1
|
Arranz P, De la Cruz-Modino R, Sprogis KR. Investigating the effects of underwater noise from two vessels on the behaviour of short-finned pilot whales. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106574. [PMID: 38833806 DOI: 10.1016/j.marenvres.2024.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Multiple whale-watching vessels may operate around cetaceans at any one time, and targeted animals may experience underwater noise effects. We hypothesised that the cumulative noise of two vessels with low source levels (SLs) will elicit lower behavioural disturbance in short-finned pilot whales (Globicephala macrorhynchus) compared to a single vessel with a higher SL. We measured the behaviour of whales during 26 controls (stationary vessel >300 m) and 44 treatments off Tenerife (Canary Islands, Spain). Treatments consisted of vessel approaches mimicking whale-watch scenarios (distance ∼60 m, speed 1.5 kn). Approaches with two simultaneous vessels, with maximum cumulative mid and low-frequency (0.2-110 kHz) weighted source levels (SLsMF-LF) 137-143 dB, did not affect mother-calf pairs' resting, nursing, diving, respiration rate or inter-breath interval. However, a louder single vessel approach with twin petrol engines at SLsMF-LF 139-151 dB significantly decreased the proportion of time resting for the mother. The results suggest that if a single or two vessels are present, if the cumulative SL is < 143 dB, the behavioural disturbance on the whales will be negligible. By examining noise effects from multiple vessels on the behaviour of pilot whales, the importance of incorporating a noise threshold into whale-watching guidelines was emphasised.
Collapse
Affiliation(s)
- P Arranz
- Departmento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Spain.
| | - R De la Cruz-Modino
- Instituto Universitario de Investigación Social y Turismo, Universidad de La Laguna, Tenerife, Spain.
| | - K R Sprogis
- The UWA Oceans Institute and School of Biological Sciences, The University of Western Australia, Great Southern Marine Research Facility, Albany, WA 6330, Australia.
| |
Collapse
|
2
|
Gaggero T, Armelloni E, Codarin A, Chicco C, Spoto M, Franzosini C, Ciriaco S, Picciulin M. Electric boat underwater radiated noise and its potential impact on species of conservation interest. MARINE POLLUTION BULLETIN 2024; 199:115937. [PMID: 38150973 DOI: 10.1016/j.marpolbul.2023.115937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Electric boats are thought to be noiseless, but in-situ measurements are generally rare. The Underwater Radiated Noise (URN) of 8-m Trimaran Pontoon Boat with two outboard electric engines was measured in the Miramare Marine Protected Area (Trieste, Italy), together with the URN of a fibreglass 5-m boat, with a outboard gasoline engine, for comparisons. International standards and guidelines for shallow waters were considered. URN were provided in one-third octave band and in narrow band spectra. The electric boat produced a low input of underwater noise at low frequencies. Given a low-frequency hearing sensitivity, the listening space reduction (LSR) was lower when generated by the electric than by combustion engine boat for the brown meagre, a local Teleost fish. No difference was found for the bottlenose dolphin LSR although continuous, tonal, high frequency components generated by the electric boat are expected to be highly detrimental for the bottlenose dolphin.
Collapse
Affiliation(s)
- Tomaso Gaggero
- University of Genoa, Department of Telecommunications, Electrical and Electronics Engineering and Naval Architecture, Via Montallegro 1, 16145 Genova, Italy.
| | - Enrico Armelloni
- University of Parma, Department of Engineering and Architecture, Parco Area delle Scienze 181/a, 43124 Parma, Italy.
| | - Antonio Codarin
- ARPA FVG - Regional Environmental Protection Agency of Friuli Venezia Giulia, via Cairoli 14, 33057, Palmanova, Udine, Italy.
| | - Carola Chicco
- ARPA FVG - Regional Environmental Protection Agency of Friuli Venezia Giulia, via Cairoli 14, 33057, Palmanova, Udine, Italy
| | - Maurizio Spoto
- WWF Miramare Marine Protected Area, via Beirut 2/4, 34151 Trieste, Italy.
| | - Carlo Franzosini
- WWF Miramare Marine Protected Area, via Beirut 2/4, 34151 Trieste, Italy.
| | - Saul Ciriaco
- WWF Miramare Marine Protected Area, via Beirut 2/4, 34151 Trieste, Italy.
