1
|
Berger B, Graeb F, Baumann M, Reuther S. [Bed confinement in old people-A literature review]. Z Gerontol Geriatr 2025; 58:209-213. [PMID: 39230577 PMCID: PMC12048456 DOI: 10.1007/s00391-024-02350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Particularly older people are affected by mobility restrictions and can go through the process of gradually becoming bedridden. This can potentially lead to extensive consequences for the individuals involved, which must be considered in their care. AIMS To bundle nursing implications related to the phenomenon of being bedridden in the field of long-term care and to provide impulses for research in nursing science. METHODS Research in relevant specialist databases (2003-2023) based on the criteria of a scoping review. RESULTS In Germany there is a standard for maintaining and promoting mobility that addresses bed and local confinements but German language studies on these phenomena are rare. In the international context, these issues are researched more intensively, focussing on risk factors for the development of immobility and the negative consequences for those affected. The publications focus on the reduction of these factors, while less attention is paid to the organization of life in bed and the participation and involvement of those affected. DISCUSSION The complexity of the phenomenon is not fully illustrated in current research. In order to develop a nursing perspective research projects that also include aspects of life in bed are a central aspect in order to take greater account of the reality of bedridden people's lives and their potential for participation and involvement.
Collapse
Affiliation(s)
- Bianca Berger
- Fakultät Soziale Arbeit, Bildung und Pflege, Hochschule Esslingen, Flandernstraße 101, 73732, Esslingen, Deutschland.
| | - Fabian Graeb
- Fakultät Soziale Arbeit, Bildung und Pflege, Hochschule Esslingen, Flandernstraße 101, 73732, Esslingen, Deutschland
| | | | - Sven Reuther
- Caritasverband für die Region Krefeld e. V. , Krefeld, Deutschland
| |
Collapse
|
2
|
Berger B, Graeb F, Baumann M, Wolke R. Becoming Bedridden and Being Bedridden: Implications for Nursing and Care for Older People in Long-Term Care: A Scoping Review. Int J Older People Nurs 2025; 20:e70015. [PMID: 39945557 PMCID: PMC11823601 DOI: 10.1111/opn.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/20/2024] [Accepted: 01/25/2025] [Indexed: 02/16/2025]
Abstract
BACKGROUND An increasing number of individuals aged 60 and older will rely on healthcare services, particularly due to increased physical limitations and mobility restrictions. This implies an increase in permanently immobile, often bedridden people who require targeted care. Mobility impairments progress gradually, leading to loss of autonomy and self-care skills, physical decline, functional deterioration, disability, etc. This review synthesises research findings on the implications of becoming and being bedridden for nursing care of older people in long-term care. OBJECTIVES The aim of this scoping review was to explore the current state of research on the topic of bedriddenness in older people in the context of long-term care and to identify research gaps. METHODS We analysed English and German language peer-reviewed publications from the electronic databases MEDLINE (PubMed), CINAHL, LIVIO and Scopus. Publications from 1998 to 2023 were included if they addressed 'bedriddenness', the 'process of becoming bedridden', 'prevention' and the 'consequences of bedriddenness', and the 'care of bedridden people'. The PRISMA-ScR guidelines were used. RESULTS We identified 250 publications based on the defined inclusion criteria. We included 47 in detail condensing their content and organising them according to developed categories, bedriddenness and its prevention, development, consequences and care, which were the subject of intensive research. Although researchers have focused on risk factors for the development of immobility and its negative consequences for those affected, they paid little attention to self-determination and the organisation of life in bed, which enables those affected to participate. Different ideas regarding the term 'bedriddenness' indicate the need for a consensus definition. CONCLUSION Our review shows that articles strongly focus on the process of becoming bedridden. Many publications examine bedridden people's care by emphasising the perspective of (informal) caregivers and the challenges they face. The perspective of bedridden people, together with the consideration of psychosocial dimensions of bedriddenness and the promotion of opportunities for participation, should be focused on in further research. Appropriate concepts for training and nursing practice would be helpful. IMPLICATIONS FOR PRACTICE Bedriddenness is a phenomenon that mainly affects older people, particularly those living in nursing homes. Concepts should be developed that reflect the reality of bedridden people's lives. Targeted interventions to improve the mobility of people with severe mobility impairments are important. Therefore, it is essential to establish educational modules for (informal) caregivers that consider mobility and rehabilitative practices as an integral part of care.
Collapse
Affiliation(s)
- Bianca Berger
- Hochschule Esslingen ‐ Campus FlandernstrasseEsslingenBaden‐WürttembergGermany
| | - Fabian Graeb
- Hochschule Esslingen ‐ Campus FlandernstrasseEsslingenBaden‐WürttembergGermany
| | | | - Reinhold Wolke
- Hochschule Esslingen ‐ Campus FlandernstrasseEsslingenBaden‐WürttembergGermany
| |
Collapse
|
3
|
Takino K, Hara Y, Sakui D, Kawamura I, Kikuchi J, Komoda T, Koeda T. Sarcopenia is associated with lower step count in patients with peripheral artery disease following endovascular treatment. Physiother Theory Pract 2025; 41:222-229. [PMID: 38368595 DOI: 10.1080/09593985.2024.2319780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/19/2024]
Abstract
INTRODUCTION Patients with peripheral artery disease (PAD) often complain of reduced physical activity (PA) despite improvements in intermittent claudication after successful endovascular treatment (EVT). Sarcopenia resulting from chronic ischemia can affect post-EVT PA levels. OBJECTIVE This study aims to assess the association between sarcopenia and post-EVT PA levels. METHODS One hundred five patients with PAD were consecutively enrolled in this study. PA was assessed using the post-EVT step count and the pre-EVT International Physical Activity Questionnaire. Sarcopenia was diagnosed based on the Asia Working Group for Sarcopenia and defined as low muscle mass and strength, and/or slow walking speed. The patients were categorized into three groups: 1) patients with sarcopenia (Sarcopenia Group); 2) patients with only low muscle mass or strength, and/or slow walking speed (Suspected-Sarcopenia Group); and 3) patients who did not fulfill all the sarcopenia criteria (No-Sarcopenia Group). RESULTS Proportions of patients in the Sarcopenia, Suspected-Sarcopenia, and No-Sarcopenia Groups were 31.4, 38.1, and 30.5%, respectively. After controlling for potential confounders, the Sarcopenia Group demonstrated significantly lower step counts than the Suspected-Sarcopenia Group (p = .016) and No-Sarcopenia Group (p = .009). CONCLUSIONS Our findings indicate that patients with PAD and sarcopenia require rehabilitation strategies to enhance physical performance.
