1
|
Wen HC, Wagener F, Piper T, Neudörfl J, Thevis M, Schäfer M. Investigations Into Structures of In Vitro-Derived Phase I Metabolites of a Novel 20-Keto-Steroid S42 by GC-EI HR MS Analysis and Chemical Synthesis. Drug Test Anal 2025. [PMID: 40159391 DOI: 10.1002/dta.3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
S42, 4-Methyl-19-norpregna-1,3,5(10)-trien-20-one a new 20-keto-steroid, is a novel selective androgen receptor modulator (SARM). The World Anti-Doping Agency (WADA) bans the use of SARMs in sports at all times. In preparation of a sensitive detection procedure to control for S42 abuse, in vitro metabolism experiments were conducted and biotransformation products were analyzed with GC-EI MS-orbitrap instrumentation. S42-C20-OH, S42-C6ß-OH, and S42-C7α-OH were synthesized as reference material to study their exemplary EI-HR (electron ionization- high resolution) mass spectra. Additionally, S42-d7, synthesized earlier with 2H-labels at carbon atoms C1, C2, C3, C6, and C7, was used for the in vitro metabolism study. Comparison of the respective mass spectra of labeled and unlabeled reference materials and of specifically mass-shifted fragment ions provided the foundation for the structure elucidation of S42 in vitro phase I metabolites. Molecular ions of selected S42 phase I metabolites found in the in vitro experiments were submitted to higher energy collisional dissociation (HCD) MS2-product ion experiments to allow straightforward and secured assignment and interpretation of fragmentation patterns. At least eight phase I metabolites of S42 were identified in the in vitro study and analyzed as tri-methyl-silyl ether derivatives. Specifically, different singly, doubly, and triply hydroxylated metabolites of S42 were identified and analyzed with GC-EI HR MS.
Collapse
Affiliation(s)
- Hui-Chung Wen
- Department of Chemistry, Institute of Organic Chemistry, University of Cologne, Cologne, Germany
| | - Felicitas Wagener
- Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Thomas Piper
- Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Jörg Neudörfl
- Department of Chemistry, Institute of Organic Chemistry, University of Cologne, Cologne, Germany
| | - Mario Thevis
- Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Mathias Schäfer
- Department of Chemistry, Institute of Organic Chemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Sharma MK, Shah RP, Kumar D, Sengupta P. Identification and characterization of GSK-9089 metabolites through high resolution-mass spectrometry based in vitro and in vivo rat biological sample analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1244:124242. [PMID: 39059320 DOI: 10.1016/j.jchromb.2024.124242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Estrogen related receptors (ERRs) agonist GSK-9089 (DY-131) reported to pose a potential in increasing exercise endurance. High resolution mass spectrometry (HRMS) based analysis has utmost importance in the detection, identification, or characterization of a molecule including its metabolites in human body. In this study, in vitro metabolism profile of GSK-9089 was investigated after incubation with liver microsomes and S9 fractions. Additionally, in vivo metabolites of the molecule were identified in plasma, urine, and faeces samples of rats. Structures of all the potential metabolites were revealed by employing an in silico tool and HRMS based analysis through data-dependent and data-independent mining strategies. Nine unknown metabolites of GSK-9089 have been identified which were found to be present in a trace amount in in vivo matrices. Most of the in vitro and in vivo phase I metabolites of the molecule were formed after imine bond hydrolysis followed by deamidation, oxidation, and N-oxidation. The molecule underwent phase II metabolism to generate more polar metabolites mainly through glucuronide, sulfate conjugation biotransformation reactions. The in vitro and in vivo metabolites of GSK-9089 could be useful to identify the abuse of this ERRs agonist in the future.