| | - Marta Picciulin
- WWF Miramare Marine Protected Area, via Beirut 2/4, 34151 Trieste, Italy; CNR-National Research Council, ISMAR - Institute of Marine Sciences in Venice, Castello 2737/f, 30122 Venice, Italy.
| |
Collapse
|
3
|
Fan Q, Yu Y, An L, Cao H, Zhu C. Fast and accurate wideband sparse spatial spectrum estimation in an underwater strong interference environment. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:3810-3820. [PMID: 38109409 DOI: 10.1121/10.0023934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/19/2023] [Indexed: 12/20/2023]
Abstract
Wideband sparse spatial spectrum estimation is an important direction-of-arrival (DOA) estimation method that can obtain a high resolution with few snapshots and a low signal-to-noise ratio. However, in an underwater strong interference environment, the accuracy of DOA estimation may be seriously affected, and even the weak targets could be completely masked. In this paper, we propose a fast matrix filter design method based on truncated nuclear norm regularization to attenuate strong interferences while passing weak targets. The matrix filter operator and the exact covariance matrix after filtering can be obtained simultaneously by solving a convex optimization problem that contains the output power term and non-Toeplitz error propagation control term. Then the modified sparse spectrum fitting algorithm based on the matrix filter is used to estimate spatial spectrum over closely spaced wideband signals. Compared with existing methods, the proposed method achieves higher DOA estimation accuracy and lower computational time for matrix filter design. Meanwhile, the estimation accuracy of the proposed method is verified with the experimental results.
Collapse
Affiliation(s)
- Qing Fan
- Key Laboratory of Underwater Acoustic Signal Processing (Southeast University), Ministry of Education, Nanjing 210096, China
| | - Yun Yu
- Naval Research Academy, People's Liberation Army, Beijing 100161, China
| | - Liang An
- Key Laboratory of Underwater Acoustic Signal Processing (Southeast University), Ministry of Education, Nanjing 210096, China
| | - Hongli Cao
- Key Laboratory of Underwater Acoustic Signal Processing (Southeast University), Ministry of Education, Nanjing 210096, China
| | - Chuanqi Zhu
- Key Laboratory of Underwater Acoustic Signal Processing (Southeast University), Ministry of Education, Nanjing 210096, China
| |
Collapse
|
4
|
Multiple exposure to thunderstorm-sound in Nile tilapia ( Oreochromis niloticus): physiological response and stress recovery. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
The present study investigated the impacts of multiple thunderstorm-sound exposures on growth and respiratory parameters in Nile tilapia (Oreochromis niloticus) in order to evaluate the acoustic stress response. Thunderstorm-sound exposure for 3 hours triggered respiration speed with an alarm reflex and rapid elevation of opercula beat rate (OBR) and pectoral wing rate (PWR), which increased two-fold over the control with no sound treatment, and peaked (OBR, 71.33±5.86 beat/min; PWR, 75.00±3.61 beat/min) in 10 hours after initiation of sound. Thereafter, respiration rates declined over the following days and returned to near-initial levels (45.33±4.04 beat/min OBR and 43.00±1.00 beat/min PWR) by day-3, an indication that fish recovered from thunderstorm-sound stress after 3 days of exposure. However, the same reaction course was observed each time of multiple sound exposures, repeated 20 times in a row with 4 days intervals, underlining that fish could not attune to repeated thunderstorm-sound. Reduced voluntary feed intake as a result of anxiety and appetite loss was recorded in fish exposed to multiple thunderstorm-sound, resulting in 50 % less growth compared to those without sound treatment by the end of the 80 days experimentation. Therefore, it is advisable to monitor fish behavior during the 3 days stress-period after a thunderstorm event in order to prevent waste from excess feeding, that in turns may contribute environment-friendly aquaculture for the future and sustainability of the oceans.
