1
|
Segura-Uribe JJ, García-de la Torre P, Castillo-Mendieta T, Bribiesca-Cruz I, Orozco-Suárez S, Soriano-Ursúa MA, Pinto-Almazán R, Fuentes-Venado CE, Guerra-Araiza C. Tibolone Improves Memory and Decreases the Content of Amyloid-β Peptides and Tau Protein in the Hippocampus of a Murine Model of Alzheimer's Disease. J Alzheimers Dis 2022; 90:1437-1447. [PMID: 36278346 DOI: 10.3233/jad-220434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) affects women more than men and consequently has been associated with menopause. Tibolone (TIB) has been used as a hormone replacement therapy to alleviate climacteric symptoms. Neuroprotective effects of TIB have also been reported in some animal models. OBJECTIVE This study aimed to assess the effect of TIB on memory and Aβ peptides and tau protein content in the hippocampus and cerebellum of transgenic 3xTgAD ovariectomized mice. METHODS Three-month-old female mice were ovariectomized. Ten days after surgery, animals were divided into four groups: wild-type (WT)+vehicle; WT+TIB (1 mg/kg); 3xTgAD+vehicle; and 3xTgAD+TIB (1 mg/kg). TIB was administered for three months, and memory was evaluated using the object-in-context recognition task. Subsequently, animals were decapitated, and the hippocampus and cerebellum were dissected. Using commercial ELISA kits, these brain structures were homogenized in a PBS buffer for quantifying Aβ40 and Aβ42 and phosphorylated and total tau.ResultsA long-term memory deficit was observed in the 3xTgAD+vehicle group. In contrast, TIB treatment improved long-term memory in the 3xTgAD+TIB group than those treated with vehicle (p < 0.05). Furthermore, TIB treatment decreased Aβ and tau content in the hippocampus of 3xTgAD mice compared to vehicle-treated groups (p < 0.05). No significant changes were observed in the cerebellum. CONCLUSION Chronic treatment with TIB showed neuroprotective effects and delayed AD neuropathology in the 3xTgAD mice. Our results support hormone replacement therapy with TIB in menopausal women for neuroprotection.
Collapse
Affiliation(s)
- Julia J Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de Mexico Federico Gómez, Secretarya de Salud, Mexico City, Mexico
| | - Paola García-de la Torre
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Tzayaka Castillo-Mendieta
- Unidad de Investigación Médica en Farmacologya, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Iván Bribiesca-Cruz
- Unidad de Investigación Médica en Farmacologya, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Marvin A Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rodolfo Pinto-Almazán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Claudia E Fuentes-Venado
- Servicio de Medicina Física y Rehabilitación, Hospital General de Zona No 197, Texcoco, State of Mexico, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacologya, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
2
|
Silva WP, Rocha RG, Felisbino JKRP, Sousa RMF, Munoz RAA, Richter EM. Electrochemical Determination of the Steroid Tibolone and Its Metabolites in Saliva Samples. ChemElectroChem 2020. [DOI: 10.1002/celc.202001248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weberson P. Silva
- Institute of Chemistry Federal University of Uberlândia Minas Gerais Brazil 38400-092
| | - Raquel G. Rocha
- Institute of Chemistry Federal University of Uberlândia Minas Gerais Brazil 38400-092
| | | | - Raquel M. F. Sousa
- Institute of Chemistry Federal University of Uberlândia Minas Gerais Brazil 38400-092
| | - Rodrigo A. A. Munoz
- Institute of Chemistry Federal University of Uberlândia Minas Gerais Brazil 38400-092
| | - Eduardo M. Richter
- Institute of Chemistry Federal University of Uberlândia Minas Gerais Brazil 38400-092
| |
Collapse
|
3
|
Del Río JP, Molina S, Hidalgo-Lanussa O, Garcia-Segura LM, Barreto GE. Tibolone as Hormonal Therapy and Neuroprotective Agent. Trends Endocrinol Metab 2020; 31:742-759. [PMID: 32507541 DOI: 10.1016/j.tem.2020.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
Tibolone (TIB), a selective tissue estrogenic activity regulator (STEAR) in clinical use by postmenopausal women, activates hormonal receptors in a tissue-specific manner. Estrogenic activity is present mostly in the brain, vagina, and bone, while the inactive forms predominate in the endometrium and breast. Conflicting literature on TIB's actions has been observed. While it has benefits for vasomotor symptoms, bone demineralization, and sexual health, a higher relative risk of hormone-sensitive cancer has been reported. In the brain, TIB can improve mood and cognition, neuroinflammation, and reactive gliosis. This review aims to discuss the systemic effects of TIB on peri- and post-menopausal women and its role in the brain. We suggest that TIB is a hormonal therapy with promising neuroprotective properties.