Collapse
Affiliation(s)
- Manish Kumar Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Government of India, Gandhinagar 382355, Gujarat, India; Pharmacokinetics Research Associate, Charles River Laboratories International, Mattawan, MI, USA
| | - Ravi P Shah
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Government of India, Gandhinagar 382355, Gujarat, India
| | - Dinesh Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Government of India, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Government of India, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
3
|
Möller T, Wen HC, Naumann N, Krug O, Thevis M. Identification and Synthesis of Selected In Vitro Generated Metabolites of the Novel Selective Androgen Receptor Modulator (SARM) 2f. Molecules 2023; 28:5541. [PMID: 37513414 PMCID: PMC10385812 DOI: 10.3390/molecules28145541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Among anabolic agents, selective androgen receptor modulators (SARMs) represent a new class of potential drugs that can exhibit anabolic effects on muscle and bone with reduced side effects due to a tissue-selective mode of action. Besides possible medical applications, SARMs are used as performance-enhancing agents in sports. Therefore, they are prohibited by the World Anti-Doping Agency (WADA) in and out of competition. Since their inclusion into the WADA Prohibited List in 2008, there has been an increase in not only the number of adverse analytical findings, but also the total number of SARMs, making continuous research into SARMs an ongoing topic in the field of doping controls. 4-((2R,3R)-2-Ethyl-3-hydroxy-5-oxopyrrolidin-1-yl)-2-(trifluoromethyl)benzonitrile (SARM 2f) is a novel SARM candidate and is therefore of particular interest for sports drug testing. This study describes the synthesis of SARM 2f using a multi-step approach, followed by full characterization using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance spectroscopy (NMR). To provide the first insights into its biotransformation in humans, SARM 2f was metabolized using human liver microsomes and the microsomal S9 fraction. A total of seven metabolites, including phase I and phase II metabolites, were found, of which three metabolites were chemically synthesized in order to confirm their structure. Those can be employed in testing procedures for routine doping controls, further improving anti-doping efforts.
Collapse
Affiliation(s)
- Tristan Möller
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Hui-Chung Wen
- Faculty of Chemistry, University of Cologne, Greinstraße 4-6, 50939 Cologne, Germany
| | - Nana Naumann
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Oliver Krug
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), 50933 Cologne, Germany
| | - Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), 50933 Cologne, Germany
| |
Collapse
|
4
|
Interest of HRMS systems in analytical toxicology: Focus on doping products. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2022. [DOI: 10.1016/j.toxac.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Andriolo CV, Novaes FJM, Pereira HMG, Sardela VF, Rezende CM. Metabolic study of cafestol using in silico approach, zebrafish water tank experiments and liquid chromatography high-resolution mass spectrometry analyses. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1186:123028. [PMID: 34801941 DOI: 10.1016/j.jchromb.2021.123028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/09/2021] [Accepted: 11/06/2021] [Indexed: 12/19/2022]
Abstract
Coffee is one of the most consumed beverages worldwide. Cafestol is an endogenous coffee diterpene present in raw coffee beans and also found in hot beverages, with several biological activities. However, there is still little information on this molecule after ingestion of coffee infusion. Zebrafish (Danio rerio) is a promising in vivo model for metabolic studies due to the annotation of mammalian orthologs to encode enzymes related to drug metabolism. Experiments using Zebrafish Water Tank (ZWT) model produce more significant number of metabolites for molecular investigation in a cleaner matrix than other classical models, such as purified hepatocytes. This work aimed to investigate the biotransformation of cafestol by the ZWT model using ultra-performance liquid chromatography coupled to hybrid quadrupole-orbitrap high-resolution mass spectrometry equipped with electrospray ionization (UPLC-HRMS) supported by in silico approach using SMARTCyp, Way2Drug and XenoSite Softwares. Twenty-five metabolites of cafestol were proposed by in silico analysis, in which 5 phase I metabolites were confirmed in the ZWT by UPLC and MS/HRMS investigation: 6-hydroxy-cafestol, 6,12-dihydroxy-cafestol, 2-oxo-cafestol, 6-oxo-cafestol and one isomer whose position in the carboxyl group was not determined. These metabolites were observed during 9 h of the experiment, whose contents were associated with the behavioral responses of the fish.
