1
|
CiliaCarta: An integrated and validated compendium of ciliary genes. PLoS One 2019; 14:e0216705. [PMID: 31095607 PMCID: PMC6522010 DOI: 10.1371/journal.pone.0216705] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/26/2019] [Indexed: 12/25/2022] Open
Abstract
The cilium is an essential organelle at the surface of mammalian cells whose dysfunction causes a wide range of genetic diseases collectively called ciliopathies. The current rate at which new ciliopathy genes are identified suggests that many ciliary components remain undiscovered. We generated and rigorously analyzed genomic, proteomic, transcriptomic and evolutionary data and systematically integrated these using Bayesian statistics into a predictive score for ciliary function. This resulted in 285 candidate ciliary genes. We generated independent experimental evidence of ciliary associations for 24 out of 36 analyzed candidate proteins using multiple cell and animal model systems (mouse, zebrafish and nematode) and techniques. For example, we show that OSCP1, which has previously been implicated in two distinct non-ciliary processes, causes ciliogenic and ciliopathy-associated tissue phenotypes when depleted in zebrafish. The candidate list forms the basis of CiliaCarta, a comprehensive ciliary compendium covering 956 genes. The resource can be used to objectively prioritize candidate genes in whole exome or genome sequencing of ciliopathy patients and can be accessed at http://bioinformatics.bio.uu.nl/john/syscilia/ciliacarta/.
Collapse
|
2
|
Fietz D. Transporter for sulfated steroid hormones in the testis - expression pattern, biological significance and implications for fertility in men and rodents. J Steroid Biochem Mol Biol 2018; 179:8-19. [PMID: 29017936 DOI: 10.1016/j.jsbmb.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022]
Abstract
In various tissues, steroid hormones may be sulfated, glucuronidated or otherwise modified. For a long time, these hydrophilic molecules have been considered to be merely inactive metabolites for excretion via bile or urine. Nevertheless, different organs such as the placenta and breast tissue produce large amounts of sulfated steroids. After the discovery of the enzyme steroid sulfatase, which is able to re-activate sulfated steroids, these precursor molecules entered the focus of interest again as a local supply for steroid hormone synthesis with a prolonged half-life compared to their unconjugated counterparts. The first descriptions of this so-called sulfatase pathway in the placenta and breast tissue (with special regards to hormone-dependent breast cancer) were quickly followed by studies of steroid sulfate production and function in the testis. These hydrophilic molecules may not permeate the cell membrane by diffusion in the way that unbound steroids can, but need to be transported through the plasma membrane by transport systems. In the testis, a functional sulfatase pathway requires the expression of specific uptake carrier and efflux transporters in testicular cells, i.e. Sertoli, Leydig and germ cells. Main focus has to be placed on Sertoli cells, as these cells build up the blood-testis barrier. In this review, an overview of carrier expression pattern in the human as well as rodent testis is provided with special interest towards implications on fertility.
Collapse
Affiliation(s)
- D Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
3
|
Yi M, Yang J, Li W, Li X, Xiong W, McCarthy JB, Li G, Xiang B. The NOR1/OSCP1 proteins in cancer: from epigenetic silencing to functional characterization of a novel tumor suppressor. J Cancer 2017; 8:626-635. [PMID: 28367242 PMCID: PMC5370506 DOI: 10.7150/jca.17579] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/27/2016] [Indexed: 12/16/2022] Open
Abstract
NOR1 (Oxidored-nitro domain-containing protein 1), also known as OSCP1, was first identified in nasopharyngeal carcinoma (NPC) cells in 2003. NOR1 is evolutionarily conserved among species with its expression is restricted to brain, testis and respiratory epithelial cells. NOR1 was downregulated in NPC and the downregulation associates with poor prognosis. Previous study demonstrated that hypermethylation of NOR1 promoter was observed in NPC and hematological malignancies, which has been believed to be the main epigenetic cause for NOR1 silencing in these cancers. Recently, the NOR1 tumor suppressor status has been fully established. NOR1 inhibited cancer cell growth by disturbing tumor cell energe metabolism. NOR1 also promote tumor cells apoptosis in oxidative stress and hypoxia by inhibition of stress induced autophagy. Moreover, NOR1 suppressed cancer cell epithelial-mesenchymal transition, invasion and metastasis via activation of FOXA1/HDAC2-slug regulatory network. Deciphering the molecular mechanisms underlying NOR1 mediated tumor suppressive role would be helpful to a deeper understanding of carcinogenesis and, furthermore, to the development of new therapeutic approaches. Here we summarize the current knowledge on NOR1 focusing on its expression pattern, epigenetic and genetic association with human cancers and its biological functions. This review will also elucidate the potential application of NOR1/OSCP1 for some human malignancies.