Collapse
Affiliation(s)
- Koya Takino
- Department of Physical Therapy, Toyohashi Sozo University School of Health Sciences, Toyohashi, Aichi, Japan
- Department of Cardiac Rehabilitation, Gifu Heart Center, Gifu, Gifu, Japan
| | - Yasutaka Hara
- Department of Cardiac Rehabilitation, Gifu Heart Center, Gifu, Gifu, Japan
| | | | - Itta Kawamura
- Department of Circulation, Gifu Heart Center, Gifu, Gifu, Japan
| | | | - Takuyuki Komoda
- Department of Plastic Surgery, Toyohashi Heart Center, Toyohashi, Aichi, Japan
| | - Tomoko Koeda
- Faculty of Rehabilitation Sciences, Nagoya Gakuin University, Nagoya, Aichi, Japan
| |
Collapse
|
4
|
Janssen TA, Lowisz CV, Phillips S. From molecular to physical function: The aging trajectory. Curr Res Physiol 2024; 8:100138. [PMID: 39811024 PMCID: PMC11732118 DOI: 10.1016/j.crphys.2024.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/18/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Aging is accompanied by a decline in muscle mass, strength, and physical function, a condition known as sarcopenia. Muscle disuse attributed to decreased physical activity, hospitalization, or illness (e.g. sarcopenia) results in a rapid decline in muscle mass in aging individuals and effectively accelerates sarcopenia. Consuming protein at levels above (at least 50-100% higher) the current recommended intakes of ∼0.8 g protein/kg bodyweight/d, along with participating in both resistance and aerobic exercise, will aid in the preservation of muscle mass. Physiological muscle adaptations often accompany the observable changes in physical independence an older adult undergoes. Muscle fibre adaptations include a reduction in type 2 fibre size and number, a loss of motor units, reduced sensitivity to calcium, reduced elasticity, and weak cross-bridges. Mitochondrial function and structure are impaired in relation to aging and are worsened with inactivity and disease states but could be overcome by engaging in exercise. Intramuscular connective tissue adaptations with age are evident in animal models; however, the adaptations in collagenous tissue within human aging are less clear. We know that the satellite muscle cell pool decreases with age, and there is a reduced capacity for muscle repair/regeneration. Finally, a pro-inflammatory state associated with age has detrimental impacts on the muscle. The purpose of this review is to highlight the physiological adaptations driving muscle aging and their potential mitigation with exercise/physical activity and nutrition.
Collapse
Affiliation(s)
- Tom A.H. Janssen
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Caroline V. Lowisz
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Department of Sport and Exercise Science, Manchester Metropolitan University Institute of Sport, Manchester, UK
| |
Collapse
|
5
|
Mastrandrea CJ, Hedge ET, Hughson RL. The Detrimental Effects of Bedrest: Premature Cardiovascular Aging and Dysfunction. Can J Cardiol 2024; 40:1468-1482. [PMID: 38759726 DOI: 10.1016/j.cjca.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
Bedrest as an experimental paradigm or as an in-patient stay for medical reasons has negative consequences for cardiovascular health. The effects of severe inactivity parallel many of the changes experienced with natural aging but over a much shorter duration. Cardiac function is reduced, arteries stiffen, neural reflex responses are impaired, and metabolic and oxidative stress responses impose burden on the heart and vascular systems. The effect of these changes is revealed in studies of integrative function. Aerobic fitness progressively deteriorates with bedrest and tolerance of upright posture is rapidly impaired. In this review we consider the similarities of aging and bedrest-induced cardiovascular deconditioning. We concur with many recent clinical recommendations that early and regular mobility with upright posture will reduce likelihood of hospital-associated disability related to bedrest.
Collapse
Affiliation(s)
- Carmelo J Mastrandrea
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada; Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Eric T Hedge
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada; Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Richard L Hughson
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada.
| |
Collapse
|
6
|
Walker S, Sahinaho UM, Vekki S, Sulonen M, Laukkanen JA, Sipilä S, Peltonen H, Laakkonen E, Lehti M. Two-week step-reduction has limited negative effects on physical function and metabolic health in older adults. Eur J Appl Physiol 2024; 124:2019-2033. [PMID: 38383794 PMCID: PMC11199225 DOI: 10.1007/s00421-024-05426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE This study determined the effects of a 2-week step-reduction period followed by 4-week exercise rehabilitation on physical function, body composition, and metabolic health in 70-80-year-olds asymptomatic for injury/illness. METHODS A parallel-group randomized controlled trial (ENDURE-study, NCT04997447) was used, where 66 older adults (79% female) were randomized to either intervention or control group. The intervention group reduced daily steps to < 2000, monitored by accelerometer, for two weeks (Period I) and then step-reduction requirement was removed with an additional exercise rehabilitation 4 times per week for 4 weeks (Period II). The control group continued their habitual physical activity throughout with no additional exercise intervention. Laboratory tests were performed at baseline, after Period I and Period II. The primary outcome measure was leg lean mass (LLM). Secondary outcomes included total lean and fat mass, blood glucose and insulin concentration, LDL cholesterol and HDL cholesterol concentration, maximal isometric leg press force (MVC), and chair rise and stair climb performance. RESULTS LLM remained unchanged in both groups and no changes occurred in physical function nor body composition in the intervention group in Period I. HDL cholesterol concentration reduced after Period I (from 1.62 ± 0.37 to 1.55 ± 0.36 mmol·L-1, P = 0.017) and returned to baseline after Period II (1.66 ± 0.38 mmol·L-1) in the intervention group (Time × Group interaction: P = 0.065). MVC improved after Period II only (Time × Group interaction: P = 0.009, Δ% = 15%, P < 0.001). CONCLUSION Short-term step-reduction in healthy older adults may not be as detrimental to health or physical function as currently thought.
Collapse
Affiliation(s)
- Simon Walker
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland.
- NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland.
| | - Ulla-Maria Sahinaho
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
| | - Sakari Vekki
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
| | - Mari Sulonen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
| | - Jari A Laukkanen
- Institute of Clinical Medicine, Department of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Wellbeing Services County of Central Finland, Jyväskylä, Finland
| | - Sarianna Sipilä
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
- Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Peltonen
- JAMK University of Applied Science, The School of Business, Sport Business, Jyväskylä, Finland
| | - Eija Laakkonen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
- Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Maarit Lehti
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
| |
Collapse
|
7
|
Fuchs CJ, Hermans WJH, Nyakayiru J, Weijzen MEG, Smeets JSJ, Aussieker T, Senden JM, Wodzig WKHW, Snijders T, Verdijk LB, van Loon LJC. Daily blood flow restriction does not preserve muscle mass and strength during 2 weeks of bed rest. J Physiol 2024. [PMID: 38411283 DOI: 10.1113/jp286065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
We measured the impact of blood flow restriction on muscle protein synthesis rates, muscle mass and strength during 2 weeks of strict bed rest. Twelve healthy, male adults (age: 24 ± 3 years, body mass index: 23.7 ± 3.1 kg/m2 ) were subjected to 14 days of strict bed rest with unilateral blood flow restriction performed three times daily in three 5 min cycles (200 mmHg). Participants consumed deuterium oxide and we collected blood and saliva samples throughout 2 weeks of bed rest. Before and immediately after bed rest, lean body mass (dual-energy X-ray absorptiometry scan) and thigh muscle volume (magnetic resonance imaging scan) were assessed in both the blood flow restricted (BFR) and control (CON) leg. Muscle biopsies were collected and unilateral muscle strength (one-repetition maximum; 1RM) was assessed for both legs before and after the bed rest period. Bed rest resulted in 1.8 ± 1.0 kg lean body mass loss (P < 0.001). Thigh muscle volume declined from 7.1 ± 1.1 to 6.7 ± 1.0 L in CON and from 7.0 ± 1.1 to 6.7 ± 1.0 L in BFR (P < 0.001), with no differences between treatments (P = 0.497). In addition, 1RM leg extension strength decreased from 60.2 ± 10.6 to 54.8 ± 10.9 kg in CON and from 59.2 ± 12.1 to 52.9 ± 12.0 kg in BFR (P = 0.014), with no differences between treatments (P = 0.594). Muscle protein synthesis rates during bed rest did not differ between the BFR and CON leg (1.11 ± 0.12 vs. 1.08 ± 0.13%/day, respectively; P = 0.302). Two weeks of bed rest substantially reduces skeletal muscle mass and strength. Blood flow restriction during bed rest does not modulate daily muscle protein synthesis rates and does not preserve muscle mass or strength. KEY POINTS: Bed rest, often necessary for recovery from illness or injury, leads to the loss of muscle mass and strength. It has been postulated that blood flow restriction may attenuate the loss of muscle mass and strength during bed rest. We investigated the effect of blood flow restriction on muscle protein synthesis rates, muscle mass and strength during 2 weeks of strict bed rest. Blood flow restriction applied during bed rest does not modulate daily muscle protein synthesis rates and does not preserve muscle mass or strength. Blood flow restriction is not effective in preventing muscle atrophy during a prolonged period of bed rest.
