1
|
Prosnier L. Zooplankton as a model to study the effects of anthropogenic sounds on aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172489. [PMID: 38621539 DOI: 10.1016/j.scitotenv.2024.172489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/23/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
There is a growing interest in the impact of acoustic pollution on aquatic ecosystems. Currently, research has primarily focused on hearing species, particularly fishes and mammals. However, species from lower trophic levels, including many invertebrates, are less studied despite their ecological significance. Among these taxa, studies examining the effects of sound on holozooplankton are extremely rare. This literature review examines the effects of sound on both marine and freshwater zooplankton. It highlights two differences: the few used organisms and the types of sound source. Marine studies focus on the effects of very intense acute sound on copepods, while freshwater studies focus on less intense chronic sound on cladocerans. But, in both, various negative effects are reported. The effects of sound remain largely unknown, although previous studies have shown that zooplankton can detect vibrations using mechanoreceptors. The perception of their environment can be affected by sounds, potentially causing stress. Limited research suggests that sound may affect the physiology, behaviour, and fitness of zooplankton. Following this review, I highlight the potential to use methods from ecology, ecotoxicology, and parasitology to study the effects of sound at the individual level, including changes in physiology, development, survival, and behaviour. Responses to sound, which could alter species interactions and population dynamics, are expected to have larger-scale implications with bottom-up effects, such as changes in food web dynamics and ecosystem functioning. To improve the study of the effect of sound, to better use zooplankton as biological models and as bioindicators, researchers need to better understand how they perceive their acoustic environment. Consequently, an important challenge is the measurement of particle motion to establish useable dose-response relationships and particle motion soundscapes.
Collapse
Affiliation(s)
- Loïc Prosnier
- Faculté des Sciences et Techniques, University of Saint Etienne, Saint-Etienne, France; France Travail, Saint-Etienne, France.
| |
Collapse
|
2
|
Colbert BR, Popper AN, Bailey H. Call rate of oyster toadfish (Opsanus tau) is affected by aggregate sound level but not by specific vessel passagesa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2088-2098. [PMID: 37787601 DOI: 10.1121/10.0021174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Anthropogenic sound is a prevalent environmental stressor that can have significant impacts on aquatic species, including fishes. In this study, the effects of anthropogenic sound on the vocalization behavior of oyster toadfish (Opasnus tau) at multiple time scales was investigated using passive acoustic monitoring. The effects of specific vessel passages were investigated by comparing vocalization rates immediately after a vessel passage with that of control periods using a generalized linear model. The effects of increased ambient sound levels as a result of aggregate exposure within hourly periods over a month were also analyzed using generalized additive models. To place the response to vessel sounds within an ecologically appropriate context, the effect of environmental variables on call density was compared to that of increasing ambient sound levels. It was found that the immediate effect of vessel passage was not a significant predictor for toadfish vocalization rate. However, analyzed over a longer time period, increased vessel-generated sound lowered call rate and there was a greater effect size from vessel sound than any environmental variable. This demonstrates the importance of evaluating responses to anthropogenic sound, including chronic sounds, on multiple time scales when assessing potential impacts.
Collapse
Affiliation(s)
- Benjamin R Colbert
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland 20688, USA
| | - A N Popper
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Helen Bailey
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland 20688, USA
| |
Collapse
|
3
|
Winship KA, Jones BL. Acoustic Monitoring of Professionally Managed Marine Mammals for Health and Welfare Insights. Animals (Basel) 2023; 13:2124. [PMID: 37443922 DOI: 10.3390/ani13132124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/29/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Research evaluating marine mammal welfare and opportunities for advancements in the care of species housed in a professional facility have rapidly increased in the past decade. While topics, such as comfortable housing, adequate social opportunities, stimulating enrichment, and a high standard of medical care, have continued to receive attention from managers and scientists, there is a lack of established acoustic consideration for monitoring the welfare of these animals. Marine mammals rely on sound production and reception for navigation and communication. Regulations governing anthropogenic sound production in our oceans have been put in place by many countries around the world, largely based on the results of research with managed and trained animals, due to the potential negative impacts that unrestricted noise can have on marine mammals. However, there has not been an established best practice for the acoustic welfare monitoring of marine mammals in professional care. By monitoring animal hearing and vocal behavior, a more holistic view of animal welfare can be achieved through the early detection of anthropogenic sound sources, the acoustic behavior of the animals, and even the features of the calls. In this review, the practice of monitoring cetacean acoustic welfare through behavioral hearing tests and auditory evoked potentials (AEPs), passive acoustic monitoring, such as the Welfare Acoustic Monitoring System (WAMS), as well as ideas for using advanced technologies for utilizing vocal biomarkers of health are introduced and reviewed as opportunities for integration into marine mammal welfare plans.