Collapse
Affiliation(s)
- Mei Yi
- Department of Dermatology, Xiangya Hospital, The Central South University, Changsha, 410008, Hunan, China;; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan410078, China;; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan410078, China
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Wenjuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan410078, China;; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan410078, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan410078, China;; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan410078, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan410078, China;; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan410078, China
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan410078, China;; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan410078, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan410078, China;; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan410078, China
| |
Collapse
|
4
|
Huu NT, Yoshida H, Yamaguchi M. Tumor suppressor gene OSCP1/NOR1 regulates apoptosis, proliferation, differentiation, and ROS generation during eye development of Drosophila melanogaster. FEBS J 2015; 282:4727-46. [PMID: 26411401 DOI: 10.1111/febs.13528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/09/2015] [Accepted: 09/23/2015] [Indexed: 12/15/2022]
Abstract
OSCP1/NOR1 (organic solute carrier partner 1/oxidored nitrodomain-containing protein 1) is a known tumor suppressor protein. OSCP1 has been reported to mediate transport of various organic solutes into cells; however, its role during development has not yet been addressed. Here we report the results of studies on dOSCP1 (the Drosophila ortholog of hOSCP1) to elucidate the role of OSCP1/NOR1 during development. Knockdown of dOSCP1 in the eye imaginal discs induced a rough-eye phenotype in adult flies. This phenotype resulted from induction of caspase-dependent apoptosis followed by a compensatory cell proliferation and generation of reactive oxygen species in eye imaginal discs. The induction of apoptosis appears to be associated with down-regulation of the anti-apoptotic Buffy gene and up-regulation of the pro-apoptotic Debcl gene. These effects of knockdown of dOSCP1 lead to mitochondrial fragmentation, degradation, and a shortfall in ATP production. We also found that knockdown of dOSCP1 causes a defect in cone cell and pigment cell differentiation in pupal retinae. Moreover, mutations in epidermal growth factor receptor pathway-related genes, such as Spitz and Drk, enhanced the rough-eye phenotype induced by dOSCP1 knockdown. These results suggest that dOSCP1 positively regulates the epidermal growth factor receptor signaling pathway. Overall, our findings indicate that dOSCP1 plays multiple roles during eye development in Drosophila.
Collapse
Affiliation(s)
- Nguyen Tho Huu
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Japan
| | - Hideki Yoshida
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Japan
| |
Collapse
|
5
|
Toda M, Kobayashi Y, Koizumi T, Saito K, Ohbayashi M, Kohyama N, Aoki T, Murakami M, Yasuhara H, Yamamoto T. Genetic polymorphism of the human organic solute carrier protein 1 (hOSCP1) gene in Japanese patients with non-viral liver carcinoma. Meta Gene 2014; 2:686-93. [PMID: 25606452 PMCID: PMC4287821 DOI: 10.1016/j.mgene.2014.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/28/2014] [Accepted: 09/07/2014] [Indexed: 02/07/2023] Open
Abstract
Human organic solute carrier protein 1 (hOSCP1) is a Na+-independent multispecific organic solute transporter. To date, several studies have revealed that gene mutations of the transporters are likely to be associated with some diseases; however, there are no data concerning the genetic polymorphism of the hOSCP1 gene in Japanese patients with non-viral liver carcinoma (LC). In the present study, we isolated genomic DNA from a normal portion of LC, and analyzed 41 single nucleotide polymorphisms (SNPs) chosen from a database of SNPs (dbSNPs). We found genotype frequencies for 2 non-synonymous SNPs [rs34409118 (Thr131 → Ala) and rs1416840 (Ile219 → Thr)] and 1 synonymous SNP [rs16822954 (Ser193 → Ser)] to be statistically significant when compared with dbSNPs. No statistical significance was observed in rs2275477 (Gly307 → Arg) in the hOSCP1 gene. With respect to the allele frequency, we also observed rs34409118 to be statistically significant. Interestingly, we found that non-viral LC patients do not carry heterozygous mutations in rs1416840 (A/G) and rs16822954 (A/G), suggesting that a non-carrier of heterozygous mutations in these two SNPs might be a biomarker for susceptibility for non-viral LC in Japanese. Further analyses of patients with hOSCP1 variants may elucidate the relationship between the hOSCP1 gene and susceptibility of non-viral LC in Japanese patients.