Collapse
Affiliation(s)
- Cas J Fuchs
- Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Wesley J H Hermans
- Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jean Nyakayiru
- Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Michelle E G Weijzen
- Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joey S J Smeets
- Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Thorben Aussieker
- Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joan M Senden
- Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Will K H W Wodzig
- Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tim Snijders
- Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
8
|
Terbraak M, Kolk D, Vroomen JLM, Twisk JWR, Buurman BM, van der Schaaf M. Post-discharge light physical activity indicates recovery in acutely hospitalized older adults - the Hospital-ADL study. BMC Geriatr 2023; 23:311. [PMID: 37202735 DOI: 10.1186/s12877-023-04031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/09/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Physical activity (PA) levels might be a simple overall physical function indicator of recovery in acutely hospitalized older adults; however it is unknown which amount and level of PA is associated with recovery. Our objective was to evaluate the amount and level of post discharge PA and its optimum cut-off values associated with recovery among acutely hospitalized older adults and stratified for frailty. METHODS We performed a prospective observational cohort study including acutely hospitalized older adults (≥ 70 years). Frailty was assessed using Fried's criteria. PA was assessed using Fitbit up to one week post discharge and quantified in steps and minutes light, moderate or higher intensity. The primary outcome was recovery at 3-months post discharge. ROC-curve analyses were used to determine cut-off values and area under the curve (AUC), and logistic regression analyses to calculate odds ratios (ORs). RESULTS The analytic sample included 174 participants with a mean (standard deviation) age of 79.2 (6.7) years of whom 84/174 (48%) were frail. At 3-months, 109/174 participants (63%) had recovered of whom 48 were frail. In all participants, determined cut-off values were 1369 steps/day (OR: 2.7, 95% confidence interval [CI]: 1.3-5.9, AUC 0.7) and 76 min/day of light intensity PA (OR: 3.9, 95% CI: 1.8-8.5, AUC 0.73). In frail participants, cut-off values were 1043 steps/day (OR: 5.0, 95% CI: 1.7-14.8, AUC 0.72) and 72 min/day of light intensity PA (OR: 7.2, 95% CI: 2.2-23.1, AUC 0,74). Determined cut-off values were not significantly associated with recovery in non-frail participants. CONCLUSIONS Post-discharge PA cut-offs indicate the odds of recovery in older adults, especially in frail individuals, however are not equipped for use as a diagnostic test in daily practice. This is a first step in providing a direction for setting rehabilitation goals in older adults after hospitalization.
Collapse
Affiliation(s)
- Michel Terbraak
- Center of Expertise Urban Vitality, Faculty of Health, Amsterdam University of Applied Sciences, Amsterdam, Netherlands.
- Amsterdam UMC, Location University of Amsterdam, Cardiology, Meibergdreef 9, Amsterdam, Netherlands.
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands.
- Department of Physical Therapy, Amsterdam University of Applied Sciences, Tafelbergweg 51, Amsterdam, 1105 BD, Netherlands.
| | - Daisy Kolk
- Amsterdam UMC, Location University of Amsterdam, Internal Medicine, Section of Geriatric Medicine, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, Netherlands
- Department of Medicine for Older People, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, Netherlands
| | - Janet L MacNeil Vroomen
- Amsterdam UMC, Location University of Amsterdam, Internal Medicine, Section of Geriatric Medicine, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, Netherlands
| | - Jos W R Twisk
- Epidemiology and Biostatistics, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, Netherlands
| | - Bianca M Buurman
- Center of Expertise Urban Vitality, Faculty of Health, Amsterdam University of Applied Sciences, Amsterdam, Netherlands
- Amsterdam UMC, Location University of Amsterdam, Internal Medicine, Section of Geriatric Medicine, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, Netherlands
| | - Marike van der Schaaf
- Center of Expertise Urban Vitality, Faculty of Health, Amsterdam University of Applied Sciences, Amsterdam, Netherlands
- Amsterdam UMC, Location University of Amsterdam, Rehabilitation, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Ageing and Vitality, Amsterdam, Netherlands
| |
Collapse
|
9
|
Arentson-Lantz EJ, Layman DK, Leidy HJ, Campbell WW, Phillips SM. Important Concepts in Protein Nutrition, Aging, and Skeletal Muscle: Honoring Dr Douglas Paddon-Jones (1969-2021) by Highlighting His Research Contributions. J Nutr 2023; 153:615-621. [PMID: 36931744 PMCID: PMC10196581 DOI: 10.1016/j.tjnut.2023.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
This review is a tribute to honor Dr Douglas Paddon-Jones by highlighting his career research contributions. Dr Paddon-Jones was a leader in recognizing the importance of muscle health and the interactions of physical activity and dietary protein for optimizing the health span. Aging is characterized by loss of muscle mass and strength associated with reduced rates of muscle protein synthesis (MPS) and the ability to repair and replace muscle proteins. Research from the team at the University of Texas Medical Branch in Galveston discovered that the age-related decline in MPS could be overcome by increasing the quantity or quality of dietary protein at each meal. Dr Paddon-Jones was instrumental in proposing and testing a "protein threshold" of ∼30 g protein/meal to optimize MPS in older adults. Dr Paddon-Jones demonstrated that physical inactivity greatly accelerates the loss of muscle mass and function in older adults. His work in physical activity led him to propose the "Catabolic Crisis Model" of muscle size and function losses, suggesting that age-related muscle loss is not a linear process, but the result of acute periods of disuse associated with injuries, illnesses, and bed rest. This model creates the opportunity to provide targeted interventions via protein supplementation and/or increased dietary protein through consuming high-quality animal-source foods. He illustrated that nutritional support, particularly enhanced protein quantity, quality, and meal distribution, can help preserve muscle health during periods of inactivity and promote health across the life course.
