1
|
Ricotti L, Cafarelli A, Manferdini C, Trucco D, Vannozzi L, Gabusi E, Fontana F, Dolzani P, Saleh Y, Lenzi E, Columbaro M, Piazzi M, Bertacchini J, Aliperta A, Cain M, Gemmi M, Parlanti P, Jost C, Fedutik Y, Nessim GD, Telkhozhayeva M, Teblum E, Dumont E, Delbaldo C, Codispoti G, Martini L, Tschon M, Fini M, Lisignoli G. Ultrasound Stimulation of Piezoelectric Nanocomposite Hydrogels Boosts Chondrogenic Differentiation in Vitro, in Both a Normal and Inflammatory Milieu. ACS NANO 2024; 18:2047-2065. [PMID: 38166155 PMCID: PMC10811754 DOI: 10.1021/acsnano.3c08738] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/04/2024]
Abstract
The use of piezoelectric nanomaterials combined with ultrasound stimulation is emerging as a promising approach for wirelessly triggering the regeneration of different tissue types. However, it has never been explored for boosting chondrogenesis. Furthermore, the ultrasound stimulation parameters used are often not adequately controlled. In this study, we show that adipose-tissue-derived mesenchymal stromal cells embedded in a nanocomposite hydrogel containing piezoelectric barium titanate nanoparticles and graphene oxide nanoflakes and stimulated with ultrasound waves with precisely controlled parameters (1 MHz and 250 mW/cm2, for 5 min once every 2 days for 10 days) dramatically boost chondrogenic cell commitment in vitro. Moreover, fibrotic and catabolic factors are strongly down-modulated: proteomic analyses reveal that such stimulation influences biological processes involved in cytoskeleton and extracellular matrix organization, collagen fibril organization, and metabolic processes. The optimal stimulation regimen also has a considerable anti-inflammatory effect and keeps its ability to boost chondrogenesis in vitro, even in an inflammatory milieu. An analytical model to predict the voltage generated by piezoelectric nanoparticles invested by ultrasound waves is proposed, together with a computational tool that takes into consideration nanoparticle clustering within the cell vacuoles and predicts the electric field streamline distribution in the cell cytoplasm. The proposed nanocomposite hydrogel shows good injectability and adhesion to the cartilage tissue ex vivo, as well as excellent biocompatibility in vivo, according to ISO 10993. Future perspectives will involve preclinical testing of this paradigm for cartilage regeneration.
Collapse
Affiliation(s)
- Leonardo Ricotti
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Andrea Cafarelli
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Cristina Manferdini
- Laboratorio
di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Diego Trucco
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Laboratorio
di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Lorenzo Vannozzi
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Elena Gabusi
- Laboratorio
di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Francesco Fontana
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Paolo Dolzani
- Laboratorio
di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Yasmin Saleh
- Laboratorio
di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Enrico Lenzi
- Laboratorio
di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Marta Columbaro
- Piattaforma
di Microscopia Elettronica, IRCCS Istituto
Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Manuela Piazzi
- Istituto
di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy
- IRCCS Istituto
Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Jessika Bertacchini
- Department
of Surgery, Medicine, Dentistry and Morphological Sciences with Interest
in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Andrea Aliperta
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Markys Cain
- Electrosciences
Ltd., Farnham, Surrey GU9 9QT, U.K.
| | - Mauro Gemmi
- Center
for Materials Interfaces, Electron Crystallography, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Paola Parlanti
- Center
for Materials Interfaces, Electron Crystallography, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Carsten Jost
- PlasmaChem
GmbH, Schwarzschildstraße
10, 12489 Berlin, Germany
| | - Yirij Fedutik
- PlasmaChem
GmbH, Schwarzschildstraße
10, 12489 Berlin, Germany
| | - Gilbert Daniel Nessim
- Department
of Chemistry and Institute of Nanotechnology, Bar-Ilan University, Ramat
Gan 52900, Israel
| | - Madina Telkhozhayeva
- Department
of Chemistry and Institute of Nanotechnology, Bar-Ilan University, Ramat
Gan 52900, Israel
| | - Eti Teblum
- Department
of Chemistry and Institute of Nanotechnology, Bar-Ilan University, Ramat
Gan 52900, Israel
| | | | - Chiara Delbaldo
- Struttura
Complessa Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Giorgia Codispoti
- Struttura
Complessa Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Lucia Martini
- Struttura
Complessa Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Matilde Tschon
- Struttura
Complessa Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Milena Fini
- Scientific Director, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Gina Lisignoli
- Laboratorio
di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
2
|
Şen Ö, Pucci C, Ciofani G. Monitoring Cell Cytoskeleton Variations upon Piezoelectric Stimulation: Implications for the Immune System. Methods Mol Biol 2024; 2748:73-83. [PMID: 38070108 DOI: 10.1007/978-1-0716-3593-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Piezoelectric stimulation can have a significant impact on different cellular functions with possible applications in several fields, such as regenerative medicine, cancer therapy, and immunoregulation. For example, piezoelectric stimulation has been shown to modulate cytoskeleton variations: the implications of this effect range from the regulation of migration and invasion of cancer cells to the activation of pro- or anti-inflammatory phenotypes in immune cells. In this chapter, we will present different methodologies to evaluate cytoskeleton variations, focusing on modifications on f-/g-actin ratio and on the migration and invasion ability of tumor cells.