Collapse
Key Words
- AGC2, aspartate glutamate carrier 2
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- DNA, deoxyribonucleic acid
- Genetic polymorphism
- HCC, hepatocellular carcinoma
- HCV, hepatitis C virus
- HWE, Hardy–Weinberg equilibrium
- ICC, intrahepatic cholangiocarcinoma
- ICG, indocyanine green test
- LC, liver carcinoma
- LDH, lactate dehydrogenase
- MDR1, multidrug-resistance 1
- NAFLD, non-alcoholic fatty liver disease
- Non-viral liver carcinoma
- OAT, organic anion transporter
- OATP, organic anion transporting polypeptide
- PCR, polymerase chain reaction
- SLC/Slc, solute carrier
- SNPs, single nucleotide polymorphisms
- Transporter
- cSNPs, coding single nucleotide polymorphisms
- hOSCP1
- hOSCP1, human organic solute carrier protein 1
- hURAT1, urate transporter 1
- γ-GTP, γ-glutamyltranspeptidase
Collapse
Affiliation(s)
- Mayumi Toda
- Department of Pharmacotherapeutics, Division of Clinical Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yasuna Kobayashi
- Department of Pharmacotherapeutics, Division of Clinical Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Tomotake Koizumi
- School of Medicine, Department of Gastroenterological and General Surgery, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Koji Saito
- School of Medicine, Department of Pathology, Division of Pathology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masayuki Ohbayashi
- Department of Pharmacotherapeutics, Division of Clinical Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Noriko Kohyama
- Department of Pharmacotherapeutics, Division of Clinical Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takeshi Aoki
- School of Medicine, Department of Gastroenterological and General Surgery, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masahiko Murakami
- School of Medicine, Department of Gastroenterological and General Surgery, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hajime Yasuhara
- School of Pharmacy, 2nd Department of Pharmacology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Toshinori Yamamoto
- Department of Pharmacotherapeutics, Division of Clinical Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
6
|
Structural characterization and subcellular localization of Drosophila organic solute carrier partner 1. BMC BIOCHEMISTRY 2014; 15:11. [PMID: 24939707 PMCID: PMC4074837 DOI: 10.1186/1471-2091-15-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/13/2014] [Indexed: 12/28/2022]
Abstract
Background Organic solute carrier partner 1 (OSCP1) is known to facilitate the transport of various organic solutes into cells and reported to play a role in cell growth and cell differentiation. Moreover, OSCP1 is known as a tumor suppressor gene that is frequently down-expressed in nasopharyngeal carcinomas and acute myeloid leukemia. However, the underlying mechanisms of action remain unclear and the subcellular localization of OSCP1 has yet to be determined in detail. Results Drosophila contains a single orthologue of OSCP1 (dOSCP1) that shares 58% homology with its human counterpart. To study the expression pattern and subcellular localization of dOSCP1, we prepared a specific antibody. Subcellular localization analyses of dOSCP1 with these revealed localization in the plasma membrane, endoplasmic reticulum, Golgi apparatus and mitochondria, but no detection in cytosol. dOSCP1 signals were also detected in the nucleus, although at weaker intensity than in plasma membranes and subcellular organelles. In addition, native polyacrylamide gel electrophoresis analysis with and without β-mercaptoethanol treatment revealed that recombinant dOSCP1 forms dimers and trimers in solution. The dimer form of dOSCP1 could also be detected by Western immunoblot analyses in third instar larval extracts. Conclusions The data revealed that dOSCP1 localizes not only in the plasma membrane but also in the nucleus, ER, Golgi apparatus and mitochondria. It is therefore conceivable that this protein may interact with various partners or form multimeric complexes with other proteins to play multiple roles in cells, providing clues to understanding the functions of dOSCP1 during Drosophila development.
