1
|
Farajpour A, Ingman WV. Mathematical Models for Ultrasound Elastography: Recent Advances to Improve Accuracy and Clinical Utility. Bioengineering (Basel) 2024; 11:991. [PMID: 39451367 PMCID: PMC11504237 DOI: 10.3390/bioengineering11100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Changes in biomechanical properties such as elasticity modulus, viscosity, and poroelastic features are linked to the health status of biological tissues. Ultrasound elastography is a non-invasive imaging tool that quantitatively maps these biomechanical characteristics for diagnostic and treatment monitoring purposes. Mathematical models are essential in ultrasound elastography as they convert the raw data obtained from tissue displacement caused by ultrasound waves into the images observed by clinicians. This article reviews the available mathematical frameworks of continuum mechanics for extracting the biomechanical characteristics of biological tissues in ultrasound elastography. Continuum-mechanics-based approaches such as classical viscoelasticity, elasticity, and poroelasticity models, as well as nonlocal continuum-based models, are described. The accuracy of ultrasound elastography can be increased with the recent advancements in continuum modelling techniques including hyperelasticity, biphasic theory, nonlocal viscoelasticity, inversion-based elasticity, and incorporating scale effects. However, the time taken to convert the data into clinical images increases with more complex models, and this is a major challenge for expanding the clinical utility of ultrasound elastography. As we strive to provide the most accurate imaging for patients, further research is needed to refine mathematical models for incorporation into the clinical workflow.
Collapse
Affiliation(s)
- Ali Farajpour
- Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, Adelaide, SA 5011, Australia;
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Wendy V. Ingman
- Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, Adelaide, SA 5011, Australia;
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| |
Collapse
|
2
|
Masud AA, Liu J. Ultrasonic surface acoustic wave elastography: A review of basic theories, technical developments, and medical applications. Med Phys 2024; 51:3220-3244. [PMID: 38597908 DOI: 10.1002/mp.17063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/19/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
Physiological and pathological changes in tissues often cause changes in tissue mechanical properties, making tissue elastography an effective modality in medical imaging. Among the existing elastography methods, ultrasound elastography is of great interest due to the inherent advantages of ultrasound imaging technology, such as low cost, portability, safety, and wide availability. However, most current ultrasound elastography methods are based on the bulk shear wave; they can image deep tissues but cannot image superficial tissues. To address this challenge, ultrasonic elastography methods based on surface acoustic waves have been proposed. In this paper, we present a comprehensive review of ultrasound-based surface acoustic wave elastography techniques, including their theoretical foundations, technical implementations, and existing medical applications. The goal is to provide a concise summary of the state-of-the-art of this field, hoping to offer a reliable reference for the further development of these techniques and foster the expansion of their medical applications.
Collapse
Affiliation(s)
- Abdullah Al Masud
- Biomedical Acoustics Research Laboratory, Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA
| | - Jingfei Liu
- Biomedical Acoustics Research Laboratory, Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
3
|
Mekonnen T, Zevallos-Delgado C, Zhang H, Singh M, Aglyamov SR, Larin KV. The lens capsule significantly affects the viscoelastic properties of the lens as quantified by optical coherence elastography. Front Bioeng Biotechnol 2023; 11:1134086. [PMID: 36970614 PMCID: PMC10034121 DOI: 10.3389/fbioe.2023.1134086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
The crystalline lens is a transparent, biconvex structure that has its curvature and refractive power modulated to focus light onto the retina. This intrinsic morphological adjustment of the lens to fulfill changing visual demands is achieved by the coordinated interaction between the lens and its suspension system, which includes the lens capsule. Thus, characterizing the influence of the lens capsule on the whole lens’s biomechanical properties is important for understanding the physiological process of accommodation and early diagnosis and treatment of lenticular diseases. In this study, we assessed the viscoelastic properties of the lens using phase-sensitive optical coherence elastography (PhS-OCE) coupled with acoustic radiation force (ARF) excitation. The elastic wave propagation induced by ARF excitation, which was focused on the surface of the lens, was tracked with phase-sensitive optical coherence tomography. Experiments were conducted on eight freshly excised porcine lenses before and after the capsular bag was dissected away. Results showed that the group velocity of the surface elastic wave, V, in the lens with the capsule intact (V=2.55±0.23 m/s) was significantly higher (p < 0.001) than after the capsule was removed (V=1.19±0.25 m/s). Similarly, the viscoelastic assessment using a model that utilizes the dispersion of a surface wave showed that both Young’s modulus, E, and shear viscosity coefficient, η, of the encapsulated lens (E=8.14±1.10 kPa,η=0.89±0.093 Pa∙s) were significantly higher than that of the decapsulated lens (E=3.10±0.43 kPa,η=0.28±0.021 Pa∙s). These findings, together with the geometrical change upon removal of the capsule, indicate that the capsule plays a critical role in determining the viscoelastic properties of the crystalline lens.