Collapse
Affiliation(s)
- Cyrus Veiga Andriolo
- Universidade Federal do Rio de Janeiro, Instituto de Química, Laboratório de Análise de Aromas, Avenida Athos da Silveira Ramos, 149, Bloco A, Instituto de Química, Sala 626A, Rio de Janeiro, RJ 21941-895, Brazil
| | - Fábio Junior M Novaes
- Universidade Federal do Rio de Janeiro, Instituto de Química, Laboratório de Análise de Aromas, Avenida Athos da Silveira Ramos, 149, Bloco A, Instituto de Química, Sala 626A, Rio de Janeiro, RJ 21941-895, Brazil; Universidade Federal de Viçosa, Departamento de Química, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, MG 36570-900, Brazil
| | - Henrique Marcelo Gualberto Pereira
- Universidade Federal do Rio de Janeiro, Instituto de Química, Laboratório Brasileiro de Controle de Dopagem (LBCD-LADETEC), Avenida Horácio Macedo, 1281, Pólo de Química, Bloco C, Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil
| | - Vinícius Figueiredo Sardela
- Universidade Federal do Rio de Janeiro, Instituto de Química, Laboratório Brasileiro de Controle de Dopagem (LBCD-LADETEC), Avenida Horácio Macedo, 1281, Pólo de Química, Bloco C, Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil
| | - Claudia Moraes Rezende
- Universidade Federal do Rio de Janeiro, Instituto de Química, Laboratório de Análise de Aromas, Avenida Athos da Silveira Ramos, 149, Bloco A, Instituto de Química, Sala 626A, Rio de Janeiro, RJ 21941-895, Brazil.
| |
Collapse
|
6
|
Deisenroth C, DeGroot DE, Zurlinden T, Eicher A, McCord J, Lee MY, Carmichael P, Thomas RS. The Alginate Immobilization of Metabolic Enzymes Platform Retrofits an Estrogen Receptor Transactivation Assay With Metabolic Competence. Toxicol Sci 2021; 178:281-301. [PMID: 32991717 DOI: 10.1093/toxsci/kfaa147] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The U.S. EPA Endocrine Disruptor Screening Program utilizes data across the ToxCast/Tox21 high-throughput screening (HTS) programs to evaluate the biological effects of potential endocrine active substances. A potential limitation to the use of in vitro assay data in regulatory decision-making is the lack of coverage for xenobiotic metabolic processes. Both hepatic- and peripheral-tissue metabolism can yield metabolites that exhibit greater activity than the parent compound (bioactivation) or are inactive (bioinactivation) for a given biological target. Interpretation of biological effect data for both putative endocrine active substances, as well as other chemicals, screened in HTS assays may benefit from the addition of xenobiotic metabolic capabilities to decrease the uncertainty in predicting potential hazards to human health. The objective of this study was to develop an approach to retrofit existing HTS assays with hepatic metabolism. The Alginate Immobilization of Metabolic Enzymes (AIME) platform encapsulates hepatic S9 fractions in alginate microspheres attached to 96-well peg lids. Functional characterization across a panel of reference substrates for phase I cytochrome P450 enzymes revealed substrate depletion with expected metabolite accumulation. Performance of the AIME method in the VM7Luc estrogen receptor transactivation assay was evaluated across 15 reference chemicals and 48 test chemicals that yield metabolites previously identified as estrogen receptor active or inactive. The results demonstrate the utility of applying the AIME method for identification of false-positive and false-negative target assay effects, reprioritization of hazard based on metabolism-dependent bioactivity, and enhanced in vivo concordance with the rodent uterotrophic bioassay. Integration of the AIME metabolism method may prove useful for future biochemical and cell-based HTS applications.