Collapse
Affiliation(s)
- Özlem Şen
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Pontedera, Italy
| | - Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Pontedera, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Pontedera, Italy.
| |
Collapse
|
3
|
Yang S, Wang Y, Liang X. Piezoelectric Nanomaterials Activated by Ultrasound in Disease Treatment. Pharmaceutics 2023; 15:1338. [PMID: 37242580 PMCID: PMC10223188 DOI: 10.3390/pharmaceutics15051338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Electric stimulation has been used in changing the morphology, status, membrane permeability, and life cycle of cells to treat certain diseases such as trauma, degenerative disease, tumor, and infection. To minimize the side effects of invasive electric stimulation, recent studies attempt to apply ultrasound to control the piezoelectric effect of nano piezoelectric material. This method not only generates an electric field but also utilizes the benefits of ultrasound such as non-invasive and mechanical effects. In this review, important elements in the system, piezoelectricity nanomaterial and ultrasound, are first analyzed. Then, we summarize recent studies categorized into five kinds, nervous system diseases treatment, musculoskeletal tissues treatment, cancer treatment, anti-bacteria therapy, and others, to prove two main mechanics under activated piezoelectricity: one is biological change on a cellular level, the other is a piezo-chemical reaction. However, there are still technical problems to be solved and regulation processes to be completed before widespread use. The core problems include how to accurately measure piezoelectricity properties, how to concisely control electricity release through complex energy transfer processes, and a deeper understanding of related bioeffects. If these problems are conquered in the future, piezoelectric nanomaterials activated by ultrasound will provide a new pathway and realize application in disease treatment.
Collapse
Affiliation(s)
| | | | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
4
|
Xia G, Song B, Fang J. Electrical Stimulation Enabled via Electrospun Piezoelectric Polymeric Nanofibers for Tissue Regeneration. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9896274. [PMID: 36061820 PMCID: PMC9394050 DOI: 10.34133/2022/9896274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
Electrical stimulation has demonstrated great effectiveness in the modulation of cell fate in vitro and regeneration therapy in vivo. Conventionally, the employment of electrical signal comes with the electrodes, battery, and connectors in an invasive fashion. This tedious procedure and possible infection hinder the translation of electrical stimulation technologies in regenerative therapy. Given electromechanical coupling and flexibility, piezoelectric polymers can overcome these limitations as they can serve as a self-powered stimulator via scavenging mechanical force from the organism and external stimuli wirelessly. Wireless electrical cue mediated by electrospun piezoelectric polymeric nanofibers constitutes a promising paradigm allowing the generation of localized electrical stimulation both in a noninvasive manner and at cell level. Recently, numerous studies based on electrospun piezoelectric nanofibers have been carried out in electrically regenerative therapy. In this review, brief introduction of piezoelectric polymer and electrospinning technology is elucidated first. Afterward, we highlight the activating strategies (e.g., cell traction, physiological activity, and ultrasound) of piezoelectric stimulation and the interaction of piezoelectric cue with nonelectrically/electrically excitable cells in regeneration medicine. Then, quantitative comparison of the electrical stimulation effects using various activating strategies on specific cell behavior and various cell types is outlined. Followingly, this review explores the present challenges in electrospun nanofiber-based piezoelectric stimulation for regeneration therapy and summarizes the methodologies which may be contributed to future efforts in this field for the reality of this technology in the clinical scene. In the end, a summary of this review and future perspectives toward electrospun nanofiber-based piezoelectric stimulation in tissue regeneration are elucidated.