Collapse
Affiliation(s)
- Taye Mekonnen
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | | | - Hongqiu Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX, United States
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- *Correspondence: Kirill V. Larin,
| |
Collapse
|
4
|
Abramowicz JS, Adhikari S, Dickman E, Estroff JA, Harris GR, Nomura J, Silverman RH, Taylor LA, Barr RG. Ocular Ultrasound: Review of Bioeffects and Safety, Including Fetal and Point of Care Perspective: Review of Bioeffects and Safety, Including Fetal and Point-of-Care Perspective. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:1609-1622. [PMID: 34724263 DOI: 10.1002/jum.15864] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Ocular ultrasound is an invaluable tool for the evaluation of the eye and orbit. However, the eye and orbit are potentially sensitive to the thermal and mechanical effects of ultrasound. When performing B-mode imaging, dedicated ocular settings should be used. If these settings are not available, limiting the acoustic output to Food and Drug Administration (FDA) recommended maximum levels is strongly advised. Especially important is the acoustic output in spectral (pulsed) and color Doppler modes, which can exceed the FDA's maximum recommended levels for the eye. Adjusting settings to decrease acoustic output and limiting the time of the examination should be done when performing a Doppler examination. The acoustic output of shear wave elastography is significantly higher than FDA guidelines for the eye and should be considered experimental.
Collapse
Affiliation(s)
- Jacques S Abramowicz
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Srikar Adhikari
- Department of Emergency Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Eitan Dickman
- Department of Emergency Medicine, Maimonides Medical Center, New York, NY, USA
| | - Judy A Estroff
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
| | - Gerald R Harris
- Department of Pediatrics, U.S Food and Drug Administration, Durango, CO, USA
| | - Jason Nomura
- Department of Emergency Medicine, ChristianaCare, Newark, DE, USA
| | - Ronald H Silverman
- Department of Opthalmic Science, Columbia University Irving Medical Center, New York, NY, USA
| | - Lindsay A Taylor
- Department of Emergency Medicine, Virginia Commonwealth University Health, Richmond, VA, USA
| | - Richard G Barr
- Department of Radiology, Northeastern Ohio Medical University, Rootstown, OH, USA
- Department of Radiology, Southwoods Imaging, Boardman, OH, USA
| |
Collapse
|
5
|
Yang C, Xiang Z, Li Z, Nan N, Wang X. Optical coherence elastography to evaluate depth-resolved elasticity of tissue. OPTICS EXPRESS 2022; 30:8709-8722. [PMID: 35299317 DOI: 10.1364/oe.451704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Skin-elasticity measurements can assist in the clinical diagnosis of skin diseases, which has important clinical significance. Accurately determining the depth-resolved elasticity of superficial biological tissue is an important research direction. This paper presents an optical coherence elastography technique that combines surface acoustic waves and shear waves to obtain the elasticity of multilayer tissue. First, the phase velocity of the high-frequency surface acoustic wave is calculated at the surface of the sample to obtain the Young's modulus of the top layer. Then, the shear wave velocities in the other layers are calculated to obtain their respective Young's moduli. In the bilayer phantom experiment, the maximum error in the elastic estimation of each layer was 2.2%. The results show that the proposed method can accurately evaluate the depth-resolved elasticity of layered tissue-mimicking phantoms, which can potentially expand the clinical applications of elastic wave elastography.
Collapse
|
6
|
Singh M, Zvietcovich F, Larin KV. Introduction to optical coherence elastography: tutorial. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:418-430. [PMID: 35297425 PMCID: PMC10052825 DOI: 10.1364/josaa.444808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/25/2022] [Indexed: 06/03/2023]
Abstract
Optical coherence elastography (OCE) has seen rapid growth since its introduction in 1998. The past few decades have seen tremendous advancements in the development of OCE technology and a wide range of applications, including the first clinical applications. This tutorial introduces the basics of solid mechanics, which form the foundation of all elastography methods. We then describe how OCE measurements of tissue motion can be used to quantify tissue biomechanical parameters. We also detail various types of excitation methods, imaging systems, acquisition schemes, and data processing algorithms and how various parameters associated with each step of OCE imaging can affect the final quantitation of biomechanical properties. Finally, we discuss the future of OCE, its potential, and the next steps required for OCE to become an established medical imaging technology.