Collapse
Affiliation(s)
- Emily J Arentson-Lantz
- Department of Nutrition, Metabolism and Rehabilitation Science, University of Texas Medical Branch, Galveston, TX, USA.
| | - Donald K Layman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Heather J Leidy
- Department of Nutritional Sciences, Department of Pediatrics-Dell Medical, University of Texas at Austin, Austin, TX, USA
| | - Wayne W Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Arentson-Lantz EJ, Deer RR, Kokonda M, Wen CL, Pecha TA, Carreon SA, Ngyen TM, Volpi E, Nowakowski S. Improvements in sleep quality and fatigue are associated with improvements in functional recovery following hospitalization in older adults. FRONTIERS IN SLEEP 2022; 1:1011930. [PMID: 37251511 PMCID: PMC10217784 DOI: 10.3389/frsle.2022.1011930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Study objectives Poor sleep quality, a frequent problem in older adults, has been shown to be associated with reduced physical function and wellbeing. However, little is known about the relationship between sleep quality and the recovery of physical function following hospitalization. Thus, we conducted this study to examine the association between sleep quality and functional recovery after an acute hospitalization in community dwelling older adults. Methods Older adult patients (N = 23, mean age = 74 ± 9 years) were recruited during an acute hospitalization (average length of stay 3.9 days) with a cardiovascular (56%), pulmonary (22%), or metabolic (13%) admission diagnosis. Objective physical function was measured using the Short Physical Performance Battery (SPPB) and self-reported function was assessed with Katz Index of Independence in Activities of Daily Living (ADL) and Lawton Instrumental Activities of Daily Living Scale (IADL). Sleep quality was measured using Pittsburgh Sleep Quality Index (PSQI) global score and Iowa Fatigue Score (IFS). Testing was performed prior to discharge (baseline) and 4-weeks post-discharge (follow-up). Results Regression models showed PSQI Subjective Sleep Quality change scores from baseline to 4-week follow-up predicted a change in ADL (β = -0.22); PSQI Use of Sleep Medications change scores predicted a change in SPPB Total (β = 1.62) and SPPB Chair Stand (β = 0.63); IFS change scores predicted SPPB Total (β = -0.16) and SPPB Chair Stand performance (β = -0.07) change scores. Conclusions For older adults, changes in sleep medication use, daytime dysfunction, and fatigue were associated with improvements in functional recovery (including physical performance and independence) from acute hospitalization to 4-week follow-up. These results suggest that interventions focused on improving sleep quality, daytime consequences, and fatigue might help enhance physical functioning following hospitalization. Clinical trial registration ClinicalTrials.gov, identifier: NCT02203656.
Collapse
Affiliation(s)
- Emily J. Arentson-Lantz
- Department of Nutrition, Metabolism, and Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Rachel R. Deer
- Department of Nutrition, Metabolism, and Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, United States
| | - Manasa Kokonda
- Center for Innovation in Quality, Effectiveness, and Safety, Michael DeBakey VA Medical Center, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Chelsey L. Wen
- School of Public Health, University of Texas Health Science Center, Houston, TX, United States
| | - Thomas A. Pecha
- School of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Samantha A. Carreon
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Trung M. Ngyen
- School of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Elena Volpi
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, United States
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Sara Nowakowski
- Department of Nutrition, Metabolism, and Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Center for Innovation in Quality, Effectiveness, and Safety, Michael DeBakey VA Medical Center, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
11
|
Hardy EJ, Hatt J, Doleman B, Smart TF, Piasecki M, Lund JN, Phillips BE. Post-operative electrical muscle stimulation attenuates loss of muscle mass and function following major abdominal surgery in older adults: a split body randomised control trial. Age Ageing 2022; 51:afac234. [PMID: 36315433 PMCID: PMC9621149 DOI: 10.1093/ageing/afac234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Significant losses of muscle mass and function occur after major abdominal surgery. Neuromuscular electrical stimulation (NMES) has been shown to reduce muscle atrophy in some patient groups, but evidence in post-operative patients is limited. This study assesses the efficacy of NMES for attenuating muscle atrophy and functional declines following major abdominal surgery in older adults. METHODS Fifteen patients undergoing open colorectal resection completed a split body randomised control trial. Patients' lower limbs were randomised to control (CON) or NMES (STIM). The STIM limb underwent 15 minutes of quadriceps NMES twice daily on post-operative days (PODs) 1-4. Ultrasound measurements of Vastus Lateralis cross-sectional area (CSA) and muscle thickness (MT) were made preoperatively and on POD 5, as was dynamometry to determine knee extensor strength (KES). Change in CSA was the primary outcome. All outcomes were statistically analysed using linear mixed models. RESULTS NMES significantly reduced the loss of CSA (-2.52 versus -9.16%, P < 0.001), MT (-2.76 versus -8.145, P = 0.001) and KES (-10.35 versus -19.69%, P = 0.03) compared to CON. No adverse events occurred, and patients reported that NMES caused minimal or no discomfort and felt that ~90-minutes of NMES daily would be tolerable. DISCUSSION NMES reduces losses of muscle mass and function following major abdominal surgery, and as such, may be the promising tool for post-operative recovery. This is important in preventing long-term post-operative dependency, especially in the increasingly frail older patients undergoing major abdominal surgery. Further studies should establish the efficacy of bilateral NMES for improving patient-centred outcomes.
Collapse
Affiliation(s)
- Edward J Hardy
- Department of General Surgery, Royal Derby Hospital, Derby DE22 3NE, UK
- Centre of Metabolism, Ageing & Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
- Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Universities of Nottingham and Birmingham, UK
| | - Jacob Hatt
- Department of General Surgery, Royal Derby Hospital, Derby DE22 3NE, UK
- Centre of Metabolism, Ageing & Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
- Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Universities of Nottingham and Birmingham, UK
| | - Brett Doleman
- Centre of Metabolism, Ageing & Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Universities of Nottingham and Birmingham, UK
- Department of Anaesthetics, Royal Derby Hospital, Derby DE22 3NE, UK
| | - Thomas F Smart
- Department of General Surgery, Royal Derby Hospital, Derby DE22 3NE, UK
- Centre of Metabolism, Ageing & Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
- Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Universities of Nottingham and Birmingham, UK
| | - Matthew Piasecki
- Centre of Metabolism, Ageing & Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
- Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Universities of Nottingham and Birmingham, UK
| | - Jonathan N Lund
- Department of General Surgery, Royal Derby Hospital, Derby DE22 3NE, UK
- Centre of Metabolism, Ageing & Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Bethan E Phillips
- Centre of Metabolism, Ageing & Physiology, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
- Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Universities of Nottingham and Birmingham, UK
| |
Collapse
|
12
|
Hedge ET, Patterson CA, Mastrandrea CJ, Sonjak V, Hajj-Boutros G, Faust A, Morais JA, Hughson RL. Implementation of exercise countermeasures during spaceflight and microgravity analogue studies: Developing countermeasure protocols for bedrest in older adults (BROA). Front Physiol 2022; 13:928313. [PMID: 36017336 PMCID: PMC9395735 DOI: 10.3389/fphys.2022.928313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022] Open
Abstract
Significant progress has been made in the development of countermeasures to attenuate the negative consequences of prolonged exposure to microgravity on astronauts’ bodies. Deconditioning of several organ systems during flight includes losses to cardiorespiratory fitness, muscle mass, bone density and strength. Similar deconditioning also occurs during prolonged bedrest; any protracted time immobile or inactive, especially for unwell older adults (e.g., confined to hospital beds), can lead to similar detrimental health consequences. Due to limitations in physiological research in space, the six-degree head-down tilt bedrest protocol was developed as ground-based analogue to spaceflight. A variety of exercise countermeasures have been tested as interventions to limit detrimental changes and physiological deconditioning of the musculoskeletal and cardiovascular systems. The Canadian Institutes of Health Research and the Canadian Space Agency recently provided funding for research focused on Understanding the Health Impact of Inactivity to study the efficacy of exercise countermeasures in a 14-day randomized clinical trial of six-degree head-down tilt bedrest study in older adults aged 55–65 years old (BROA). Here we will describe the development of a multi-modality countermeasure protocol for the BROA campaign that includes upper- and lower-body resistance exercise and head-down tilt cycle ergometry (high-intensity interval and continuous aerobic exercise training). We provide reasoning for the choice of these modalities following review of the latest available information on exercise as a countermeasure for inactivity and spaceflight-related deconditioning. In summary, this paper sets out to review up-to-date exercise countermeasure research from spaceflight and head-down bedrest studies, whilst providing support for the proposed research countermeasure protocols developed for the bedrest study in older adults.