Collapse
|
7
|
Membrane transporters for sulfated steroids in the human testis--cellular localization, expression pattern and functional analysis. PLoS One 2013; 8:e62638. [PMID: 23667501 PMCID: PMC3648580 DOI: 10.1371/journal.pone.0062638] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/23/2013] [Indexed: 12/11/2022] Open
Abstract
Sulfated steroid hormones are commonly considered to be biologically inactive metabolites, but may be reactivated by the steroid sulfatase into biologically active free steroids, thereby having regulatory function via nuclear androgen and estrogen receptors which are widespread in the testis. However, a prerequisite for this mode of action would be a carrier-mediated import of the hydrophilic steroid sulfate molecules into specific target cells in reproductive tissues such as the testis. In the present study we detected predominant expression of the Sodium-dependent Organic Anion Transporter (SOAT), the Organic Anion Transporting Polypeptide 6A1, and the Organic Solute Carrier Partner 1 in human testis biopsies. All of these showed significantly lower or even absent mRNA expression in severe disorders of spermatogenesis (arrest at the level of spermatocytes or spermatogonia, Sertoli cell only syndrome). Only SOAT was significantly lower expressed in biopsies showing hypospermatogenesis. By use of immunohistochemistry SOAT was localized to germ cells at various stages in human testis biopsies showing normal spermatogenesis. SOAT immunoreactivity was detected in zygotene primary spermatocytes of stage V, pachytene spermatocytes of all stages (I–V), secondary spermatocytes of stage VI, and round spermatids (step 1 and step 2) in stages I and II. Furthermore, SOAT transport function for steroid sulfates was analyzed with a novel liquid chromatography tandem mass spectrometry procedure capable of profiling steroid sulfate molecules from cell lysates. With this technique, the cellular inward-directed SOAT transport was verified for the established substrates dehydroepiandrosterone sulfate and estrone-3-sulfate. Additionally, β-estradiol-3-sulfate and androstenediol-3-sulfate were identified as novel SOAT substrates.
Collapse
|
8
|
Hübner S, Efthymiadis A. Recent progress in histochemistry and cell biology. Histochem Cell Biol 2012; 137:403-57. [PMID: 22366957 DOI: 10.1007/s00418-012-0933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 01/06/2023]
Abstract
Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
9
|
Hsu CC, Lin EC, Chen SC, Huang SC, Liu BH, Yu YH, Chen CC, Yang CC, Lien CY, Wang YH, Liu CW, Mersmann HJ, Cheng WTK, Ding ST. Differential gene expression between the porcine morula and blastocyst. Reprod Domest Anim 2011; 47:69-81. [PMID: 21599764 DOI: 10.1111/j.1439-0531.2011.01803.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The survival and development of pre-implantation embryos are determinant factors affecting the outcome of animal reproduction. It is essential to transfer the expression of the genetic material from maternal sources, that is the ovum to the zygote before implantation to ensure successful development. Differentiation and transformation of blastomeres initiated during the morula and blastocyst stages is an important step of the embryonic development prior to implantation. We collected morula and early blastocyst samples from pure-bred Landrace pigs in vivo to study the differential gene expression patterns at these two stages. Total RNA was extracted from individual embryos and two rounds of amplification were employed. Two micrograms of antisense RNA, targets, were prepared and hybridized with each of four custom made oligo microarrays representing 24,000 porcine genes. The analyses of replicate hybridizations showed that among the 24,000 genes, 162 genes were expressed fivefold or greater in the morula compared to early blastocysts and 2126 genes were expressed fivefold or greater in early blastocysts compared to the morula. Of these differentially expressed genes, 1429 genes were functionally annotated with related human Gene Ontology terms. In addition to basic metabolic processes, genes related to signal transduction, transportation and cell differentiation were found in both stages and were up-regulated as embryo development proceeded. Real time polymerase chain reaction was utilized to quantify 12 genes differentially expressed in the 2 embryonic stages and validated the reliability of major evidences shown in microarrays. In conclusion, we have obtained a preliminary landscape of genes differentially expressed during the transition from morula to early blastocysts in pigs and showed a generally increased transcriptional activity, perhaps in preparation for implantation. Our results provide an opportunity to study the functions of these genes in relation to the development and survival of pre-implantation porcine embryos.
