1
|
Guest DR, Cameron DA, Schwarz DM, Leong UC, Richards VM, Carney LH. Profile analysis in listeners with normal and elevated audiometric thresholds: Behavioral and modeling results. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:4303-4325. [PMID: 39740047 DOI: 10.1121/10.0034635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/28/2024] [Indexed: 01/02/2025]
Abstract
Profile-analysis experiments measure the ability to discriminate complex sounds based on patterns, or profiles, in their amplitude spectra. Studies of profile analysis have focused on normal-hearing listeners and target frequencies near 1 kHz. To provide more insight into underlying mechanisms, we studied profile analysis over a large target frequency range (0.5-4 kHz) and in listeners with both normal and elevated audiometric thresholds. We found that profile analysis degrades at high frequencies and that the effect of spacing between nearby frequency components differs with frequency. Consistent with prior reports, elevated audiometric thresholds were not associated with impaired performance when stimuli consisted of few distantly spaced frequency components. However, elevated audiometric thresholds were associated with elevated profile-analysis thresholds for stimuli composed of many closely spaced frequency components. Behavioral thresholds from listeners with and without hearing loss were predicted by decoding firing rates from simulated auditory-nerve fibers or simulated modulation-sensitive inferior-colliculus neurons. Although responses from both model stages informed some aspects of the behavioral data, only population decoding of inferior-colliculus responses accounted for the worsening of profile-analysis thresholds at high target frequencies. Collectively, these results suggest that profile analysis involves multiple non-peripheral factors, including multichannel comparisons and midbrain tuning to amplitude modulation.
Collapse
Affiliation(s)
- Daniel R Guest
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
| | - David A Cameron
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
| | - Douglas M Schwarz
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
- Department of Neuroscience, University of Rochester, Rochester, New York 14620, USA
| | - U-Cheng Leong
- Department of Otolaryngology, University of Rochester, Rochester, New York 14620, USA
| | - Virginia M Richards
- Department of Cognitive Sciences, University of California, Irvine, California 92697, USA
| | - Laurel H Carney
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
- Department of Neuroscience, University of Rochester, Rochester, New York 14620, USA
| |
Collapse
|
2
|
Gockel HE, Carlyon RP. Effect of diotic versus dichotic presentation on the pitch perception of tone complexes at medium and very high frequencies. Sci Rep 2023; 13:13247. [PMID: 37582928 PMCID: PMC10427668 DOI: 10.1038/s41598-023-40122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
Difference limens for fundamental frequency (F0), F0DLs, are usually small for complex tones containing low harmonics that are resolved in the auditory periphery, but worsen when the rank of the lowest harmonic increases above about 6-8 and harmonics become less resolved. The traditional explanation for this, in terms of resolvability, has been challenged and an alternative explanation in terms of harmonic rank was suggested. Here, to disentangle the effects of resolvability and harmonic rank the complex tones were presented either diotically (all harmonics to both ears) or dichotically (even and odd harmonics to opposite ears); the latter increases resolvability but does not affect harmonic rank. F0DLs were measured for 14 listeners for complex tones containing harmonics 6-10 with F0s of 280 and 1400 Hz, presented diotically or dichotically. For the low F0, F0DLs were significantly lower for the dichotic than for the diotic condition. This is consistent with a benefit of increased resolvability of harmonics for F0 discrimination and extends previous results to harmonics as low as the sixth. In contrast, for the high F0, F0DLs were similar for the two presentation modes, adding to evidence for differences in pitch perception between tones with low-to-medium and very-high frequency content.