Collapse
|
5
|
Lagrois D, Kowalski C, Sénécal JF, Martins CCA, Chion C. Low-to-Mid-Frequency Monopole Source Levels of Underwater Noise from Small Recreational Vessels in the St. Lawrence Estuary Beluga Critical Habitat. SENSORS (BASEL, SWITZERLAND) 2023; 23:1674. [PMID: 36772713 PMCID: PMC9920614 DOI: 10.3390/s23031674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic noise from navigation is a major contributor to the disturbance of the acoustic soundscape in underwater environments containing noise-sensitive life forms. While previous studies mostly developed protocols for the empirical determination of noise source levels associated with the world's commercial fleet, this work explores the radiated noise emitted by small recreational vessels that thrive in many coastal waters, such as in the St. Lawrence Estuary beluga population's summer habitat. Hydrophone-based measurements in the Saguenay River (QC, Canada) were carried out during the summers of 2021 and 2022. Shore-based observations identified 45 isolated transits of small, motorized vessels and were able to track their displacement during their passage near the hydrophone. Received noise levels at the hydrophone typically fell below the hearing audiogram of the endangered St. Lawrence Estuary beluga. Monopole source levels at low frequencies (0.1-≲2 kHz) held on average twice the acoustic power compared to their mid-frequency (≳2-30 kHz) counterparts. The speed over ground of recreational vessel showed a positive correlation with the back-propagated monopole source levels. Estimations of the mid-frequency noise levels based on low-frequency measurements should be used moderately.
Collapse
Affiliation(s)
- Dominic Lagrois
- Département des Sciences Naturelles, Université du Québec en Outaouais, Ripon, QC J0V 1V0, Canada
| | - Camille Kowalski
- Département des Sciences Naturelles, Université du Québec en Outaouais, Ripon, QC J0V 1V0, Canada
| | - Jean-François Sénécal
- Département des Sciences Naturelles, Université du Québec en Outaouais, Ripon, QC J0V 1V0, Canada
| | | | - Clément Chion
- Département des Sciences Naturelles, Université du Québec en Outaouais, Ripon, QC J0V 1V0, Canada
| |
Collapse
|
6
|
Decreased resting and nursing in short-finned pilot whales when exposed to louder petrol engine noise of a hybrid whale-watch vessel. Sci Rep 2021; 11:21195. [PMID: 34764300 PMCID: PMC8585943 DOI: 10.1038/s41598-021-00487-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022] Open
Abstract
Vessel noise is a primary driver of behavioural disturbance in cetaceans, which are targeted during whale-watch activities. Despite the growing, global effort for implementing best-practice principles, to date, there are no regulations on whale-watch vessel noise levels. Here, we test the hypothesis that a whale-watch vessel with a low noise emission will not elicit short-term behavioural responses in toothed whales compared to a vessel with a louder engine. We measured behavioural responses (n = 36) of short-finned pilot whales (Globicephala macrorhynchus) to whale-watch vessel approaches (range 60 m, speed 1.5 kn). Treatment approaches with a quieter electric engine (136-140 dB) compared to the same vessel with a louder petrol engine (151-139 dB) (low-frequency-mid-frequency weighted source levels, re 1 µPa RMS @ 1 m) were examined. Focal whales were resting mother and calves in small group sizes. During petrol engine treatments, the mother's mean resting time decreased by 29% compared to the control (GLM, p = 0.009). The mean proportion of time nursing for the calf was significantly influenced by petrol engine vessel passes, with a 81% decrease compared to the control (GLM, p = 0.01). There were no significant effects on behaviour from the quieter electric engine. Thus, to minimise disturbance on the activity budget of pilot whales, whale-watch vessels would ideally have source levels as low as possible, below 150 dB re 1 µPa RMS @ 1 m and perceived above ambient noise.