Collapse
Affiliation(s)
- Juan Pablo Del Río
- Reproductive Health Research Institute, Santiago, Chile; Translational Psychiatry Laboratory, Clínica Psiquiátrica Universitaria, Hospital Clínico, Universidad de Chile, Santiago, Chile; Millennium Nucleus to Improve the Mental Health of Adolescents and Youths (Imhay), Santiago, Chile
| | | | - Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - George E Barreto
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
4
|
Application of UPLC-MS/MS for separation and quantification of 3α-Hydroxy Tibolone and comparative bioavailability of two Tibolone formulations in healthy volunteers. J Pharm Anal 2013; 3:270-277. [PMID: 29403827 PMCID: PMC5760983 DOI: 10.1016/j.jpha.2013.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 02/21/2013] [Indexed: 11/29/2022] Open
Abstract
A novel, fast, sensitive and robust method based on ultra-performance liquid chromatography coupled to atmospheric pressure electrospray ionization tandem mass spectrometry (UPLC–ESI-MS/MS) has been developed to separate two Tibolone stereoisomers i.e., 3α-Hydroxy Tibolone and 3β-Hydroxy Tibolone and to quantify 3α-Hydroxy Tibolone using p-toulenesulfonyl isocyanate (PTSI) as a derivatizing reagent in human plasma. 3α-Hydroxy Tibolone-13CD3 was used as an internal standard (IS). The analyte and IS were extracted from human plasma by liquid–liquid extraction using ethyl acetate. Extracted samples were analyzed by UPLC–ESI-MS/MS. Chromatography was performed using binary gradient on UPLC analytical column. A linear calibration curve over the range of 0.100–35.000 ng/mL was obtained and lower limit of quantification (LLOQ) was 0.100 ng/mL demonstrating acceptable accuracy and precision. This method was successfully applied to a pharmacokinetic study in order to compare a test Tibolone 2.5 mg formulation vs. a reference 2.5 mg Tibolone tablet formulation in 50 post-menopausal/surgical menopause female human volunteers under fasting conditions. It is concluded that test formulation of Tibolone is bioequivalent to reference formulation of Tibolone.
Collapse
|
5
|
Determination of 3α-hydroxytibolone by LC/MS/MS with electrospray ionization method and its application to bioequivalence study in human plasma. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2012. [DOI: 10.1007/s40005-012-0047-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
|
7
|
Jin Y, Duan L, Lee SH, Kloosterboer HJ, Blair IA, Penning TM. Human cytosolic hydroxysteroid dehydrogenases of the aldo-ketoreductase superfamily catalyze reduction of conjugated steroids: implications for phase I and phase II steroid hormone metabolism. J Biol Chem 2009; 284:10013-22. [PMID: 19218247 DOI: 10.1074/jbc.m809465200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldo-ketoreductase 1C (AKR1C) enzymes catalyze the NADPH-dependent reduction of ketosteroids to hydroxysteroids. They are Phase I metabolizing enzymes for natural and synthetic steroid hormones. They convert 5alpha-dihydrotestosterone (Dht, potent androgen) to 3alpha/beta-androstanediols (inactive androgens) and the prodrug tibolone (Tib) to estrogenic 3alpha/beta-hydroxytibolones. Herein we demonstrate for the first time that human AKR1C enzymes (AKR1C1-4) are able to reduce conjugated steroids such as Dht-17beta-glucuronide (DhtG), Dht-17beta-sulfate (DhtS), and Tib-17beta-sulfate (TibS). Product identities were characterized by liquid chromatography-mass spectrometry, and kinetic parameters of the reactions were determined. The product profile of the reduction of each steroid conjugate by the individual AKR1C isoform was similar to that of the corresponding free steroid except for the reduction of DhtG catalyzed by AKR1C2, where a complete inversion in stereochemical preference to 3beta-reduction (with DhtG) from 3alpha-reduction (with Dht and DhtS) was observed. The catalytic efficiency of 3-keto reduction was modestly affected by the presence of a 17-sulfate group but severely impaired by the presence of a 17-glucuronide group for AKR1C1-3 isoforms. AKR1C4, however, showed superior catalytic efficiencies versus the other isoforms, and those were unaffected by steroid conjugation. Our findings provide evidence for alternative pathways of steroid metabolism where the phase I reaction (reduction) occurs after the phase II reaction (conjugation). Specifically, it is indicated that Dht is metabolized to its metabolite 3alpha-androstanediol-17-glucuronide via the previously unrecognized "conjugation pathway" involving the sequential reactions of UGT2B17 and AKR1C4 in liver but via the conventional "reduction pathway" involving the sequential reactions of AKR1C2 and UGT2B15/17 in prostate.