Collapse
Affiliation(s)
- Manmohan Singh
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Fernando Zvietcovich
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Department of Engineering, Pontificia Universidad Catolica del Peru, San Miguel, Lima 15088, Peru
| | - Kirill V. Larin
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
7
|
Zvietcovich F, Larin KV. Wave-based optical coherence elastography: The 10-year perspective. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2022; 4:012007. [PMID: 35187403 PMCID: PMC8856668 DOI: 10.1088/2516-1091/ac4512] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
After 10 years of progress and innovation, optical coherence elastography (OCE) based on the propagation of mechanical waves has become one of the major and the most studied OCE branches, producing a fundamental impact in the quantitative and nondestructive biomechanical characterization of tissues. Preceding previous progress made in ultrasound and magnetic resonance elastography; wave-based OCE has pushed to the limit the advance of three major pillars: (1) implementation of novel wave excitation methods in tissues, (2) understanding new types of mechanical waves in complex boundary conditions by proposing advance analytical and numerical models, and (3) the development of novel estimators capable of retrieving quantitative 2D/3D biomechanical information of tissues. This remarkable progress promoted a major advance in answering basic science questions and the improvement of medical disease diagnosis and treatment monitoring in several types of tissues leading, ultimately, to the first attempts of clinical trials and translational research aiming to have wave-based OCE working in clinical environments. This paper summarizes the fundamental up-to-date principles and categories of wave-based OCE, revises the timeline and the state-of-the-art techniques and applications lying in those categories, and concludes with a discussion on the current challenges and future directions, including clinical translation research.
Collapse
Affiliation(s)
- Fernando Zvietcovich
- University of Houston, Biomedical Engineering, Houston, TX, United States, 77204
| | - Kirill V. Larin
- University of Houston, Biomedical Engineering, Houston, TX, United States, 77204,
| |
Collapse
|
8
|
Grinspan GA, Cabral HV, de Souza LML, de Oliveira LF, Aguiar S, Blanco E, Benech N. Surface wave elastography is a reliable method to correlate muscle elasticity, torque, and electromyography activity level. Physiol Rep 2021; 9:e14955. [PMID: 34337894 PMCID: PMC8326893 DOI: 10.14814/phy2.14955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022] Open
Abstract
The shear elastic modulus is one of the most important parameters to characterize the mechanical behavior of soft tissues. In biomechanics, ultrasound elastography is the gold standard for measuring and mapping it locally in skeletal muscle in vivo. However, their applications are limited to the laboratory or clinic. Thus, low-frequency elastography methods have recently emerged as a novel alternative to ultrasound elastography. Avoiding the use of high frequencies, these methods allow obtaining a mean value of bulk shear elasticity. However, they are frequently susceptible to diffraction, guided waves, and near field effects, which introduces biases in the estimates. The goal of this work is to test the performance of the non-ultrasound surface wave elastography (NU-SWE), which is portable and is based on new algorithms designed to correct the incidence of such effects. Thus, we show its first application to muscle biomechanics. We performed two experiments to assess the relationships of muscle shear elasticity versus joint torque (experiment 1) and the electromyographic activity level (experiment 2). Our results were comparable regarding previous works using the reference ultrasonic methods. Thus, the NU-SWE showed its potentiality to get wide the biomechanical applications of elastography in many areas of health and sports sciences.