Collapse
|
7
|
A Review and Meta-Analysis of Underwater Noise Radiated by Small (<25 m Length) Vessels. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9080827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Managing the impacts of vessel noise on marine fauna requires identifying vessel numbers, movement, behaviour, and acoustic signatures. However, coastal and inland waters are predominantly used by ‘small’ (<25 m-long) vessels, for which there is a paucity of data on acoustic output. We reviewed published literature to construct a dataset (1719 datapoints) of broadband source levels (SLs) from 17 studies, for 11 ‘Vessel Types’. After consolidating recordings that had associated information on factors that may affect SL estimates, data from seven studies remained (1355 datapoints) for statistical modelling. We applied a Generalized Additive Mixed Model to assess factors (six continuous and five categorical predictor variables) contributing to reported SLs for four Vessel Types. Estimated SLs increased through ‘Electric’, ‘Skiff’, ‘Sailing’, ‘Monohull’, ‘RHIB’, ‘Catamaran’, ‘Fishing’, ‘Landing Craft’,’ Tug’, ‘Military’ to ‘Cargo’ Vessel Types, ranging between 130 and 195 dB re 1µPa m across all Vessel Types and >29 dB range within individual Vessel Types. The most parsimonious model (22.7% deviance explained) included ‘Speed’ and ‘Closest Point of Approach’ (CPA) which displayed non-linear, though generally positive, relationships with SL. Similar to large vessels, regulation of speed can reduce SLs and vessel noise impacts (with consideration for additional exposure time from travelling at slower speeds). However, the relationship between speed and SLs in planing hull and semi-displacement vessels can be non-linear. The effect of CPA on estimated SL is likely a combination of propagation losses in the shallow study locations, often-neglected surface interactions, different methodologies, and that the louder Vessel Types were often recorded at greater CPAs. Significant effort is still required to fully understand SL variability, however, the International Standards Organisation’s highest reporting criteria for SLs requires water depths that often only occur offshore, beyond the safe operating range of small vessels. Additionally, accurate determination of monopole SLs in shallow water is complicated, requiring significant geophysical information along the signal path. We suggest the development of appropriate shallow-water criteria to complete these measurements using affected SLs and a comprehensive study including comparable deep- and shallow-water measures.
Collapse
|
8
|
Ferrier-Pagès C, Leal MC, Calado R, Schmid DW, Bertucci F, Lecchini D, Allemand D. Noise pollution on coral reefs? - A yet underestimated threat to coral reef communities. MARINE POLLUTION BULLETIN 2021; 165:112129. [PMID: 33588103 DOI: 10.1016/j.marpolbul.2021.112129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 05/08/2023]
Abstract
Noise pollution is an anthropogenic stressor that is increasingly recognized for its negative impact on the physiology, behavior and fitness of marine organisms. Driven by the recent expansion of maritime shipping, artisanal fishing and tourism (e.g., motorboats used for recreational purpose), underwater noise increased greatly on coral reefs. In this review, we first provide an overview on how reef organisms sense and use sound. Thereafter we review the current knowledge on how underwater noise affects different reef organisms. Although the majority of available examples are limited to few fish species, we emphasize how the impact of noise differs based on an organisms' acoustic sensitivity, mobility and developmental stage, as well as between noise type, source and duration. Finally, we highlight measures available to governments, the shipping industry and individual users and provide directions for polices and research aimed to manage this global issue of noise emission on coral reefs.
Collapse
Affiliation(s)
- Christine Ferrier-Pagès
- Centre Scientifique de Monaco, Coral Ecophysiology Team, 8 Quai Antoine 1er, MC-98000, Monaco.
| | - Miguel C Leal
- ECOMARE, Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE, Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | - Frédéric Bertucci
- Functional and Evolutionary Morphology Lab, University of Liege, Belgium; PSL University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, 98729 Moorea, French Polynesia
| | - David Lecchini
- PSL University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, 98729 Moorea, French Polynesia; Laboratoire d'Excellence "CORAIL", Perpignan, France
| | - Denis Allemand
- Centre Scientifique de Monaco, Coral Ecophysiology Team, 8 Quai Antoine 1er, MC-98000, Monaco
| |
Collapse
|
9
|
Duarte CM, Chapuis L, Collin SP, Costa DP, Devassy RP, Eguiluz VM, Erbe C, Gordon TAC, Halpern BS, Harding HR, Havlik MN, Meekan M, Merchant ND, Miksis-Olds JL, Parsons M, Predragovic M, Radford AN, Radford CA, Simpson SD, Slabbekoorn H, Staaterman E, Van Opzeeland IC, Winderen J, Zhang X, Juanes F. The soundscape of the Anthropocene ocean. Science 2021; 371:371/6529/eaba4658. [DOI: 10.1126/science.aba4658] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Carlos M. Duarte
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
- Arctic Research Centre, Department of Biology, Aarhus University, C.F. Møllers Allé 8, DK-8000 Århus C, Denmark
| | - Lucille Chapuis
- Biosciences, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK
| | - Shaun P. Collin