Collapse
Affiliation(s)
- Eric T. Hedge
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | | | | | - Vita Sonjak
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Guy Hajj-Boutros
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Andréa Faust
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - José A. Morais
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
- Division of Geriatric Medicine, McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Richard L. Hughson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada
- *Correspondence: Richard L. Hughson,
| |
Collapse
|
13
|
Fry JL, Munson BD, Thompson KL, Fry CS, Paddon-Jones D, Arentson-Lantz EJ. The T allele of TCF7L2 rs7903146 is associated with decreased glucose tolerance after bed rest in healthy older adults. Sci Rep 2022; 12:6897. [PMID: 35477971 PMCID: PMC9046412 DOI: 10.1038/s41598-022-10683-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
Inpatient populations are at increased risk of hyperglycemia due to factors such as medications, physical inactivity and underlying illness, which increases morbidity and mortality. Unfortunately, clinicians have limited tools available to prospectively identify those at greatest risk. We evaluated the ability of 10 common genetic variants associated with development of type 2 diabetes to predict impaired glucose metabolism. Our research model was a simulated inpatient hospital stay (7 day bed rest protocol, standardized diet, and physical inactivity) in a cohort of healthy older adults (n = 31, 65 ± 8 years) with baseline fasting blood glucose < 100 mg/dL. Participants completed a standard 75 g oral glucose tolerance test (OGTT) at baseline and post-bed rest. Bed rest increased 2-h OGTT blood glucose and insulin independent of genetic variant. In multiple regression modeling, the transcription factor 7-like 2 (TCF7L2) rs7903146 T allele predicted increases in 2-h OGTT blood glucose (p = 0.039). We showed that the TCF7L2 rs7903146 T allele confers risk for loss of glucose tolerance in nondiabetic older adults following 7 days of bed rest.
Collapse
Affiliation(s)
- Jean L Fry
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, 40536-0200, USA.
| | - Brooke D Munson
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, 40536-0200, USA
| | - Katherine L Thompson
- Dr. Bing Zhang Department of Statistics, University of Kentucky, Lexington, KY, 40536-0082, USA
| | - Christopher S Fry
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, 40536-0200, USA
| | - Douglas Paddon-Jones
- Department of Nutrition & Metabolism, Center for Rehabilitation, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, TX, 77555-1028, USA
| | - Emily J Arentson-Lantz
- Department of Nutrition & Metabolism, Center for Rehabilitation, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, TX, 77555-1028, USA
| |
Collapse
|
14
|
Batista PP, Perracini MR, de Amorim JSC, de Lima MDCC, Lima CA, Pereira DS, Dantas RG, Fittipaldi EODS, Santos AD, Campos HLM, Pereira LSM. Prevalence risk of sarcopenia in older Brazilian adults during the pandemic: A cross-sectional analysis of the Remobilize Study. SAO PAULO MED J 2022; 141:e2022159. [PMID: 36541952 PMCID: PMC10065115 DOI: 10.1590/1516-3180.2022.0159.r1.19082022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/19/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Social distancing has led to lifestyle changes among older adults during the coronavirus disease 2019 (COVID-19) pandemic. OBJECTIVES This study aimed to estimate the prevalence risk of sarcopenia (RS) and investigate its associated factors during the COVID-19 pandemic in older Brazilian adults. DESIGN AND SETTING Cross-sectional observational analysis of baseline data as part of the Remobilize Study. METHODS Participants in the study were older adults (≥ 60 years), excluding those who were bedridden or institutionalized. The data collected consisted of answers about the RS (SARC-F), functional status, walking, sedentary behavior (SB), pain, comorbidity, and life space mobility. RESULTS A total of 1,482 older adults (70 ± 8.14 years, 74% women) participated in the study, and an RS prevalence of 17.1% was found. (95% confidence interval [CI] 15.25-19.15%). The adjusted multivariate model showed a significant association between RS and functional limitation (odds ratio [OR]: 19.05; CI 13.00-28.32), comorbidity (OR: 5.11; CI 3.44-7.81), pain (OR: 4.56; CI 3.33-6.28), total walking (OR: 0.99; CI 0.99-1.00), SB of 8-10 hours (OR: 1.85; CI 1.15-2.93), and SB of > 10 hours (OR: 3.93; CI 2.48-6.22). RS was associated with mobility during the pandemic (OR: 0.97; CI 0.96-0.98). P < 0.05. CONCLUSIONS During the pandemic, the prevalence of RS in older Brazilians was estimated at 17.1%. Moderate to severe functional limitation, comorbidities, presence of pain, walking, longer SB period, and reduced life space mobility significantly contributed to RS in older adults during the pandemic.
