1
|
Popp KL, Bozzini BN, Reynoso M, Coulombe J, Guerriere KI, Proctor SP, Castellani CM, Walker LA, Zurinaga N, Kuhn K, Foulis SA, Bouxsein ML, Hughes JM, Santoro N. Hypothalamic-pituitary-ovarian axis suppression is common among women during US Army Basic Combat Training. Br J Sports Med 2024; 58:1052-1060. [PMID: 39043442 DOI: 10.1136/bjsports-2023-107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVE Less than half of servicewomen report loss of menses during initial military training. However, self-reported menstrual status may not accurately reflect hypothalamic-pituitary-ovarian (HPO) axis suppression and may underestimate reproductive health consequences of military training. Our aim was to characterise HPO axis function during US Army Basic Combat Training (BCT) in non-hormonal contraceptive-using women and explore potential contributors to HPO axis suppression. METHODS In this 10-week prospective observational study, we enrolled multi-ethnic women entering BCT. Trainees provided daily first-morning voided urine, and weekly blood samples during BCT. Urinary luteinising hormone, follicle stimulating hormone, and metabolites of estradiol and progesterone were measured by chemiluminescent assays (Siemens Centaur XP) to determine hormone patterns and luteal activity. We measured body composition, via dual-energy X-ray absorptiometry, at the beginning and end of BCT. RESULTS Trainees (n=55) were young (mean (95% CI): 22 (22, 23) years) with average body mass index (23.9 (23.1, 24.7) kg/m2). Most trainees (78%) reported regular menstrual cycles before BCT. During BCT, 23 (42%) trainees reported regular menses. However, only seven trainees (12.5%) had menstrual cycles with evidence of luteal activity (ELA) (ie, presumed ovulation), all with shortened luteal phases. 41 trainees (75%) showed no ELA (NELA), and 7 (12.5%) were categorised as indeterminant. Overall, women gained body mass and lean mass, but lost fat mass during BCT. Changes in body mass and composition appear unrelated to luteal activity. CONCLUSIONS Our findings reveal profound HPO axis suppression with NELA in the majority of women during BCT. This HPO axis suppression occurs among women who report normal menstrual cycles.
Collapse
Affiliation(s)
- Kristin L Popp
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
- TRIA Orthopaedic Center, HealthPartners Institute, Bloomington, Minnesota, USA
- Wu Tsai Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Brittany N Bozzini
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Marinaliz Reynoso
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Jennifer Coulombe
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
- Department of Orthopedic Surgery, Harvard Medical School and Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Katelyn I Guerriere
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Susan P Proctor
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Colleen M Castellani
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Leila A Walker
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Nicholas Zurinaga
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Katherine Kuhn
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Stephen A Foulis
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Mary L Bouxsein
- Department of Orthopedic Surgery, Harvard Medical School and Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Endcrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Julie M Hughes
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Nanette Santoro
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
2
|
W Constantini N, Alves E, L Mountjoy M, E Ackerman K. Relative energy deficiency in military (RED-M). BMJ Mil Health 2024; 170:191-192. [PMID: 36702526 DOI: 10.1136/military-2022-002341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2023] [Indexed: 01/27/2023]
Affiliation(s)
- Naama W Constantini
- Orthopaedics, Heidi Rothberg Sport Medicine Center, Jerusalem, Israel
- Cardiology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - E Alves
- Medicina Física e de Reabilitação, Centro Hospitalar Universitário de Lisboa Norte EPE, Lisboa, Portugal
| | - M L Mountjoy
- Family Medicine, McMaster University Michael G DeGroote School of Medicine, Hamilton, Ontario, Canada
- International Olympic Committee Games Group, Lausanne, Switzerland
| | - K E Ackerman
- Wu Tsai Female Athlete Program, Boston, Massachusetts, USA
- Sports Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
O'Leary TJ, Gifford RM, Knight RL, Wright J, Handford S, Venables MC, Reynolds RM, Woods D, Wardle SL, Greeves JP. Sex differences in energy balance, body composition, and metabolic and endocrine markers during prolonged arduous military training. J Appl Physiol (1985) 2024; 136:938-948. [PMID: 38385180 PMCID: PMC11305646 DOI: 10.1152/japplphysiol.00864.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024] Open
Abstract