- School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Daniel P. Costa
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95060, USA
| | - Reny P. Devassy
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Victor M. Eguiluz
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), E07122 Palma de Mallorca, Spain
| | - Christine Erbe
- Centre for Marine Science & Technology, Curtin University, Perth, WA 6102, Australia
| | - Timothy A. C. Gordon
- Biosciences, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK
- Australian Institute of Marine Science, Perth, WA 6009, Australia
| | - Benjamin S. Halpern
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA 93101, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | - Harry R. Harding
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Michelle N. Havlik
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Mark Meekan
- Australian Institute of Marine Science, Perth, WA 6009, Australia
| | - Nathan D. Merchant
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft NR33 0HT, UK
| | - Jennifer L. Miksis-Olds
- Center for Acoustics Research and Education, University of New Hampshire, Durham, NH 03824, USA
| | - Miles Parsons
- Centre for Marine Science & Technology, Curtin University, Perth, WA 6102, Australia
- Australian Institute of Marine Science, Perth, WA 6009, Australia
| | - Milica Predragovic
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Andrew N. Radford
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Craig A. Radford
- Institute of Marine Science, Leigh Marine Laboratory, University of Auckland, P.O. Box 349, Warkworth 0941, New Zealand
| | - Stephen D. Simpson
- Biosciences, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK
| | - Hans Slabbekoorn
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA Leiden, Netherlands
| | | | - Ilse C. Van Opzeeland
- Alfred-Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | | | - Xiangliang Zhang
- Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
10
|
Acoustic Characteristics of Small Research Vessels. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8120970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vessel noise is an acute and chronic stressor of a wide variety of marine fauna. Understanding, modelling and mitigating the impacts of this pollutant requires quantification of acoustic signatures for various vessel classes for input into propagation models and at present there is a paucity of such data for small vessels (<25 m). Our study provides this information for three small vessels (<6 m length and 30, 90 and 180 hp engines). The closest point of approach was recorded at various ranges across a flat, ≈10 m deep sandy lagoon, for multiple passes at multiple speeds (≈5, 10, 20, 30 km h−1) by each vessel at Lizard Island, Great Barrier Reef, Australia. Radiated noise levels (RNLs) and environment-affected source levels (ASLs) determined by linear regression were estimated for each vessel and speed. From the slowest to fastest speeds, median RNLs ranged between 153.4 and 166.1 dB re 1 µPa m, whereas ASLs ranged from 146.7 to 160.0 dB re 1 µPa m. One-third octave band-level RNLs are provided for each vessel–speed scenario, together with their interpolated received levels with range. Our study provides data on source spectra of small vessels to assist in understanding and modelling of acoustic exposure experienced by marine fauna.
Collapse
|
11
|
Thomsen F, Erbe C, Hawkins A, Lepper P, Popper AN, Scholik-Schlomer A, Sisneros J. Introduction to the special issue on the effects of sound on aquatic life. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:934. [PMID: 32873007 DOI: 10.1121/10.0001725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The effects of anthropogenic (man-made) underwater sound on aquatic life have become an important environmental issue. One of the focal ways to present and to share knowledge on the topic has been the international conference on The Effects of Noise on Aquatic Life ("Aquatic Noise"). The conferences have brought together people from diverse interests and backgrounds to share information and ideas directed at understanding and solving the challenges of the potential effects of sound on aquatic life. The papers published here and in a related special issue of Proceedings of Meetings on Acoustics present a good overview of the many topics and ideas covered at the meeting. Indeed, the growth in studies on anthropogenic sound since the first meeting in 2007 reflects the increasing use of oceans, lakes, rivers, and other waterways by humans. However, there are still very substantial knowledge gaps about the effects of sound on all aquatic animals, and these gaps lead to there being a substantial need for a better understanding of the sounds produced by various sources and how these sounds may affect animals.
Collapse
Affiliation(s)
| | - Christine Erbe
- Centre for Marine Science and Technology, Curtin University, Perth, Western Australia 6102, Australia
| | - Anthony Hawkins
- The Aquatic Noise Trust, Kincraig, Blairs, Aberdeen, AB12 5YT, United Kingdom
| | - Paul Lepper
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom
| | - Arthur N Popper
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Amy Scholik-Schlomer
- National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 1315 East-West Highway, Silver Spring, Maryland 20910, USA
| | - Joseph Sisneros
- Departments of Psychology and Biology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|