Collapse
Affiliation(s)
- C C Hsu
- Department of Animal Science and Technology, Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hiratsuka K, Momose A, Takagi N, Sasaki H, Yin SA, Fujita M, Ohtomo T, Tanonaka K, Toyoda H, Suzuki H, Kurosawa T, Yamada J. Neuronal expression, cytosolic localization, and developmental regulation of the organic solute carrier partner 1 in the mouse brain. Histochem Cell Biol 2011; 135:229-38. [PMID: 21331566 DOI: 10.1007/s00418-011-0790-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2011] [Indexed: 01/11/2023]
Abstract
Organic solute carrier partner 1 (OSCP1) is a mammalian, transporter-related protein that is able to facilitate the uptake of structurally diverse organic compounds into the cell when expressed in Xenopus laevis oocytes. This protein has been implicated in testicular handling of organic solutes because its mRNA expression is almost exclusive in the testis. However, in this study, we demonstrated significant expression of OSCP1 protein in mouse brain, the level of which was rather higher than that in the testis, although the corresponding mRNA expression was one-tenth of the testicular level. Immunohistochemistry revealed that OSCP1 was broadly distributed throughout the brain, and various neuronal cells were immunostained, including pyramidal cells in the cerebral cortex and hippocampus. However, there was no evidence of OSCP1 expression in glia. In primary cultures of cerebral cortical neurons, double-labeling immunofluorescence localized OSCP1 to the cytosol throughout the cell body and neurites including peri-synaptic regions. This was consistent with the subcellular fractionation of brain homogenates, in which OSCP1 was mainly recovered after centrifugation both in the cytosolic fraction and the particulate fraction containing synaptosomes. Immunoelectron microscopy of brain sections also demonstrated OSCP1 in the cytosol near synapses. In addition, it was revealed that changes in the expression level of OSCP1 correlated with neuronal maturation during postnatal development of mouse brain. These results indicate that OSCP1 may have a role in the brain indirectly mediating substrate uptake into the neurons in adult animals.
Collapse
Affiliation(s)
- Kazuyuki Hiratsuka
- Toxicology Laboratory, Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd, Kanagawa, 230-0074, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sai Y, Nishimura T, Ochi K, Tanaka N, Takagi A, Tomi M, Kose N, Kobayashi Y, Miyakoshi N, Kitagaki S, Mukai C, Nakashima E. Proton-coupled erythromycin antiport at rat blood-placenta barrier. Drug Metab Dispos 2010; 38:1576-81. [PMID: 20566696 DOI: 10.1124/dmd.110.033266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The aim of the present study was to characterize the mechanism of erythromycin transport at the blood-placenta barrier, using TR-TBT 18d-1 cells as a model of rat syncytiotrophoblasts. [(14)C]Erythromycin was taken up by TR-TBT 18d-1 cells with a Michaelis constant of 466 microM. Although the uptake was not dependent on extracellular Na(+) or Cl(-), it was increased at weakly alkaline pH. Significant overshoot of [(14)C]erythromycin uptake by placental brush-border membrane vesicles was observed in the presence of an outwardly directed proton gradient. These results indicate that erythromycin is transferred by the H(+)-coupled transport system in syncytiotrophoblasts. To address the physiological transport of erythromycin in rat placenta, fetal-to-maternal transport clearance was estimated by means of the single placental perfusion technique. Clearance of [(14)C]erythromycin was higher than that of [(14)C]inulin, a paracellular pathway marker, and was decreased by the addition of 5 mM erythromycin, indicating that saturable efflux system from fetus to mother is involved. The effect of various transporter inhibitors on [(14)C]erythromycin efflux from TR-TBT 18d-1 cells was evaluated. cyclosporin A, fumitremorgin C, and probenecid had no effect, whereas ethylisopropylamiloride, a specific inhibitor of Na(+)/H(+) exchangers (NHEs), was significantly inhibitory. These results suggest that erythromycin efflux transport at the rat blood-placenta barrier is mediated by an erythromycin/H(+) antiport system, driven by H(+) supplied by NHEs.
