are extremely difficult to obtain for stranded cetaceans. Animals in captivity and rehabilitation offer the opportunity to combine several techniques to study the auditory system and cases of hearing impairment in a controlled environment. Morphologic and auditory findings from two beluga whales (Delphinapterus leucas) in managed care are presented. Cochlear analysis of a 21-year-old beluga whale showed bilateral high-frequency hearing loss. Specifically, scanning electron microscopy of the left ear revealed sensory cell death in the first 4.9 mm of the base of the cochlea with scar formation. Immunofluorescence microscopy of the right ear confirmed the absence of hair cells and type I afferent innervation in the first 6.6 mm of the base of the cochlea, most likely due to an ischemia. Auditory evoked potentials (AEPs) measured 1.5 years prior this beluga's death showed a generalized hearing loss, being more pronounced in the high frequencies. This individual might have had a mixed hearing loss that would explain the generalized hearing impairment. Conversely, based on AEP evaluation, her mother had normal hearing and subsequent cochlear analysis did not feature any apparent sensorineural pathology. This is believed to be the first study to compare two cochlear analysis techniques and hearing sensitivity measurements from AEPs in cetaceans. The ability to combine morphological and auditory data is crucial to validate predictions of cochlear frequency maps based on morphological features. In addition, our study shows that these three complementary analysis techniques lead to comparable results, thus improving our understanding of how hearing impairment can be detected in stranding cases.
Collapse
Affiliation(s)
- Maria Morell
- Zoology Department, The University of British Columbia, Vancouver, BC, Canada
- INSERM Unit 1051, Institute for Neurosciences of Montpellier, Montpellier, France
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Germany
| | - Stephen A. Raverty
- Zoology Department, The University of British Columbia, Vancouver, BC, Canada
- Animal Health Center, Ministry of Agriculture, Abbotsford, BC, Canada
| | - Jason Mulsow
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Martin Haulena
- Vancouver Aquarium Marine Science Center, Vancouver, BC, Canada
| | | | - Chad A. Nordstrom
- Coastal Ocean Research Institute, Vancouver Aquarium, Vancouver, BC, Canada
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC, Canada
| | - Frederic Venail
- INSERM Unit 1051, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Robert E. Shadwick
- Zoology Department, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Burkard R, Finneran JJ, Mulsow J, Jones R. Offset auditory brainstem response (ABR) amplitude in bottlenose dolphins. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:1445. [PMID: 33003839 DOI: 10.1121/10.0001900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Although commonly recorded as onset responses, the auditory brainstem response (ABR) can also be elicited at stimulus offset. The offset ABR has not been extensively investigated in marine mammals. Three normal hearing (NH) and three hearing impaired (HI) dolphins were assessed while fully submerged in sea water. Stimulus spectrum, level, rise/fall time (RFT), and plateau duration were manipulated. Onset and offset ABR amplitude were quantified as the rms voltage 1-7 ms following stimulus onset or offset, respectively. For the same stimulus conditions, onset and offset responses were often larger for NH than HI dolphins, and offset responses were typically smaller than onset responses. For the level series, offset response amplitude typically increased with increasing stimulus level, although offset responses were not 3 dB above the noisefloor for 113-kHz tonebursts. Increasing RFT decreased onset and offset response amplitude. For the 40-kHz tonebursts, a RFT of 32 μs produced a large amplitude offset ABR in NH dolphins. Offset responses for 113-kHz tonebursts were 3 dB above the noisefloor at the shortest RFTs. Offset responses were largest for 4 ms duration stimuli (likely due to overlapping onset and offset response analysis windows), but otherwise, offset responses changed little with increasing duration.
Collapse
Affiliation(s)
- Robert Burkard
- Department of Rehabilitation Science, University at Buffalo, 626 Kimball Tower, Buffalo, New York 14260, USA
| | - James J Finneran
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific Code 56710, 53560 Hull Street, San Diego, California 92152, USA
| | - Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - Ryan Jones
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| |
Collapse
|
5
|
Finneran JJ, Mulsow J, Burkard RF. Signal-to-noise ratio of auditory brainstem responses (ABRs) across click rate in the bottlenose dolphin (Tursiops truncatus). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:1143. [PMID: 30823818 DOI: 10.1121/1.5091794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Although the maximum length sequence (MLS) and iterative randomized stimulation and averaging (I-RSA) methods allow auditory brainstem response (ABR) measurements at high rates, it is not clear if high rates allow ABRs of a given quality to be measured in less time than conventional (CONV) averaging (i.e., fixed interstimulus intervals) at lower rates. In the present study, ABR signal-to-noise ratio (SNR) was examined in six bottlenose dolphins as a function of measurement time and click rate using CONV averaging at rates of 25 and 100 Hz and the MLS/I-RSA approaches at rates from 100 to 1250 Hz. Residual noise in the averaged ABR was estimated using (1) waveform amplitude following the ABR, (2) waveform amplitude after subtracting two subaverage ABRs (i.e., the "±average"), and (3) amplitude variance at a single time point. Results showed that high stimulus rates can be used to obtain dolphin ABRs with a desired SNR in less time than CONV averaging. Optimal SNRs occurred at rates of 500-750 Hz, but were only a few dB higher than that for CONV averaging at 100 Hz. Nonetheless, a 1-dB improvement in SNR could result in a 25% time savings in reaching criterion SNR.