Collapse
Affiliation(s)
- Hedwig E Gockel
- MRC Cognition and Brain Sciences Unit, Cambridge Hearing Group, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Robert P Carlyon
- MRC Cognition and Brain Sciences Unit, Cambridge Hearing Group, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| |
Collapse
|
3
|
Whiteford KL, Oxenham AJ. Sensitivity to Frequency Modulation is Limited Centrally. J Neurosci 2023; 43:3687-3695. [PMID: 37028932 PMCID: PMC10198444 DOI: 10.1523/jneurosci.0995-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Modulations in both amplitude and frequency are prevalent in natural sounds and are critical in defining their properties. Humans are exquisitely sensitive to frequency modulation (FM) at the slow modulation rates and low carrier frequencies that are common in speech and music. This enhanced sensitivity to slow-rate and low-frequency FM has been widely believed to reflect precise, stimulus-driven phase locking to temporal fine structure in the auditory nerve. At faster modulation rates and/or higher carrier frequencies, FM is instead thought to be coded by coarser frequency-to-place mapping, where FM is converted to amplitude modulation (AM) via cochlear filtering. Here, we show that patterns of human FM perception that have classically been explained by limits in peripheral temporal coding are instead better accounted for by constraints in the central processing of fundamental frequency (F0) or pitch. We measured FM detection in male and female humans using harmonic complex tones with an F0 within the range of musical pitch but with resolved harmonic components that were all above the putative limits of temporal phase locking (>8 kHz). Listeners were more sensitive to slow than fast FM rates, even though all components were beyond the limits of phase locking. In contrast, AM sensitivity remained better at faster than slower rates, regardless of carrier frequency. These findings demonstrate that classic trends in human FM sensitivity, previously attributed to auditory nerve phase locking, may instead reflect the constraints of a unitary code that operates at a more central level of processing.SIGNIFICANCE STATEMENT Natural sounds involve dynamic frequency and amplitude fluctuations. Humans are particularly sensitive to frequency modulation (FM) at slow rates and low carrier frequencies, which are prevalent in speech and music. This sensitivity has been ascribed to encoding of stimulus temporal fine structure (TFS) via phase-locked auditory nerve activity. To test this long-standing theory, we measured FM sensitivity using complex tones with a low F0 but only high-frequency harmonics beyond the limits of phase locking. Dissociating the F0 from TFS showed that FM sensitivity is limited not by peripheral encoding of TFS but rather by central processing of F0, or pitch. The results suggest a unitary code for FM detection limited by more central constraints.
Collapse
Affiliation(s)
- Kelly L Whiteford
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Andrew J Oxenham
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
4
|
Mehta AH, Oxenham AJ. Role of perceptual integration in pitch discrimination at high frequenciesa). JASA EXPRESS LETTERS 2022; 2:084402. [PMID: 37311192 PMCID: PMC10264831 DOI: 10.1121/10.0013429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
At very high frequencies, fundamental-frequency difference limens (F0DLs) for five-component harmonic complex tones can be better than predicted by optimal integration of information, assuming performance is limited by noise at the peripheral level, but are in line with predictions based on more central sources of noise. This study investigates whether there is a minimum number of harmonic components needed for such super-optimal integration effects and if harmonic range or inharmonicity affects this super-optimal integration. Results show super-optimal integration, even with two harmonic components and for most combinations of consecutive harmonic, but not inharmonic, components.
Collapse
Affiliation(s)
- Anahita H Mehta
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455, USA ,
| | - Andrew J Oxenham
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455, USA ,
| |
Collapse
|
5
|
Richardson ML, Guérit F, Gransier R, Wouters J, Carlyon RP, Middlebrooks JC. Temporal Pitch Sensitivity in an Animal Model: Psychophysics and Scalp Recordings : Temporal Pitch Sensitivity in Cat. J Assoc Res Otolaryngol 2022; 23:491-512. [PMID: 35668206 PMCID: PMC9437162 DOI: 10.1007/s10162-022-00849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/11/2022] [Indexed: 01/28/2023] Open
Abstract
Cochlear implant (CI) users show limited sensitivity to the temporal pitch conveyed by electric stimulation, contributing to impaired perception of music and of speech in noise. Neurophysiological studies in cats suggest that this limitation is due, in part, to poor transmission of the temporal fine structure (TFS) by the brainstem pathways that are activated by electrical cochlear stimulation. It remains unknown, however, how that neural limit might influence perception in the same animal model. For that reason, we developed non-invasive psychophysical and electrophysiological measures of temporal (i.e., non-spectral) pitch processing in the cat. Normal-hearing (NH) cats were presented with acoustic pulse trains consisting of band-limited harmonic complexes that simulated CI stimulation of the basal cochlea while removing cochlear place-of-excitation cues. In the psychophysical procedure, trained cats detected changes from a base pulse rate to a higher pulse rate. In the scalp-recording procedure, the cortical-evoked acoustic change complex (ACC) and brainstem-generated frequency following response (FFR) were recorded simultaneously in sedated cats for pulse trains that alternated between the base and higher rates. The range of perceptual sensitivity to temporal pitch broadly resembled that of humans but was shifted to somewhat higher rates. The ACC largely paralleled these perceptual patterns, validating its use as an objective measure of temporal pitch sensitivity. The phase-locked FFR, in contrast, showed strong brainstem encoding for all tested pulse rates. These measures demonstrate the cat's perceptual sensitivity to pitch in the absence of cochlear-place cues and may be valuable for evaluating neural mechanisms of temporal pitch perception in the feline animal model of stimulation by a CI or novel auditory prostheses.
