Monitoring the Heart Rate Variability Responses to Training Loads in Competitive Swimmers Using a Smartphone Application and the Banister Impulse-Response Model.
Int J Sports Physiol Perform 2021;
16:787-795. [PMID:
33561815 DOI:
10.1123/ijspp.2020-0201]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE
First, to examine whether heart rate variability (HRV) responses can be modeled effectively via the Banister impulse-response model when the session rating of perceived exertion (sRPE) alone, and in combination with subjective well-being measures, are utilized. Second, to describe seasonal HRV responses and their associations with changes in critical speed (CS) in competitive swimmers.
METHODS
A total of 10 highly trained swimmers collected daily 1-minute HRV recordings, sRPE training load, and subjective well-being scores via a novel smartphone application for 15 weeks. The impulse-response model was used to describe chronic root mean square of the successive differences (rMSSD) responses to training, with sRPE and subjective well-being measures used as systems inputs. Changes in CS were obtained from a 3-minute all-out test completed in weeks 1 and 14.
RESULTS
The level of agreement between predicted and actual HRV data was R2 = .66 (.25) when sRPE alone was used. Model fits improved in the range of 4% to 21% when different subjective well-being measures were combined with sRPE, representing trivial-to-moderate improvements. There were no significant differences in weekly group averages of log-transformed (Ln) rMSSD (P = .34) or HRV coefficient of variation of Ln rMSSD (P = .12); however, small-to-large changes (d = 0.21-1.46) were observed in these parameters throughout the season. Large correlations were observed between seasonal changes in HRV measures and CS (changes in averages of Ln rMSSD: r = .51, P = .13; changes in coefficient of variation of Ln rMSSD: r = -.68, P = .03).
CONCLUSION
The impulse-response model and data collected via a novel smartphone application can be used to model HRV responses to swimming training and nontraining-related stressors. Large relationships between seasonal changes in measured HRV parameters and CS provide further evidence for incorporating a HRV-guided training approach.
Collapse