Collapse
Affiliation(s)
- Patricia Parreira Batista
- PT, MSc. Doctoral Student Postgraduate Program in Rehabilitation
Sciences, Department of Physiotherapy, Universidade Federal de Minas Gerais
(UFMG), Belo Horizonte (MG), Brazil
| | - Monica Rodrigues Perracini
- PT, PhD. Professor, Master’s and Doctoral Programs in Physical
Therapy, Universidade Cidade de São Paulo (UNICID), São Paulo (SP), Brazil;
Master’s and Doctoral Programs in Gerontology, Faculty of Medical Sciences,
Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil
| | | | - Maria do Carmo Correia de Lima
- PT, PhD. Faculty of Medical Sciences, Master’s and Doctoral
Programs in Gerontology, Universidade Estadual de Campinas (UNICAMP), Campinas
(SP), Brazil
| | - Camila Astolphi Lima
- PT, PhD. Postdoctoral Student of Master’s and Doctoral Program
in Physical Therapy, Universidade Cidade de São Paulo (UNICID), São Paulo (SP),
Brazil
| | - Daniele Sirineu Pereira
- PT, PhD. Professor, Postgraduate Program in Rehabilitation
Sciences, Department of Physiotherapy, Universidade Federal de Minas Gerais
(UFMG), Belo Horizonte (MG), Brazil
| | - Renata Gonçalves Dantas
- PT, MSc. Doctoral Student of Master’s and Doctoral Program in
Physical Therapy, Universidade Cidade de São Paulo (UNICID), São Paulo (SP),
Brazil; and Professor of Physical Therapy, Universidade Estadual do Sudoeste da
Bahia (UESB), Vitória da Conquista (BA), Brazil
| | | | - Aurélio Dias Santos
- PT, MSc. Professor, Department of Physiotherapy, Centro
Universitário Dr. Leão Sampaio (UNILEÃO), Juazeiro do Norte (CE), Brazil
| | - Hércules Lázaro Morais Campos
- PT, MSc. Professor, Department of Physiotherapy, Universidade
Federal do Amazonas/Instituto de Saúde e Biotecnologia (UFAM/ISB), Coari (AM),
Brazil. Doctoral Student, Postgraduate Program in Public Health, Universidade
Federal do Espírito Santo (UFES), Vitória (ES), Brazil
| | - Leani Souza Máximo Pereira
- PT, PhD. Professor, Postgraduate Program in Rehabilitation
Sciences, Department of Physiotherapy, Universidade Federal de Minas Gerais
(UFMG), Belo Horizonte (MG), Brazil
| |
Collapse
|
15
|
Di Girolamo FG, Fiotti N, Milanović Z, Situlin R, Mearelli F, Vinci P, Šimunič B, Pišot R, Narici M, Biolo G. The Aging Muscle in Experimental Bed Rest: A Systematic Review and Meta-Analysis. Front Nutr 2021; 8:633987. [PMID: 34422875 PMCID: PMC8371327 DOI: 10.3389/fnut.2021.633987] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Maintaining skeletal muscle mass and function in aging is crucial for preserving the quality of life and health. An experimental bed rest (BR) protocol is a suitable model to explore muscle decline on aging during inactivity. Objective: The purpose of this systematic review and meta-analysis was, therefore, to carry out an up-to-date evaluation of bed rest, with a specific focus on the magnitude of effects on muscle mass, strength, power, and functional capacity changes as well as the mechanisms, molecules, and pathways involved in muscle decay. Design: This was a systematic review and meta-analysis study. Data sources: We used PubMed, Medline; Web of Science, Google Scholar, and the Cochrane library, all of which were searched prior to April 23, 2020. A manual search was performed to cover bed rest experimental protocols using the following key terms, either singly or in combination: "Elderly Bed rest," "Older Bed rest," "Old Bed rest," "Aging Bed rest," "Aging Bed rest," "Bed-rest," and "Bedrest". Eligibility criteria for selecting studies: The inclusion criteria were divided into four sections: type of study, participants, interventions, and outcome measures. The primary outcome measures were: body mass index, fat mass, fat-free mass, leg lean mass, cross-sectional area, knee extension power, cytokine pattern, IGF signaling biomarkers, FOXO signaling biomarkers, mitochondrial modulation biomarkers, and muscle protein kinetics biomarkers. Results: A total of 25 studies were included in the qualitative synthesis, while 17 of them were included in the meta-analysis. In total, 118 healthy elderly volunteers underwent 5-, 7-, 10-, or 14-days of BR and provided a brief sketch on the possible mechanisms involved. In the very early phase of BR, important changes occurred in the skeletal muscle, with significant loss of performance associated with a lesser grade reduction of the total body and muscle mass. Meta-analysis of the effect of bed rest on total body mass was determined to be small but statistically significant (ES = -0.45, 95% CI: -0.72 to -0.19, P < 0.001). Moderate, statistically significant effects were observed for total lean body mass (ES = -0.67, 95% CI: -0.95 to -0.40, P < 0.001) after bed rest intervention. Overall, total lean body mass was decreased by 1.5 kg, while there was no relationship between bed rest duration and outcomes (Z = 0.423, p = 672). The meta-analyzed effect showed that bed rest produced large, statistically significant, effects (ES = -1.06, 95% CI: -1.37 to -0.75, P < 0.001) in terms of the knee extension power. Knee extension power was decreased by 14.65 N/s. In contrast, to other measures, meta-regression showed a significant relationship between bed rest duration and knee extension power (Z = 4.219, p < 0.001). Moderate, statistically significant, effects were observed after bed rest intervention for leg muscle mass in both old (ES = -0.68, 95% CI: -0.96 to -0.40, P < 0.001) and young (ES = -0.51, 95% CI: -0.80 to -0.22, P < 0.001) adults. However, the magnitude of change was higher in older (MD = -0.86 kg) compared to younger (MD = -0.24 kg) adults. Conclusion: Experimental BR is a suitable model to explore the detrimental effects of inactivity in young adults, old adults, and hospitalized people. Changes in muscle mass and function are the two most investigated variables, and they allow for a consistent trend in the BR-induced changes. Mechanisms underlying the greater loss of muscle mass and function in aging, following inactivity, need to be thoroughly investigated.
Collapse
Affiliation(s)
- Filippo Giorgio Di Girolamo
- Clinica Medica, Azienda Sanitaria Universitaria Giuliano Isontina, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.,SC Assistenza Farmaceutica, Azienda Sanitaria Universitaria Giuliano Isontina, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Nicola Fiotti
- Clinica Medica, Azienda Sanitaria Universitaria Giuliano Isontina, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Zoran Milanović
- Faculty of Sport and Physical Education, University of Niš, Niš, Serbia.,Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia.,Faculty of Sports Studies, Incubator of Kinanthropological Research, Masaryk University, Brno, Czechia
| | - Roberta Situlin
- Clinica Medica, Azienda Sanitaria Universitaria Giuliano Isontina, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Filippo Mearelli
- Clinica Medica, Azienda Sanitaria Universitaria Giuliano Isontina, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Pierandrea Vinci
- Clinica Medica, Azienda Sanitaria Universitaria Giuliano Isontina, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Boštjan Šimunič
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Rado Pišot
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Marco Narici
- Department of Biomedical Sciences, Neuromuscular Physiology Laboratory, University of Padova, Padova, Italy
| | - Gianni Biolo
- Clinica Medica, Azienda Sanitaria Universitaria Giuliano Isontina, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
16
|
Arentson-Lantz EJ, Kilroe S. Practical applications of whey protein in supporting skeletal muscle maintenance, recovery, and reconditioning. J Anim Sci 2021; 99:6149525. [PMID: 33630061 DOI: 10.1093/jas/skab060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Like humans, many companion animals experience a gradual decline in skeletal muscle mass and function during later years of life. This process, analogous to sarcopenia in humans, increases risk for morbidity and mortality. Periods of reduced activity due to injury or illness, followed by an incomplete recovery, can accelerate the loss of muscle mass and function. Emerging research from human studies suggests that moderate amounts of high-quality protein may attenuate the loss of muscle, while preventing accumulation of fat during periods of disuse. Whey protein is a consumer-friendly and readily available source of high-quality protein. It supports skeletal muscle maintenance during normal aging and may also provide anabolic support during periods of illness, injury, and recovery. Ongoing research efforts continue to refine our understanding of how protein quality, quantity, and meal timing can be optimized to support retention of muscle mass and function during aging. Priority research areas include supplementation with high-quality protein during illness/injury to stimulate anabolism by targeting molecular mechanisms that regulate skeletal muscle metabolism.