Collapse
Affiliation(s)
- Chad Deisenroth
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Danica E DeGroot
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Todd Zurlinden
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Andrew Eicher
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - James McCord
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Mi-Young Lee
- Safety and Environmental Assurance Centre, Unilever, Colworth Science, Park, Bedford, Sharnbrook MK44 1LQ, UK
| | - Paul Carmichael
- Safety and Environmental Assurance Centre, Unilever, Colworth Science, Park, Bedford, Sharnbrook MK44 1LQ, UK
| | - Russell S Thomas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| |
Collapse
|
7
|
Philip M, Mathew B, Karatt TK, Perwad Z, Subhahar MB, Karakka Kal AK. Metabolic studies of hypoxia-inducible factor stabilisers IOX2, IOX3 and IOX4 (in vitro) for doping control. Drug Test Anal 2021; 13:794-816. [PMID: 33458935 DOI: 10.1002/dta.3000] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
The transcriptional activator hypoxia-inducible factor (HIF) is a vital arbitrator in the performance of cellular responses lacking oxygen supply in aerobic organisms. Because these compounds are capable of enhancing the organism's capacity for molecular oxygen transport, they possess great potential for abuse as a performance-enhancing agent in sports. A comprehensive study of the metabolic conversion of the most popular HIF stabilisers such as IOX2, IOX3 and IOX4 using equine liver microsomes (in vitro) is reported. The parents and their metabolites were identified and characterised by liquid chromatography-mass spectrometry in negative ionisation mode using a QExactive high-resolution mass spectrometer. Under the current experimental condition, a total of 10 metabolites for IOX2 (three phase I and seven phase II), nine metabolites for IOX3 (four phase I and five phase II) and five metabolites for IOX4 (three phase I and two phase II) were detected. The outcome of the present study is as follows: (1) all the three IOX candidates are prone to oxidation, results in subsequent monohydroxylated, and some dihydroxylated metabolites. (2) Besides oxidation, there is a possibility of hydrolysis and de-alkylation, which results in corresponding carboxylic acid and amide, respectively. (3) The glucuronide and sulphate conjugate of the parent drugs as well as the monohydroxylated analogues were observed in this study. The characterised in vitro metabolites can potentially serve as target analytes for doping control analysis.
Collapse
Affiliation(s)
- Moses Philip
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Binoy Mathew
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Tajudheen K Karatt
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Zubair Perwad
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | | | | |
Collapse
|
8
|
Stacchini C, Botrè F, Comunità F, de la Torre X, Dima AP, Ricci M, Mazzarino M. Simultaneous detection of different chemical classes of selective androgen receptor modulators in urine by liquid chromatography-mass spectrometry-based techniques. J Pharm Biomed Anal 2020; 195:113849. [PMID: 33383501 DOI: 10.1016/j.jpba.2020.113849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Analytical procedures to detect the misuse of selective androgen receptor modulators in human urine, targeting either the parent drugs and/or their main metabolites, were developed and validated. In detail, 19 target compounds belonging to 9 different chemical classes were considered: arylpropionamide (i.e., andarine (S4), ostarine (S22), S1, S6, S9 and S23), diarylhydantoin (i.e., GLPG0492), indole (i.e., LY2452473, GSK2881078), isoquinoline-carbonyle (i.e., PF-02620414), phenyl-oxadiazole (i.e., RAD140), pyrrolidinyl-benzonitrile (i.e., LGD4033), quinolinone (i.e., LGD2226, LGD3303), steroidal (i.e., Cl-4AS-1, MK0773 and TFM-4AS-1), and tropanol (i.e., AC-262536 and ACP105) derivatives. The metabolites of the target compounds considered were enzymatically synthesized by using human liver microsomes. Sample pre-treatment included enzymatic hydrolysis followed by liquid-liquid extraction at neutral pH. The instrumental analysis was performed by ultra-high-performance liquid chromatography coupled to either high- or low-resolution mass spectrometry. Validation was performed according to the ISO 17025 and the World Anti-Doping Agency guidelines. The analyses carried out on negative samples confirmed the method's selectivity, not showing any significant interferences at the retention times of the analytes of interest. Detection capability was determined in the range of 0.1-1.0 ng/mL for the screening procedure and 0.2-1.0 ng/mL for the confirmation procedure (except for GLPG0492 and GSK2881078). The recovery was greater than 80 % for all analytes, and the matrix effect was smaller than 35 %. The method also matched the criteria of the World Anti-Doping Agency in terms of repeatability of the relative retention times (CV% < 1.0) and of the relative abundances of the selected ion transitions (performed only in the case of triple quadrupole, CV% < 15), ensuring the correct identification of all the analytes considered. Urine samples containing andarine, ostarine, or LGD4033 were used to confirm the actual applicability of the selected analytical strategies. All target compounds (parent drugs and their main metabolites) were detected and correctly identified.