Collapse
Affiliation(s)
- Matthew L Richardson
- Department of Otolaryngology, Center for Hearing Research, University of California at Irvine, Irvine, CA, USA.
| | - François Guérit
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Robin Gransier
- Department of Neurosciences, ExpORL, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Department of Neurosciences, ExpORL, KU Leuven, Leuven, Belgium
| | - Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - John C Middlebrooks
- Department of Otolaryngology, Center for Hearing Research, University of California at Irvine, Irvine, CA, USA
- Departments of Neurobiology & Behavior, Biomedical Engineering, Cognitive Sciences, University of California at Irvine, Irvine, CA, USA
| |
Collapse
|
6
|
Gockel HE, Carlyon RP. On mistuning detection and beat perception for harmonic complex tones at low and very high frequencies. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:226. [PMID: 35931513 DOI: 10.1121/10.0012351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
This study assessed the detection of mistuning of a single harmonic in complex tones (CTs) containing either low-frequency harmonics or very high-frequency harmonics, for which phase locking to the temporal fine structure is weak or absent. CTs had F0s of either 280 or 1400 Hz and contained harmonics 6-10, the 8th of which could be mistuned. Harmonics were presented either diotically or dichotically (odd and even harmonics to different ears). In the diotic condition, mistuning-detection thresholds were very low for both F0s and consistent with detection of temporal interactions (beats) produced by peripheral interactions of components. In the dichotic condition, for which the components in each ear were more widely spaced and beats were not reported, the mistuned component was perceptually segregated from the complex for the low F0, but subjects reported no "popping out" for the high F0 and performance was close to chance. This is consistent with the idea that phase locking is required for perceptual segregation to occur. For diotic presentation, the perceived beat rate corresponded to the amount of mistuning (in Hz). It is argued that the beat percept cannot be explained solely by interactions between the mistuned component and its two closest harmonic neighbours.
Collapse
Affiliation(s)
- Hedwig E Gockel
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| |
Collapse
|
7
|
Guest DR, Oxenham AJ. Human discrimination and modeling of high-frequency complex tones shed light on the neural codes for pitch. PLoS Comput Biol 2022; 18:e1009889. [PMID: 35239639 PMCID: PMC8923464 DOI: 10.1371/journal.pcbi.1009889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/15/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Accurate pitch perception of harmonic complex tones is widely believed to rely on temporal fine structure information conveyed by the precise phase-locked responses of auditory-nerve fibers. However, accurate pitch perception remains possible even when spectrally resolved harmonics are presented at frequencies beyond the putative limits of neural phase locking, and it is unclear whether residual temporal information, or a coarser rate-place code, underlies this ability. We addressed this question by measuring human pitch discrimination at low and high frequencies for harmonic complex tones, presented either in isolation or in the presence of concurrent complex-tone maskers. We found that concurrent complex-tone maskers impaired performance at both low and high frequencies, although the impairment introduced by adding maskers at high frequencies relative to low frequencies differed between the tested masker types. We then combined simulated auditory-nerve responses to our stimuli with ideal-observer analysis to quantify the extent to which performance was limited by peripheral factors. We found that the worsening of both frequency discrimination and F0 discrimination at high frequencies could be well accounted for (in relative terms) by optimal decoding of all available information at the level of the auditory nerve. A Python package is provided to reproduce these results, and to simulate responses to acoustic stimuli from the three previously published models of the human auditory nerve used in our analyses.
Collapse
Affiliation(s)
- Daniel R. Guest
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Andrew J. Oxenham
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
8
|
Gockel HE, Carlyon RP. On musical interval perception for complex tones at very high frequencies. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:2644. [PMID: 33940917 PMCID: PMC7612123 DOI: 10.1121/10.0004222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Listeners appear able to extract a residue pitch from high-frequency harmonics for which phase locking to the temporal fine structure is weak or absent. The present study investigated musical interval perception for high-frequency harmonic complex tones using the same stimuli as Lau, Mehta, and Oxenham [J. Neurosci. 37, 9013-9021 (2017)]. Nine young musically trained listeners with especially good high-frequency hearing adjusted various musical intervals using harmonic complex tones containing harmonics 6-10. The reference notes had fundamental frequencies (F0s) of 280 or 1400 Hz. Interval matches were possible, albeit markedly worse, even when all harmonic frequencies were above the presumed limit of phase locking. Matches showed significantly larger systematic errors and higher variability, and subjects required more trials to finish a match for the high than for the low F0. Additional absolute pitch judgments from one subject with absolute pitch, for complex tones containing harmonics 1-5 or 6-10 with a wide range of F0s, were perfect when the lowest frequency component was below about 7 kHz, but at least 50% of responses were incorrect when it was 8 kHz or higher. The results are discussed in terms of the possible effects of phase-locking information and familiarity with high-frequency stimuli on pitch.
Collapse
|