Collapse
Affiliation(s)
- Emily J Arentson-Lantz
- Department of Nutrition and Metabolism, Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, TX 77555-1028, USA
| | - Sean Kilroe
- Department of Nutrition and Metabolism, Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, TX 77555-1028, USA.,Department of Sports and Health Sciences, College of Life and Environmental Science, University of Exeter, Exeter, UK
| |
Collapse
|
17
|
Marshall RN, Morgan PT, Martinez-Valdes E, Breen L. Quadriceps muscle electromyography activity during physical activities and resistance exercise modes in younger and older adults. Exp Gerontol 2020; 136:110965. [PMID: 32360986 PMCID: PMC7264709 DOI: 10.1016/j.exger.2020.110965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Understanding the root cause of the age-related impairment in muscle adaptive remodelling with resistance exercise training (RET) and developing pragmatic and accessible resistance exercise for older adults, are essential research directives. METHODS We sought to determine whether indices of quadriceps muscle EMG activity in response to different modes of RET and activities of daily living (ADL), differed between 15 healthy younger (25 ± 3 years) and 15 older (70 ± 5 years) adults. On four separate days, participants completed a maximal voluntary contraction (MVC) of the knee extensors, followed by a 15 m walking task, stair climbing task (i.e. ADL) and lower-limb RET through body-weight squats (BW-RET) and seated knee extensions on a machine (MN-RET) or via elastic bands (EB-RET). Surface quadriceps electromyography (EMG) was measured throughout all tasks to provide indirect estimates of changes in muscle activity. RESULTS MVC was significantly greater in young vs. older adults (Young: 256 ± 72 vs. Old: 137 ± 48 N·m, P < 0.001). EMG activity during all exercise tasks was significantly higher in older vs. younger adults when expressed relative to maximal EMG achieved during MVC (P < 0.01, for all). In addition, relative quadriceps muscle EMG activity was significantly greater in EB-RET (Young: 20.3 ± 8.7 vs. Old: 37.0 ± 10.7%) and MN-RET (Young: 22.9 ± 10.3, vs. Old: 37.8 ± 10.8%) compared with BW-RET (Young: 8.6 ± 2.9 vs. Old: 27.0 ± 9.3%), in young and older adults (P < 0.001). However, there was no significant difference in quadriceps EMG between EB-RET and MN-RET (P > 0.05). CONCLUSIONS In conclusion, relative quadriceps muscle EMG activity was higher across a range of activities/exercise modes in older vs. younger adults. The similar quadriceps muscle EMG activity between EB-RET and MN-RET provides a platform for detailed investigation of the neuromuscular and muscle metabolic responses to such pragmatic forms of RET to strengthen the evidence-base for this mode of RET as a potential countermeasure to sarcopenia.
Collapse
Affiliation(s)
- Ryan N Marshall
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, United Kingdom; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, United Kingdom
| | - Paul T Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, United Kingdom; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, United Kingdom
| | - Eduardo Martinez-Valdes
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, United Kingdom; Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, United Kingdom
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, United Kingdom; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, United Kingdom; NIHR, Birmingham Biomedical Research Centre, Birmingham, United Kingdom.
| |
Collapse
|
18
|
Moro T, Paoli A. When COVID-19 affects muscle: effects of quarantine in older adults. Eur J Transl Myol 2020; 30:9069. [PMID: 32782767 PMCID: PMC7385699 DOI: 10.4081/ejtm.2019.9069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/16/2020] [Indexed: 12/31/2022] Open
Abstract
At the beginning of 2020 a respiratory diseased named COVID-19 rapidly spread worldwide. Due to the presence of comorbidities and a greater susceptibility to infections, older adults are the population most affected by this pandemic. An efficient pharmacological treatment for COVID-19 is not ready yet; in the meanwhile, a general quarantine has been initiated as a preventive action against the spread of the disease. If on one side this countermeasure is slowing the spread of the virus, on the other side is also reducing the amount of physical activity. Sedentariness is associated with numerous negative health outcomes and increase risk of fall, fractures and disabilities in older adults. Models of physical inactivity have been widely studied in the past decades, and most studies agreed that is necessary to implement physical exercise (such as walking, low load resistance or in bed exercise) during periods of disuse to protect muscle mass and function from catabolic crisis. Moreover, older adults have a blunted response to physical rehabilitation, and a combination of intense resistance training and nutrition are necessary to overcome the loss of in skeletal muscle due to disuse.
Collapse
Affiliation(s)
- Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Italy
- CIR-Myo, University of Padova, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Italy
- CIR-Myo, University of Padova, Italy
| |
Collapse
|
19
|
Howard EE, Pasiakos SM, Fussell MA, Rodriguez NR. Skeletal Muscle Disuse Atrophy and the Rehabilitative Role of Protein in Recovery from Musculoskeletal Injury. Adv Nutr 2020; 11:989-1001. [PMID: 32167129 PMCID: PMC7360452 DOI: 10.1093/advances/nmaa015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/29/2019] [Accepted: 02/04/2020] [Indexed: 01/05/2023] Open
Abstract
Muscle atrophy and weakness occur as a consequence of disuse after musculoskeletal injury (MSI). The slow recovery and persistence of these deficits even after physical rehabilitation efforts indicate that interventions designed to attenuate muscle atrophy and protect muscle function are necessary to accelerate and optimize recovery from MSI. Evidence suggests that manipulating protein intake via dietary protein or free amino acid-based supplementation diminishes muscle atrophy and/or preserves muscle function in experimental models of disuse (i.e., immobilization and bed rest in healthy populations). However, this concept has rarely been considered in the context of disuse following MSI, which often occurs with some muscle activation during postinjury physical rehabilitation. Given that exercise sensitizes skeletal muscle to the anabolic effect of protein ingestion, early rehabilitation may act synergistically with dietary protein to protect muscle mass and function during postinjury disuse conditions. This narrative review explores mechanisms of skeletal muscle disuse atrophy and recent advances delineating the role of protein intake as a potential countermeasure. The possible synergistic effect of protein-based interventions and postinjury rehabilitation in attenuating muscle atrophy and weakness following MSI is also considered.
Collapse
Affiliation(s)
- Emily E Howard
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA,Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Stefan M Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Maya A Fussell
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
20
|
Moro T, Paoli A. When COVID-19 affects muscle: effects of quarantine in older adults. Eur J Transl Myol 2020. [DOI: 10.4081/ejtm.2020.9069] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
At the beginning of 2020 a respiratory diseased named COVID-19 rapidly spread worldwide. Due to the presence of comorbidities and a greater susceptibility to infections, older adults are the population most affected by this pandemic. An efficient pharmacological treatment for COVID-19 is not ready yet; in the meanwhile, a general quarantine has been initiated as a preventive action against the spread of the disease. If on one side this countermeasure is slowing the spread of the virus, on the other side is also reducing the amount of physical activity. Sedentariness is associated with numerous negative health outcomes and increase risk of fall, fractures and disabilities in older adults. Models of physical inactivity have been widely studied in the past decades, and most studies agreed that is necessary to implement physical exercise (such as walking, low load resistance or in bed exercise) during periods of disuse to protect muscle mass and function from catabolic crisis. Moreover, older adults have a blunted response to physical rehabilitation, and a combination of intense resistance training and nutrition are necessary to overcome the loss of in skeletal muscle due to disuse.