Collapse
Affiliation(s)
- Yoshimichi Sai
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hiratsuka K, Yin SA, Ohtomo T, Fujita M, Ohtsuki K, Isaka H, Suga T, Kurosawa T, Yamada J. Intratesticular localization of the organic solute carrier protein, OSCP1, in spermatogenic cells in mice. Mol Reprod Dev 2008; 75:1495-504. [PMID: 18324622 DOI: 10.1002/mrd.20893] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Organic solute carrier protein 1 (OSCP1) is a recently described human gene that facilitates the transport of various organic solutes into the cell, when expressed in frog eggs. In this study, we cloned a mouse ortholog of OSCP1 encoding 379 amino acid protein, with 94% homology to the human counterpart. The mouse OSCP1 mRNA was predominantly expressed in the testis, in which it was attributed to the spermatogenic cells, except the spermatogonia. Immunohistochemistry confirmed that OSCP1 protein is continuously expressed during spermatogenesis in a stage- and cell type-specific manner, in the leptotene spermatocytes at stage IX through step 15 spermatids. Subcellular fractionation of mouse testis homogenates indicated that OSCP1 is a 45-kDa cytosolic protein. Moreover, when green fluorescent protein-OSCP1 fusion constructs were transfected into cultured cells, the fluorescence localized evenly in the cytoplasm. These results suggest that mouse testis OSCP1 may indirectly mediate substrate uptake into meiotic and spermiogenic germ cells, within the cytosol.
Collapse
Affiliation(s)
- Kazuyuki Hiratsuka
- Toxicology Laboratory, Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Umemoto T, Kobayashi Y, Suzuki M, Sanada Y, Yamamoto T. Cloning and pharmacological characterization of a novel gene encoding human nucleoside transporter 1 (hNT1) from a human breast cancer cDNA library. Life Sci 2008; 84:45-51. [PMID: 19032958 DOI: 10.1016/j.lfs.2008.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 10/22/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022]
Abstract
AIMS We isolated a novel gene encoding human nucleoside transporter 1 (hNT1), from a human breast cancer cDNA library. MAIN METHODS A nondirectional cDNA library was screened by an EST clone (GenBanktrade mark/EMBL/DDBJ: BU944345). A Xenopus laevis oocyte expression system was used for functional characterization. Membrane localization in the human breast was determined by immunohistochemistry. KEY FINDINGS Isolated hNT1 cDNA consisted of 246 base pairs that encoded an 82-amino acid protein. By RT-PCR analysis, hNT1 mRNA was strongly detected in the breast cancer tissues. When expressed in X. oocytes, hNT1 mediated the high affinity transport of [(3)H]5-fluorouracil (5-FU) with a K(m) value of 69.2+/-24.5 nM in time- and pH-dependent, and Na(+)-independent manners. A cis-inhibition experiment revealed that hNT1 mediated transport of [(3)H]5-FU is strongly inhibited by various nucleosides such as pyrimidine, uracil, uridine, guanosine, inosine, thymidine, adenosine, cytidine and purine suggesting that hNT1 may be involved in the trans epithelial transport of these endogenous substrates. Immunohistochemical analysis revealed that the hNT1 protein is localized in the lactiferous duct epithelium. SIGNIFICANCE Our present results indicate that a newly isolated cDNA clone, hNT1, is a key molecule for the breast handling of 5-FU in humans.