Collapse
Affiliation(s)
- Gustavo A. Grinspan
- Sección Biofísica y Biología de SistemasFacultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
- Laboratorio de Acústica UltrasonoraFacultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
| | - Hélio V. Cabral
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine)School of Sport, Exercise and Rehabilitation SciencesCollege of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Leonardo M. L. de Souza
- Programa de Engenharia Biomédica (COPPE)Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Liliam F. de Oliveira
- Programa de Engenharia Biomédica (COPPE)Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Sofía Aguiar
- Instituto de Ensayo de MaterialesFacultad de IngenieríaUniversidad de la RepúblicaMontevideoUruguay
| | - Ernesto Blanco
- Instituto de FísicaFacultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
| | - Nicolás Benech
- Laboratorio de Acústica UltrasonoraFacultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
| |
Collapse
|
9
|
Zhang X, Zhou B, Zhang AX. A Pilot Study of Wet Lung Using Lung Ultrasound Surface Wave Elastography in an Ex Vivo Swine Lung Model. APPLIED SCIENCES (BASEL, SWITZERLAND) 2019; 9:3923. [PMID: 36016765 PMCID: PMC9400451 DOI: 10.3390/app9183923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Extravascular lung water (EVLW) is a basic symptom of congestive heart failure and other conditions. Computed tomography (CT) is standard to assess EVLW, but it requires ionizing radiation and radiology facilities. Lung ultrasound reverberation artifacts called B-lines have been used to assess EVLW. However, B-line artifact analysis relies on visual interpretation and subjects to inter-observer variability. We developed lung ultrasound surface wave elastography (LUSWE) to measure lung surface wave speed. This research aims to develop LUSWE to measure the change of lung surface wave speed due to lung water in an ex vivo swine lung model. The surface wave speeds of a fresh ex vivo swine lung were measured at four frequencies of 100 Hz, 200 Hz, 300 Hz, and 400 Hz. An amount of water was then filled into the lung through its trachea. Ultrasound imaging was used to guide the water filling until significant changes were visible on the imaging. The lung surface wave speeds were measured. An additional 120 ml of water was then filled into the lung. The lung surface wave speeds were then measured again. The results demonstrated that the lung surface wave speed decreased with respect to water content.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Boran Zhou
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Alex X. Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Zhang X, Zhou B, Bartholmai B, Kalra S, Osborn T. A quantitative method for measuring the changes of lung surface wave speed for assessing disease progression of interstitial lung disease. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:741-748. [PMID: 30598191 PMCID: PMC6368867 DOI: 10.1016/j.ultrasmedbio.2018.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 06/01/2023]
Abstract
Lung ultrasound surface wave elastography (LUSWE) is a novel non-invasive technique for measuring superficial lung tissue stiffness. The purpose of the study described here was to develop LUSWE for assessment of progression in patients with interstitial lung disease (ILD). In this study, LUSWE was used to measure changes in lung surface wave speeds at 100, 150 and 200 Hz through six intercostal lung spaces for 52 patients with ILD. The mean age was 63.1 ± 12.0 y (range: 20-85, 23 male and 29 female). The follow-up interval was 9.2 ± 3.5 mo depending on each patient's return appointment and availability. For each patient, disease progression between the baseline and follow-up tests was evaluated clinically using a 7-point Likert scale comprising three grades of improvement (mild, moderate, marked), unchanged status and three grades of worsening (mild, moderate, marked). Clinical assessments were based on changes in pulmonary function tests together with high-resolution computed tomography, echocardiography and clinical evaluations. This study illustrates the correlations between changes in lung surface wave speed and clinical assessments. Correlations of changes in lung surface wave speed at lower lateral and posterior portions of the lung portions with clinical assessments were good. LUSWE provides quantitative global and regional changes in lung surface wave speed that may be useful for quantitative assessment of progression of ILD.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Boran Zhou
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Sanjay Kalra
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas Osborn
- Department of Rheumatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Zhou J, Zhang X. A Lung Phantom Model to Study Pulmonary Edema Using Lung Ultrasound Surface Wave Elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2400-2405. [PMID: 30077412 PMCID: PMC6163081 DOI: 10.1016/j.ultrasmedbio.2018.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 06/01/2023]
Abstract
Lung ultrasound surface wave elastography (LUSWE) is a novel technique used to measure superficial lung tissue stiffness. A phantom study was carried out in the study described here to evaluate the application of LUSWE to assess lung water for pulmonary edema. A lung phantom model with cellulose sponge was used; various volumes of water were injected into the sponge to model lung water. Shaker-generated surface wave propagation on the sponge surface was recorded by a 10-MHz ultrasound probe at three shaker frequencies: 100, 150 and 200Hz. Surface wave speeds were calculated but did not exhibit dependence on the volume of injected water. However, the shear viscosity of the sponge increased with water content, and shear elasticity also exhibited a subtle increase. This study suggests that sponge viscoelasticity might change with the water content, which can be detected by LUSWE.
Collapse
Affiliation(s)
- Jinling Zhou
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiaoming Zhang
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|