Collapse
Affiliation(s)
- Guangbo Xia
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Beibei Song
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Tseng MC, Lim J, Chu YC, Chen CW, Feng CK, Wang JL. Dynamic Pressure Stimulation Upregulates Collagen II and Aggrecan in Nucleus Pulposus Cells Through Calcium Signaling. Spine (Phila Pa 1976) 2022; 47:1111-1119. [PMID: 34812197 DOI: 10.1097/brs.0000000000004286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An in vitro study to investigate the effect of pressure stimulation on nucleus pulposus (NP) cells. OBJECTIVE The aim of this study was to investigate the question whether physical stimulation can be leveraged to enhance extracellular matrix (ECM) synthesis as a preventive measure for intervertebral disc (IVD) degeneration. SUMMARY OF BACKGROUND DATA ECM plays an important role in regulating hydration and pressure balance of the IVD. METHODS Cellular stimulation devices with different pressurizing protocols were used to create a pressurized environment to cells cultures. The setup was used to mimic the pressurized conditions within IVD to investigate the effect of pressure stimulation on NP cells. RESULTS Pressure stimulation at 300 kPa can enhance the synthesis of ECM proteins Collagen II and aggrecan in NP cells and the effect of dynamic pressure stimulation outperformed the static one. The difference between static and dynamic pressure stimulation was due primarily to calcium signaling activated by pressure fluctuation. The superior effect of dynamic pressure holds for a wide range of stimulation durations, relating to the range of spontaneous calcium oscillations in NP cells. CONCLUSION The results link mechanotransduction to the downstream ECM protein synthesis and suggest slow exercises that correspond with spontaneous calcium oscillations in NP cells can be effective to stimulate ECM synthesis in IVD.
Collapse
Affiliation(s)
- Mu-Cyun Tseng
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
6
|
Lim J, Liu YC, Chu YC, Lin YX, Hwang WH, Wang JL. Piezoelectric effect stimulates the rearrangement of chondrogenic cells and alters ciliary orientation via atypical PKCζ. Biochem Biophys Rep 2022; 30:101265. [PMID: 35540436 PMCID: PMC9079777 DOI: 10.1016/j.bbrep.2022.101265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/08/2022] [Accepted: 04/15/2022] [Indexed: 11/19/2022] Open
Abstract
Therapeutic ultrasound was administered to patients suffering from bone fracture with FDA approval. Bone and cartilage are piezoelectric materials. To investigate the effects of piezoelectricity on the cells of chondrogenic lineage, we applied ultrasound stimulation on an AT-cut quartz coverslip to generate electric field fluctuations. The bone-marrow-derived mesenchymal stem cells (BMMSC) and primary chondrocytes were cultured on either glass or quartz coverslips for ultrasound stimulation. The cells were immunofluorescent-labeled for the assessment of cell arrangement and ciliary orientation. Ultrasound and piezoelectricity both stimulate cell migration and disrupt ciliary orientation induced by directional migration. In particular, piezoelectric effects on cell rearrangement can be abolished by the inhibitor specifically targeting atypical Protein kinase C zeta (PKCζ). Our findings shed light on the possibility of cellular modulation by using piezoelectric manipulation. Separating the effect of piezoelectric stimulation from ultrasound stimulation. Cell migration accelerates upon ultrasound and piezoelectric stimulation. Piezoelectric stimulation influences cell polarity of chondrogenic lineage. Piezoelectric stimulation induces cell rearrangement via PKCζ. Novel strategy for modulating cell growth, cell differentiation or tissue engineering via piezoelectric stimulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Jaw-Lin Wang
- Corresponding author. Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, 602 Jen-Su Hall, 1 Section 4, Roosevelt Road, Taipei, 10617, Taiwan, ROC.
| |
Collapse
|
7
|
Volz M, Wyse-Sookoo KR, Travascio F, Huang CY, Best TM. MECHANOBIOLOGICAL APPROACHES FOR STIMULATING CHONDROGENESIS OF STEM CELLS. Stem Cells Dev 2022; 31:460-487. [PMID: 35615879 DOI: 10.1089/scd.2022.0049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chondrogenesis is the process of differentiation of stem cells into mature chondrocytes. Such a process consists of chemical, functional, and structural changes which are initiated and mediated by the host environment of the cells. To date, the mechanobiology of chondrogenesis has not been fully elucidated. Hence, experimental activity is focused on recreating specific environmental conditions for stimulating chondrogenesis, and to look for a mechanistic interpretation of the mechanobiological response of cells in the cartilaginous tissues. There are a large number of studies on the topic that vary considerably in their experimental protocols used for providing environmental cues to cells for differentiation, making generalizable conclusions difficult to ascertain. The main objective of this contribution is to review the mechanobiological stimulation of stem cell chondrogenesis and methodological approaches utilized to date to promote chondrogenesis of stem cells in-vitro. In-vivo models will also be explored, but this area is currently limited. An overview of the experimental approaches used by different research groups may help the development of unified testing methods that could be used to overcome existing knowledge gaps, leading to an accelerated translation of experimental findings to clinical practice.