Collapse
Affiliation(s)
- Takahiro Umemoto
- Department of Clinical Pharmacy, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | |
Collapse
|
14
|
Ugele B, Bahn A, Rex-Haffner M. Functional differences in steroid sulfate uptake of organic anion transporter 4 (OAT4) and organic anion transporting polypeptide 2B1 (OATP2B1) in human placenta. J Steroid Biochem Mol Biol 2008; 111:1-6. [PMID: 18501590 DOI: 10.1016/j.jsbmb.2008.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 04/01/2008] [Accepted: 04/01/2008] [Indexed: 11/30/2022]
Abstract
Human trophoblasts depend on the supply of external precursors such as dehydroepiandrosterone-3-sulfate (DHEA-S) and 16alpha-OH-DHEA-S for synthesis of estrogens. Recently, we have characterized the uptake of DHEA-S by isolated mononucleated trophoblasts and identified different transporter polypeptides involved in this process. Immunohistochemistry of 1st and 3rd trimester placenta detected organic anion transporter 4 (OAT4) and organic anion transporting polypeptide 2B1 (OATP2B1, former name OATP-B) in cytotrophoblast membranes and at the basal surface of the syncytiotrophoblast, indicating that both transporter polypeptides are involved in placental uptake of foetal derived steroid sulfates. In the present study we have characterized and compared the kinetics of DHEA-S and estrone sulfate (E(1)S) uptake by these transporters stably expressed in FlpIn -HEK293 cells using the Flp recombinase-mediated site-specific recombination. Uptake of E(1)S by OAT4- and OATP2B1-transfected cells was highly increased compared to the non-transfected cells. In contrast, DHEA-S uptake was only highly increased in OAT4 (40 times), but only weakly enhanced in OATP2B1 cells. The uptake of DHEA-S and E(1)S by OAT4 was partly Na(+)-dependent (about 50%), whereas uptake of DHEA-S by OATP2B1 was Na(+)-independent. Kinetic analysis of the initial uptake rates of E(1)S by OAT4 and OATP2B1 gave very similar values for K(m) (about 20microM) and V(max) (about 600pmol/(minxmg protein)). In contrast, the affinity of DHEA-S towards OATP2B1 was about 10 times lower (K(m)>200microM) then for OAT4 (K(m)=29microM). Our results suggest different physiological roles of the two transporter polypeptides in placental uptake of foetal derived steroid sulfates. OATP2B1 seems not to be involved in de novo synthesis of placental estrogens but may contribute to the clearance of estrogen sulfates from foetal circulation.
Collapse
Affiliation(s)
- Bernhard Ugele
- Klinikum der Universität München, Lindwurmstr. 2a, D-80337 München, Germany.
| | | | | |
Collapse
|
15
|
Izuno H, Kobayashi Y, Sanada Y, Nihei D, Suzuki M, Kohyama N, Ohbayashi M, Yamamoto T. Rat organic solute carrier protein 1 (rOscp1) mediated the transport of organic solutes in Xenopus laevis oocytes: isolation and pharmacological characterization of rOscp1. Life Sci 2007; 81:1183-92. [PMID: 17884105 DOI: 10.1016/j.lfs.2007.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/24/2007] [Accepted: 08/02/2007] [Indexed: 12/20/2022]
Abstract
Rat organic solute carrier protein 1 (rOscp1) was isolated from a rat testis cDNA library. Isolated rOscp1 cDNA consisted of 1089 base pairs that encoded a 363-amino acid protein, and the amino acid sequence was 88% and 93% identical to that of human OSCP1 (hOSCP1) and mouse Oscp1 (mOscp1), respectively. The message for rOscp1 is highly detected in rat testis. When expressed in X. oocytes, rOscp1 mediated the high affinity transport of p-aminohippurate (PAH) with a Km value of 15.7+/-1.9 microM, and rOscp1-mediated organic solutes were exhibited in time- and Na+-independent manners. rOscp1 also transported various structurally heterogenous compounds such as testosterone, dehydroepiandrosterone sulfate (DHEA-S), and taurocholate with some differences in substrate specificity compared with hOSCP1. Immunohistochemical analysis revealed that the rOscp1 protein is localized in the basal membrane side of Sertoli cells as observed in mouse testis [Kobayashi et al., 2007; Kobayashi, Y., Tsuchiya, A., Hayashi, T., Kohyama, N., Ohbayashi, M., Yamamoto, T., 2007. Isolation and characterization of polyspecific mouse organic solute carrier protein 1 (mOscp1). Drug Metabolism and Disposition 35 (7), 1239-1245]. Thus, the present results indicate that a newly isolated cDNA clone, rOscp1, is a polyspecific organic solute carrier protein with some differences in substrate specificity compared with human and mouse OSCP1.
Collapse
Affiliation(s)
- Hisanori Izuno
- Department of Surgery, School of Medicine, Showa University Fujigaoka Hospital,1-30 Fujigaoka, Aoba-ku, Yokohama-shi, Kanagawa 227-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|