Collapse
Affiliation(s)
- Yi Jin
- Centers of Excellence in Environmental Toxicology and Cancer Pharmacology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA
| | | | | | | | | | | |
Collapse
|
8
|
Appt SE, Törmälä R, Franke AA, Mikkola TS, Tikkanen MJ, Ylikorkala O, Clarkson TB. Soy-tibolone combination - effect on lipids in postmenopausal monkeys and women. Maturitas 2008; 60:216-22. [PMID: 18687539 PMCID: PMC2630776 DOI: 10.1016/j.maturitas.2008.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 06/18/2008] [Accepted: 06/26/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To determine whether co-administration of soy during tibolone treatment would prevent tibolone-induced dyslipoproteinemia in postmenopausal monkeys and women. METHODS Surgically postmenopausal cynomolgus monkeys (n = 18) were assigned randomly to one of four dietary regimens in a Latin Square crossover design, such that all animals received all diets for 14 weeks with a 4-week washout period: (1) casein/lactalbumin (CL); (2) tibolone (Tib, 1.25 mg/day women's equivalent); (3) soy (138 mg isoflavones/day women's equivalent); (4) Soy + Tib. Postmenopausal women on tibolone treatment were randomized to receive soy powder (52 g of soy protein containing 112 mg isoflavones) or placebo (containing 52 g of milk protein) daily in a crossover trial for 8 weeks with a 4-week washout period. RESULTS Monkeys given Tib alone had approximately 14% increase in plasma LDL + VLDL-C; whereas those given soy combined with tibolone had significant ( approximately 22%) reductions. Tib treated monkeys had reductions in plasma HDL-C of about 48% vs. no reductions in Soy + Tib. In postmenopausal women using tibolone, soy reduced plasma LDL-C concentrations by approximately 10% from baseline without a change in HDL-C. CONCLUSIONS Co-administration of soy during tibolone treatment improved the lipoprotein profile in both monkeys and women; however, the effects were more robust in monkeys.
Collapse
Affiliation(s)
- Susan E Appt
- Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
KUWAYAMA K, INOUE H, KANAMORI T, TSUJIKAWA K, MIYAGUCHI H, IWATA Y, MIYAUCHI S, KAMO N. Analysis of amphetamine-type stimulants and their metabolites in plasma, urine and bile by liquid chromatography with a strong cation-exchange column-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 867:78-83. [DOI: 10.1016/j.jchromb.2008.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 01/30/2008] [Accepted: 03/19/2008] [Indexed: 11/26/2022]
|
10
|
Verheul HAM, van Iersel MLPS, Delbressine LPC, Kloosterboer HJ. Selective tissue distribution of tibolone metabolites in mature ovariectomized female cynomolgus monkeys after multiple doses of tibolone. Drug Metab Dispos 2007; 35:1105-11. [PMID: 17420283 DOI: 10.1124/dmd.106.014118] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tibolone is a selective tissue estrogenic activity regulator (STEAR). In postmenopausal women, it acts as an estrogen on brain, vagina, and bone, but not on endometrium and breast. Despite ample supporting in vitro data for tissue-selective actions, confirmative tissue levels of tibolone metabolites are not available. Therefore, we analyzed tibolone and metabolites in plasma and tissues from six ovariectomized cynomolgus monkeys that received tibolone (0.5 mg/kg/day by gavage) for 36 days and were necropsied at 1, 1.25, 2.25, 4, 6, and 24 h after the final dose. The plasma and tissue levels of active, nonsulfated (tibolone, 3alpha-hydroxytibolone, 3beta-hydroxytibolone, and Delta(4)-tibolone), monosulfated (3alpha-sulfate,17beta-hydroxytibolone and 3beta-sulfate,17beta-hydroxytibolone), and disulfated (3alpha,17beta-disulfated-tibolone and 3beta,17betaS-disulfated-tibolone) metabolites were measured by validated gas chromatography with mass spectrometry and liquid chromatography with tandem mass spectrometry. Detection limits were 0.1 to 0.5 ng/ml (plasma) and 0.5 to 2 ng/g (tissues). In brain tissues, estrogenic 3alpha-hydroxytibolone was predominant with 3 to 8 times higher levels than in plasma; levels of sulfated metabolites were low. In vaginal tissues, major nonsulfated metabolites were 3alpha-hydroxytibolone and the androgenic/progestagenic Delta(4)-tibolone; disulfated metabolites were predominant. Remarkably high levels of monosulfated metabolites were found in the proximal vagina. In endometrium, myometrium, and mammary glands, levels of 3-hydroxymetabolites were low and those of sulfated metabolites were high (about 98% disulfated). Delta(4)-Tibolone/3-hydroxytibolone ratios were 2 to 3 in endometrium, about equal in breast and proximal vagina, and 0.1 in plasma and brain. It is concluded that tibolone metabolites show a unique tissue-specific distribution pattern explaining the tissue effects in monkeys and the clinical effects in postmenopausal women.
Collapse
Affiliation(s)
- H A M Verheul
- Research and Development, NV Organon, Oss, The Netherlands.
| | | | | | | |
Collapse
|