Collapse
Affiliation(s)
- Carlotta Stacchini
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197, Rome, Italy; Dipartimento Chimica e Tecnologia del farmaco, "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00161, Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197, Rome, Italy; ISSUL - Institute of Sport Sciences, University of Lausanne, Synathlon - Quartier Centre, 1015, Lausanne, Switzerland.
| | - Fabio Comunità
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197, Rome, Italy
| | - Xavier de la Torre
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197, Rome, Italy
| | - Anna Pia Dima
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197, Rome, Italy
| | - Matteo Ricci
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197, Rome, Italy
| | - Monica Mazzarino
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197, Rome, Italy
| |
Collapse
|
9
|
Temerdashev AZ, Dmitrieva EV. Methods for the Determination of Selective Androgen Receptor Modulators. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820070187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
van Geenen FAMG, Franssen MCR, Miikkulainen V, Ritala M, Zuilhof H, Kostiainen R, Nielen MWF. TiO 2 Photocatalyzed Oxidation of Drugs Studied by Laser Ablation Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:639-646. [PMID: 30617860 PMCID: PMC6445813 DOI: 10.1007/s13361-018-2120-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 05/04/2023]
Abstract
In drug discovery, it is important to identify phase I metabolic modifications as early as possible to screen for inactivation of drugs and/or activation of prodrugs. As the major class of reactions in phase I metabolism is oxidation reactions, oxidation of drugs with TiO2 photocatalysis can be used as a simple non-biological method to initially eliminate (pro)drug candidates with an undesired phase I oxidation metabolism. Analysis of reaction products is commonly achieved with mass spectrometry coupled to chromatography. However, sample throughput can be substantially increased by eliminating pretreatment steps and exploiting the potential of ambient ionization mass spectrometry (MS). Furthermore, online monitoring of reactions in a time-resolved way would identify sequential modification steps. Here, we introduce a novel (time-resolved) TiO2-photocatalysis laser ablation electrospray ionization (LAESI) MS method for the analysis of drug candidates. This method was proven to be compatible with both TiO2-coated glass slides as well as solutions containing suspended TiO2 nanoparticles, and the results were in excellent agreement with studies on biological oxidation of verapamil, buspirone, testosterone, andarine, and ostarine. Finally, a time-resolved LAESI MS setup was developed and initial results for verapamil showed excellent analytical stability for online photocatalyzed oxidation reactions within the set-up up to at least 1 h. Graphical Abstract.