Collapse
Affiliation(s)
- Mallory Volz
- University of Miami, 5452, Biomedical Engineering, Coral Gables, Florida, United States;
| | | | - Francesco Travascio
- University of Miami, 5452, Mechanical and Aerospace Engineering, 1251 Memorial Drive, MEB 217B, Coral Gables, Florida, United States, 33146;
| | - Chun-Yuh Huang
- University of Miami, 5452, Biomedical Engineering, Coral Gables, Florida, United States;
| | - Thomas M Best
- University of Miami Miller School of Medicine, 12235, School of Medicine, Miami, Florida, United States;
| |
Collapse
|
8
|
D’Alessandro D, Ricci C, Milazzo M, Strangis G, Forli F, Buda G, Petrini M, Berrettini S, Uddin MJ, Danti S, Parchi P. Piezoelectric Signals in Vascularized Bone Regeneration. Biomolecules 2021; 11:1731. [PMID: 34827729 PMCID: PMC8615512 DOI: 10.3390/biom11111731] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
The demand for bone substitutes is increasing in Western countries. Bone graft substitutes aim to provide reconstructive surgeons with off-the-shelf alternatives to the natural bone taken from humans or animal species. Under the tissue engineering paradigm, biomaterial scaffolds can be designed by incorporating bone stem cells to decrease the disadvantages of traditional tissue grafts. However, the effective clinical application of tissue-engineered bone is limited by insufficient neovascularization. As bone is a highly vascularized tissue, new strategies to promote both osteogenesis and vasculogenesis within the scaffolds need to be considered for a successful regeneration. It has been demonstrated that bone and blood vases are piezoelectric, namely, electric signals are locally produced upon mechanical stimulation of these tissues. The specific effects of electric charge generation on different cells are not fully understood, but a substantial amount of evidence has suggested their functional and physiological roles. This review summarizes the special contribution of piezoelectricity as a stimulatory signal for bone and vascular tissue regeneration, including osteogenesis, angiogenesis, vascular repair, and tissue engineering, by considering different stem cell sources entailed with osteogenic and angiogenic potential, aimed at collecting the key findings that may enable the development of successful vascularized bone replacements useful in orthopedic and otologic surgery.
Collapse
Affiliation(s)
- Delfo D’Alessandro
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy; (D.D.); (F.F.); (S.B.)
| | - Claudio Ricci
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.R.); (P.P.)
| | - Mario Milazzo
- The BioRobotics Intitute, Scuola Superiore Sant’Anna, 56024 Pontedera, Italy;
| | - Giovanna Strangis
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Francesca Forli
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy; (D.D.); (F.F.); (S.B.)
| | - Gabriele Buda
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.B.); (M.P.)
| | - Mario Petrini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.B.); (M.P.)
| | - Stefano Berrettini
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy; (D.D.); (F.F.); (S.B.)
| | - Mohammed Jasim Uddin
- Department of Chemistry, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Serena Danti
- The BioRobotics Intitute, Scuola Superiore Sant’Anna, 56024 Pontedera, Italy;
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Paolo Parchi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.R.); (P.P.)
| |
Collapse
|
9
|
Kong Y, Duan J, Liu F, Han L, Li G, Sun C, Sang Y, Wang S, Yi F, Liu H. Regulation of stem cell fate using nanostructure-mediated physical signals. Chem Soc Rev 2021; 50:12828-12872. [PMID: 34661592 DOI: 10.1039/d1cs00572c] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
One of the major issues in tissue engineering is regulation of stem cell differentiation toward specific lineages. Unlike biological and chemical signals, physical signals with adjustable properties can be applied to stem cells in a timely and localized manner, thus making them a hot topic for research in the fields of biomaterials, tissue engineering, and cell biology. According to the signals sensed by cells, physical signals used for regulating stem cell fate can be classified into six categories: mechanical, light, thermal, electrical, acoustic, and magnetic. In most cases, external macroscopic physical fields cannot be used to modulate stem cell fate, as only the localized physical signals accepted by the surface receptors can regulate stem cell differentiation via nanoscale fibrin polysaccharide fibers. However, surface receptors related to certain kinds of physical signals are still unknown. Recently, significant progress has been made in the development of functional materials for energy conversion. Consequently, localized physical fields can be produced by absorbing energy from an external physical field and subsequently releasing another type of localized energy through functional nanostructures. Based on the above concepts, we propose a methodology that can be utilized for stem cell engineering and for the regulation of stem cell fate via nanostructure-mediated physical signals. In this review, the combined effect of various approaches and mechanisms of physical signals provides a perspective on stem cell fate promotion by nanostructure-mediated physical signals. We expect that this review will aid the development of remote-controlled and wireless platforms to physically guide stem cell differentiation both in vitro and in vivo, using optimized stimulation parameters and mechanistic investigations while driving the progress of research in the fields of materials science, cell biology, and clinical research.