This study investigated sex differences in energy balance, body composition, and metabolic and endocrine markers during prolonged military training. Twenty-three trainees (14 women) completed 44-wk military training (three terms of 14 wk with 2-wk adventurous training). Dietary intake and total energy expenditure were measured over 10 days during each term by weighed food and doubly labeled water. Body composition was measured by dual-energy X-ray absorptiometry (DXA) at baseline and at the end of each term. Circulating metabolic and endocrine markers were measured at baseline and at the end of terms 2 and 3. Absolute energy intake and total energy expenditure were higher, and energy balance was lower, for men than women (P ≤ 0.008). Absolute energy intake and balance were lower, and total energy expenditure was higher, during term 2 than terms 1 and 3 (P < 0.001). Lean mass did not change with training (P = 0.081). Fat mass and body fat increased from term 1 to terms 2 and 3 (P ≤ 0.045). Leptin increased from baseline to terms 2 and 3 in women (P ≤ 0.002) but not in men (P ≥ 0.251). Testosterone and free androgen index increased from baseline to term 3 (P ≤ 0.018). Free thyroxine (T4) decreased and thyroid-stimulating hormone (TSH) increased from baseline to term 2 and term 3 (P ≤ 0.031). Cortisol decreased from baseline to term 3 (P = 0.030). IGF-I and total triiodothyronine (T3) did not change with training (P ≥ 0.148). Men experienced greater energy deficits than women during military training due to higher total energy expenditure.NEW & NOTEWORTHY Energy deficits are common in military training and can result in endocrine and metabolic disturbances. This study provides first investigation of sex differences in energy balance, body composition, and endocrine and metabolic markers in response to prolonged and arduous military training. Men experienced greater energy deficits than women due to higher energy expenditure, which was not compensated for by increased energy intake. These energy deficits were not associated with decreases in fat or lean mass or metabolic or endocrine function.
Collapse
Affiliation(s)
- Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom
- Division of Surgery and Interventional Science, UCL, London, United Kingdom
| | - Robert M Gifford
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca L Knight
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom
| | - Jennifer Wright
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom
| | - Sally Handford
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom
| | - Michelle C Venables
- Medical Research Council, Elsie Widdowson Laboratory, Cambridge, United Kingdom
| | - Rebecca M Reynolds
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David Woods
- Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, United Kingdom
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
- Northumbria and Newcastle NHS Trusts, Wansbeck General and Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Sophie L Wardle
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom
- Division of Surgery and Interventional Science, UCL, London, United Kingdom
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom
- Division of Surgery and Interventional Science, UCL, London, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
4
|
Garron T, Klein DJ. Male Army ROTC Cadets Fail to Meet Military Dietary Reference Intakes and Exhibit a High Prevalence of Low Energy Availability and Poor Sleep Quality. J Funct Morphol Kinesiol 2023; 8:95. [PMID: 37489308 PMCID: PMC10366743 DOI: 10.3390/jfmk8030095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023] Open
Abstract
The purpose of this study was to assess the dietary habits, prevalence of low energy availability (EA), and sleep quality in a cohort of male army Reserve Officer Training Corps (ROTC) cadets, and to investigate the relationship between EA and sleep quality as well as EA and various body composition variables that are important for tactical readiness. Thirteen male army ROTC cadets (22.2 ± 4.1 yrs; BMI: 26.1 ± 2.3) had their EA and body composition assessed using diet and exercise records alongside bioelectrical impedance analysis. Cadets also completed a validated sleep questionnaire. Sixty-two percent of participants presented with clinically low EA (<30 kcal/kg fat-free mass [FFM]) and none met the optimum EA threshold (≥45 kcal/kg FFM). Dietary analysis indicated that 15%, 23%, 46%, 23%, and 7% of cadets met the Military Dietary Reference Intakes (MDRI) for calories, carbohydrates, protein, fat, and fiber, respectively. Additionally, 85% of cadets exhibited poor sleep quality. Significant associations between EA and fat mass/percent body fat were shown (p < 0.05). There was, however, no statistically significant correlation between EA and sleep quality. The present study found a high prevalence of low EA and sleep disturbance among male army ROTC cadets and that many were unable to meet the MDRIs for energy and macronutrient intake. Further, low EA was associated with higher percent body fat and fat mass but not sleep quality.
Collapse
Affiliation(s)
- Taylor Garron
- Department of Health and Exercise Science, Rowan University, Glassboro, NJ 08028, USA
| | - Dylan J Klein
- Department of Health and Exercise Science, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|