Collapse
Affiliation(s)
- James J Finneran
- United States Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific Code 71510, 53560 Hull Street, San Diego, California 92152, USA
| | - Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive Number 200, San Diego, California 92106, USA
| | - Robert F Burkard
- Department of Rehabilitation Science, University at Buffalo, 626 Kimball Tower, Buffalo, New York 14214, USA
| |
Collapse
|
6
|
Burkard RF, Finneran JJ, Mulsow J. The effects of click rate on the auditory brainstem response of bottlenose dolphins. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:3396. [PMID: 28599539 PMCID: PMC5438310 DOI: 10.1121/1.4983447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Rate manipulations can be used to study adaptation processes in the auditory nerve and brainstem. For this reason, rate effects on the click-evoked auditory brainstem response (ABR) have been investigated in many mammals, including humans. In this study, click-evoked ABRs were obtained in eight bottlenose dolphins (Tursiops truncatus) while varying stimulus rate using both conventional averaging and maximum length sequences (MLSs), which allow disentangling ABRs that overlap in time and thus permit the study of adaptation at high rates. Dolphins varied in age and upper cutoff frequency of hearing. Conventional stimulation rates were 25, 50, and 100 Hz and average MLS rates were approximately 50, 100, 250, 500, 1000, 2500, and 5000 Hz. Click peak-equivalent sound pressure levels for all conditions were 135 dB re 1 μPa. ABRs were observed in all dolphins, at all stimulus rates. With increasing rate, peak latencies increased and peak amplitudes decreased. There was a trend for an increase in the interwave intervals with increasing rate, which appeared more robust for the dolphins with a full range of hearing. For those rates where ABRs were obtained for both conventional and MLS approaches, the latencies of the mean data were in good agreement.
Collapse
Affiliation(s)
- Robert F Burkard
- Department of Rehabilitation Science, University at Buffalo, 626 Kimball Tower, Buffalo, New York 14214, USA
| | - James J Finneran
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152, USA
| | - Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| |
Collapse
|
7
|
Finneran JJ, Mulsow J, Houser DS, Burkard RF. Place specificity of the click-evoked auditory brainstem response in the bottlenose dolphin (Tursiops truncatus). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:2593. [PMID: 27794308 DOI: 10.1121/1.4964274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cochlear place specificity of the auditory brainstem response (ABR) was investigated in five bottlenose dolphins by measuring ABRs to broadband clicks presented simultaneously with masking noise having various high-pass cutoff frequencies. Click and noise stimuli were digitally compensated to account for the transmitting response of the piezoelectric transducers and any multipath propagation effects to achieve "white" or "pink" spectral characteristics. Narrowband evoked responses were derived by sequentially subtracting responses obtained with noise at lower high-pass cutoff frequencies from those obtained with noise having higher cutoff frequencies. The results revealed little contribution to the click-evoked brainstem response from frequency bands below 10 kHz and, in dolphins with full hearing bandwidth, the largest amplitude derived band evoked responses were obtained from the highest frequency bands. Narrowband latencies decreased with increasing frequency and were adequately fit with a power function exhibiting relatively large change in latency with frequency below ∼30 kHz and little change above ∼30 kHz. These data demonstrate that frequency bands below ∼10 kHz do not substantively contribute to the farfield ABR in the bottlenose dolphin when using place-specific approaches such as high-pass subtractive-masking techniques.
Collapse
Affiliation(s)
- James J Finneran
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific Code 71510, 53560 Hull Street, San Diego, California 92152, USA
| | - Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - Dorian S Houser
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - Robert F Burkard
- Department of Rehabilitation Science, University at Buffalo, 510 Kimball Tower, Buffalo, New York 14214, USA
| |
Collapse
|