Collapse
Affiliation(s)
- Ying Kong
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Feng Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266200, China.
| | - Gang Li
- Neurological Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Shuhua Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan, 250012, China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China. .,Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| |
Collapse
|
10
|
Cafarelli A, Marino A, Vannozzi L, Puigmartí-Luis J, Pané S, Ciofani G, Ricotti L. Piezoelectric Nanomaterials Activated by Ultrasound: The Pathway from Discovery to Future Clinical Adoption. ACS NANO 2021; 15:11066-11086. [PMID: 34251189 PMCID: PMC8397402 DOI: 10.1021/acsnano.1c03087] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/06/2021] [Indexed: 05/19/2023]
Abstract
Electrical stimulation has shown great promise in biomedical applications, such as regenerative medicine, neuromodulation, and cancer treatment. Yet, the use of electrical end effectors such as electrodes requires connectors and batteries, which dramatically hamper the translation of electrical stimulation technologies in several scenarios. Piezoelectric nanomaterials can overcome the limitations of current electrical stimulation procedures as they can be wirelessly activated by external energy sources such as ultrasound. Wireless electrical stimulation mediated by piezoelectric nanoarchitectures constitutes an innovative paradigm enabling the induction of electrical cues within the body in a localized, wireless, and minimally invasive fashion. In this review, we highlight the fundamental mechanisms of acoustically mediated piezoelectric stimulation and its applications in the biomedical area. Yet, the adoption of this technology in a clinical practice is in its infancy, as several open issues, such as piezoelectric properties measurement, control of the ultrasound dose in vitro, modeling and measurement of the piezo effects, knowledge on the triggered bioeffects, therapy targeting, biocompatibility studies, and control of the ultrasound dose delivered in vivo, must be addressed. This article explores the current open challenges in piezoelectric stimulation and proposes strategies that may guide future research efforts in this field toward the translation of this technology to the clinical scene.
Collapse
Affiliation(s)
- Andrea Cafarelli
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, 56127 Pisa, Italy
| | - Attilio Marino
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, 56025 Pontedera, Italy
| | - Lorenzo Vannozzi
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, 56127 Pisa, Italy
| | - Josep Puigmartí-Luis
- Departament
de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Salvador Pané
- Multi-Scale
Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems
(IRIS), ETH Zurich, 8092 Zurich, Switzerland
| | - Gianni Ciofani
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, 56025 Pontedera, Italy
| | - Leonardo Ricotti
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, 56127 Pisa, Italy
- Tel: +39 050 883074. Mobile: +39 366 6868242.
| |
Collapse
|
11
|
Chu YC, Lim J, Tseng MC, Wang JL. The responses of nucleus pulposus cells to pressure and ultrasound stimulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:EL314. [PMID: 33138512 DOI: 10.1121/10.0002138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
A cellular stimulation device with a pressurized chamber is developed to investigate the effect of ultrasound and pressure fluctuation on nucleus pulposus (NP) cells. The pressurized chamber is designed to emulate the in vivo environment of intervertebral discs, which are under dynamic pressure, and to emulate impact during sports and exercise. Both hydrostatic pressure and ultrasound stimulation increase phosphorylation of ERK (pERK) in NP cells, and promote its translocation into nucleus. This increase in pERK levels might be activated through calcium signaling pathways as intracellular calcium in NP cells was strongly elevated by pressure changes.
Collapse
Affiliation(s)
- Ya-Cherng Chu
- Department of Biomedical Engineering, Nation Taiwan University, Taipei, , , ,
| | - Jormay Lim
- Department of Biomedical Engineering, Nation Taiwan University, Taipei, , , ,
| | - Mu-Cyun Tseng
- Department of Biomedical Engineering, Nation Taiwan University, Taipei, , , ,
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, Nation Taiwan University, Taipei, , , ,
| |
Collapse
|