Collapse
Affiliation(s)
- Kelley A Winship
- National Marine Mammal Foundation, 2240 Shelter Island Dr., Suite 200, San Diego, CA 92106, USA
| | - Brittany L Jones
- National Marine Mammal Foundation, 2240 Shelter Island Dr., Suite 200, San Diego, CA 92106, USA
| |
Collapse
|
4
|
van Geel NCF, Risch D, Wittich A. A brief overview of current approaches for underwater sound analysis and reporting. MARINE POLLUTION BULLETIN 2022; 178:113610. [PMID: 35468578 DOI: 10.1016/j.marpolbul.2022.113610] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Soundscapes have substantially changed since the industrial revolution and in response to biodiversity loss and climate change. Human activities such as shipping, resource exploration and offshore construction alter natural ecosystems through sound, which can impact marine species in complex ways. The study of underwater sound is multi-disciplinary, spanning the fields of acoustics, physics, animal physiology and behaviour to marine ecology and conservation. These different backgrounds have led to the use of various disparate terms, metrics, and summary statistics, which can hamper comparisons between studies. Different types of equipment, analytical pathways, and reporting can lead to different results for the same sound source, with implications for impact assessments. For meaningful comparisons and derivation of appropriate thresholds, mitigation, and management approaches, it is necessary to develop common standards. This paper presents a brief overview of acoustic metrics, analysis approaches and reporting standards used in the context of long-term monitoring of soundscapes.
Collapse
Affiliation(s)
- Nienke C F van Geel
- Scottish Association for Marine Science (SAMS), Oban, Argyll, PA37 1QA, Scotland, United Kingdom.
| | - Denise Risch
- Scottish Association for Marine Science (SAMS), Oban, Argyll, PA37 1QA, Scotland, United Kingdom
| | - Anja Wittich
- Scottish Association for Marine Science (SAMS), Oban, Argyll, PA37 1QA, Scotland, United Kingdom
| |
Collapse
|
5
|
Halliday WD, Barclay D, Barkley AN, Cook E, Dawson J, Hilliard RC, Hussey NE, Jones JM, Juanes F, Marcoux M, Niemi A, Nudds S, Pine MK, Richards C, Scharffenberg K, Westdal K, Insley SJ. Underwater sound levels in the Canadian Arctic, 2014-2019. MARINE POLLUTION BULLETIN 2021; 168:112437. [PMID: 33957495 DOI: 10.1016/j.marpolbul.2021.112437] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
The Arctic has been a refuge from anthropogenic underwater noise; however, climate change has caused summer sea ice to diminish, allowing for unprecedented access and the potential for increased underwater noise. Baseline underwater sound levels must be quantified to monitor future changes and manage underwater noise in the Arctic. We analyzed 39 passive acoustic datasets collected throughout the Canadian Arctic from 2014 to 2019 using statistical models to examine spatial and temporal trends in daily mean sound pressure levels (SPL) and quantify environmental and anthropogenic drivers of SPL. SPL (50-1000 Hz) ranged from 70 to 127 dB re 1 μPa (median = 91 dB). SPL increased as wind speed increased, but decreased as both ice concentration and air temperature increased, and SPL increased as the number of ships per day increased. This study provides a baseline for underwater sound levels in the Canadian Arctic and fills many geographic gaps on published underwater sound levels.
Collapse
Affiliation(s)
- William D Halliday
- Wildlife Conservation Society Canada, Whitehorse, Yukon, Canada; School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Biology, University of Victoria, Victoria, British Columbia, Canada.
| | - David Barclay
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Amanda N Barkley
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - Emmanuelle Cook
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jackie Dawson
- Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, Ontario, Canada
| | - R Casey Hilliard
- Institute for Big Data Analytics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nigel E Hussey
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - Joshua M Jones
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Marianne Marcoux
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - Andrea Niemi
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - Shannon Nudds
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada
| | - Matthew K Pine
- Wildlife Conservation Society Canada, Whitehorse, Yukon, Canada; Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Clark Richards
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada
| | - Kevin Scharffenberg
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | | | - Stephen J Insley
- Wildlife Conservation Society Canada, Whitehorse, Yukon, Canada; Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
6
|
Thomsen F, Erbe C, Hawkins A, Lepper P, Popper AN, Scholik-Schlomer A, Sisneros J. Introduction to the special issue on the effects of sound on aquatic life. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:934. [PMID: 32873007 DOI: 10.1121/10.0001725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The effects of anthropogenic (man-made) underwater sound on aquatic life have become an important environmental issue. One of the focal ways to present and to share knowledge on the topic has been the international conference on The Effects of Noise on Aquatic Life ("Aquatic Noise"). The conferences have brought together people from diverse interests and backgrounds to share information and ideas directed at understanding and solving the challenges of the potential effects of sound on aquatic life. The papers published here and in a related special issue of Proceedings of Meetings on Acoustics present a good overview of the many topics and ideas covered at the meeting. Indeed, the growth in studies on anthropogenic sound since the first meeting in 2007 reflects the increasing use of oceans, lakes, rivers, and other waterways by humans. However, there are still very substantial knowledge gaps about the effects of sound on all aquatic animals, and these gaps lead to there being a substantial need for a better understanding of the sounds produced by various sources and how these sounds may affect animals.
Collapse
Affiliation(s)
| | - Christine Erbe
- Centre for Marine Science and Technology, Curtin University, Perth, Western Australia 6102, Australia
| | - Anthony Hawkins
- The Aquatic Noise Trust, Kincraig, Blairs, Aberdeen, AB12 5YT, United Kingdom
| | - Paul Lepper
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom
| | - Arthur N Popper
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Amy Scholik-Schlomer
- National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 1315 East-West Highway, Silver Spring, Maryland 20910, USA
| | - Joseph Sisneros
- Departments of Psychology and Biology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|