Collapse
|
21
|
Arentson-Lantz EJ, Galvan E, Ellison J, Wacher A, Paddon-Jones D. Improving Dietary Protein Quality Reduces the Negative Effects of Physical Inactivity on Body Composition and Muscle Function. J Gerontol A Biol Sci Med Sci 2020; 74:1605-1611. [PMID: 30689727 DOI: 10.1093/gerona/glz003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Brief periods of physical inactivity can compromise muscle health. Increasing dietary protein intake is potentially beneficial but complicated by difficulties reconciling anabolic potential with a realistic food volume and energy intake. We sought to determine whether increasing dietary protein quality could reduce the negative effects of physical inactivity. METHODS Twenty healthy, older men and women completed 7 days of bed rest followed by 5 days of rehabilitation. Volunteers consumed a mixed macronutrient diet (MIXED: N = 10; 68 ± 2 years; 1,722 ± 29 kcal/day; 0.97 ± 0.01 g protein/kg/day) or an isoenergetic, whey-augmented, higher protein quality diet (WHEY: N = 10; 69 ± 1 years; 1,706 ± 23 kcal/day; 0.90 ± 0.01 g protein/kg/day). Outcomes included body composition, blood glucose, insulin, and a battery of physical function tests. RESULTS During bed rest, both groups experienced a 20% reduction in knee extension peak torque (p < .05). The WHEY diet partially protected leg lean mass (-1,035 vs. -680 ± 138 g, MIXED vs. WHEY; p = .08) and contributed to a greater loss of body fat (-90 vs. -233 ± 152 g, MIXED vs. WHEY; p < .05). Following rehabilitation, knee extension peak torque in the WHEY group fully recovered (-10.0 vs. 2.2 ± 4.1 Nm, MIXED vs. WHEY; p = .05). Blood glucose, insulin, aerobic capacity, and Short Physical Performance Battery (SPPB) changes were similar in both dietary conditions (p > .05). CONCLUSIONS Improving protein quality without increasing total energy intake has the potential to partially counter some of the negative effects of bed rest in older adults.
Collapse
Affiliation(s)
- Emily J Arentson-Lantz
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston.,Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston
| | - Elfego Galvan
- Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston
| | | | - Adam Wacher
- Department of Anesthesiology, University of Texas Medical Branch, Galveston
| | - Douglas Paddon-Jones
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston.,Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston
| |
Collapse
|
22
|
Arentson-Lantz EJ, Fiebig KN, Anderson-Catania KJ, Deer RR, Wacher A, Fry CS, Lamon S, Paddon-Jones D. Countering disuse atrophy in older adults with low-volume leucine supplementation. J Appl Physiol (1985) 2020; 128:967-977. [PMID: 32191600 DOI: 10.1152/japplphysiol.00847.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Older adults are at increased risk of being bedridden and experiencing negative health outcomes including the loss of muscle tissue and functional capacity. We hypothesized that supplementing daily meals with a small quantity (3-4 g/meal) of leucine would partially preserve lean leg mass and function of older adults during bed rest. During a 7-day bed rest protocol, followed by 5 days of inpatient rehabilitation, healthy older men and women (67.8 ± 1.1 yr, 14 men; 6 women) were randomized to receive isoenergetic meals supplemented with leucine (LEU, 0.06 g/kg/meal; n = 10) or an alanine control (CON, 0.06 g/kg/meal; n = 10). Outcomes were assessed at baseline, following bed rest, and after rehabilitation. Body composition was measured by dual-energy X-ray absorptiometry. Functional capacity was assessed by knee extensor isokinetic and isometric dynamometry, peak aerobic capacity, and the short physical performance battery. Muscle fiber type, cross-sectional area, signaling protein expression levels, and single fiber characteristics were determined from biopsies of the vastus lateralis. Leucine supplementation reduced the loss of leg lean mass during bed rest (LEU vs. CON: -423 vs. -1035 ± 143 g; P = 0.008) but had limited impact on strength or endurance-based functional outcomes. Similarly, leucine had no effect on markers of anabolic signaling and protein degradation during bed rest or rehabilitation. In conclusion, providing older adults with supplemental leucine has minimal impact on total energy or protein consumption and has the potential to partially counter some, but not all, of the negative effects of inactivity on muscle health.NEW & NOTEWORTHY Skeletal muscle morphology and function in older adults was significantly compromised by 7 days of disuse. Leucine supplementation partially countered the loss of lean leg mass but did not preserve muscle function or positively impact changes at the muscle fiber level associated with bed rest or rehabilitation. Of note, our data support a relationship between myonuclear content and adaptations to muscle atrophy at the whole limb and single fiber level.
Collapse
Affiliation(s)
- Emily J Arentson-Lantz
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas.,Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, Texas
| | - Kinga N Fiebig
- Institute for Physical Activity and Nutrition (IPAN), Faculty of Health, Deakin University, Melbourne, Australia
| | - Kim J Anderson-Catania
- Institute for Physical Activity and Nutrition (IPAN), Faculty of Health, Deakin University, Melbourne, Australia
| | - Rachel R Deer
- Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, Texas.,Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, Texas
| | - Adam Wacher
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Christopher S Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas.,Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, Texas
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition (IPAN), Faculty of Health, Deakin University, Melbourne, Australia
| | - Douglas Paddon-Jones
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas.,Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
23
|
Oikawa SY, Holloway TM, Phillips SM. The Impact of Step Reduction on Muscle Health in Aging: Protein and Exercise as Countermeasures. Front Nutr 2019; 6:75. [PMID: 31179284 PMCID: PMC6543894 DOI: 10.3389/fnut.2019.00075] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022] Open
Abstract
Declines in strength and muscle function with age—sarcopenia—contribute to a variety of negative outcomes including an increased risk of: falls, fractures, hospitalization, and reduced mobility in older persons. Population-based estimates of the loss of muscle after age 60 show a loss of ~1% per year while strength loss is more rapid at ~3% per year. These rates are not, however, linear as periodic bouts of reduced physical activity and muscle disuse transiently accelerate loss of muscle and declines in muscle strength and power. Episodic complete muscle disuse can be due to sickness-related bed rest or local muscle disuse as a result of limb immobilization/surgery. Alternatively, relative muscle disuse occurs during inactivity due to illness and the associated convalescence resulting in marked reductions in daily steps, often referred to as step reduction (SR). While it is a “milder” form of disuse, it can have a similar adverse impact on skeletal muscle health. The physiological consequences of even short-term inactivity, modeled by SR, show losses in muscle mass and strength, as well as impaired insulin sensitivity and an increase in systemic inflammation. Though seemingly benign in comparison to bed rest, periodic inactivity likely occurs, we posit, more frequently with advancing age due to illness, declining mental health and declining mobility. Given that recovery from inactivity in older adults is slow or possibly incomplete we hypothesize that accumulated periods of inactivity contribute to sarcopenia. Periodic activity, even in small quantities, and protein supplementation may serve as effective strategies to offset the loss of muscle mass with aging, specifically during periods of inactivity. The aim of this review is to examine the recent literature encompassing SR, as a model of inactivity, and to explore the capacity of nutrition and exercise interventions to mitigate adverse physiological changes as a result of SR.
Collapse
Affiliation(s)
- Sara Y Oikawa
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Tanya M Holloway
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|