Collapse
Affiliation(s)
- Fred A M G van Geenen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- TI-COAST, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Maurice C R Franssen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ville Miikkulainen
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki, Finland
| | - Mikko Ritala
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki, Finland
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin, People's Republic of China
- Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Risto Kostiainen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Michel W F Nielen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
- RIKILT, Wageningen University & Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Mazzarino M, Rizzato N, Stacchini C, Torre X, Botrè F. A further insight into the metabolic profile of the nuclear receptor Rev‐erb agonist, SR9009. Drug Test Anal 2018; 10:1670-1681. [DOI: 10.1002/dta.2538] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Monica Mazzarino
- Laboratorio AntidopingFederazione Medico Sportiva Italiana Rome Italy
| | - Nikla Rizzato
- Laboratorio AntidopingFederazione Medico Sportiva Italiana Rome Italy
| | | | - Xavier Torre
- Laboratorio AntidopingFederazione Medico Sportiva Italiana Rome Italy
| | - Francesco Botrè
- Laboratorio AntidopingFederazione Medico Sportiva Italiana Rome Italy
- Dipartimento di Medicina Sperimentale“Sapienza” Università di Roma Rome Italy
| |
Collapse
|
12
|
Mazzarino M, Khevenhüller-Metsch FL, Fiacco I, Parr MK, de la Torre X, Botrè F. Drug-drug interaction and doping: Effect of non-prohibited drugs on the urinary excretion profile of methandienone. Drug Test Anal 2018; 10:1554-1565. [DOI: 10.1002/dta.2406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Monica Mazzarino
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Rome Italy
| | | | - Ilaria Fiacco
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Rome Italy
| | - Maria Kristina Parr
- Department of Biology Chemistry and Pharmacy; Freie Universität Berlin; Germany
| | - Xavier de la Torre
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Rome Italy
| | - Francesco Botrè
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Rome Italy
- Dipartimento di Medicina Sperimentale; “Sapienza” Università di Roma; Rome Italy
| |
Collapse
|
13
|
Souza Anselmo C, Sardela VF, Matias BF, Carvalho AR, Sousa VP, Pereira HMG, Aquino Neto FR. Is zebrafish
(
Danio rerio
)
a tool for human‐like metabolism study? Drug Test Anal 2017; 9:1685-1694. [DOI: 10.1002/dta.2318] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Carina Souza Anselmo
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Vinicius Figueiredo Sardela
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Bernardo Fonseca Matias
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Amanda Reis Carvalho
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Valeria Pereira Sousa
- Federal University of Rio de Janeiro, Faculty of PharmacyDepartment of Drugs and Pharmaceutics Av. Carlos Chagas Filho, 373, bloco Bss, 36 ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐170 Brazil
| | - Henrique Marcelo Gualberto Pereira
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Francisco Radler Aquino Neto
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| |
Collapse
|
14
|
Mazzarino M, Buccilli V, de la Torre X, Fiacco I, Palermo A, Ughi D, Botrè F. Characterization of the phase I and phase II metabolic profile of tolvaptan by in vitro studies and liquid chromatography–mass spectrometry profiling: Relevance to doping control analysis. J Pharm Biomed Anal 2017; 145:555-568. [DOI: 10.1016/j.jpba.2017.06.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 01/14/2023]
|
15
|
Rojas D, Dervilly-Pinel G, Cesbron N, Penot M, Sydor A, Prévost S, Le Bizec B. Selective androgen receptor modulators: comparative excretion study of bicalutamide in bovine urine and faeces. Drug Test Anal 2016; 9:1017-1025. [DOI: 10.1002/dta.2113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Dante Rojas
- LUNAM Université; Oniris, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA); Nantes France
- Instituto Tecnología de Alimentos (ITA), Centro de Investigación de Agroindustria (CIA); Instituto Nacional de Tecnología Agropecuaria (INTA); CC77 Morón Argentina
| | - Gaud Dervilly-Pinel
- LUNAM Université; Oniris, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA); Nantes France
| | - Nora Cesbron
- LUNAM Université; Oniris, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA); Nantes France
| | - Mylène Penot
- LUNAM Université; Oniris, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA); Nantes France
| | - Alexandre Sydor
- LUNAM Université; Oniris, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA); Nantes France
| | - Stéphanie Prévost
- LUNAM Université; Oniris, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA); Nantes France
| | - Bruno Le Bizec
- LUNAM Université; Oniris, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA); Nantes France
| |
Collapse
|
16
|
Perrenoud L, Schweizer Grundisch C, Baume N, Saugy M, Nicoli R. Risk of false positive results to SARM S-4 in case of therapeutic use of antineoplastic/antiandrogen drug containing flutamide: a case study. Drug Test Anal 2016; 8:1109-1113. [DOI: 10.1002/dta.2051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 11/08/2022]
Affiliation(s)
- L. Perrenoud
- Swiss Laboratory for Doping Analyses; University Center of Legal Medicine Lausanne-Geneva, Centre Hospitalier Universitaire Vaudois, University of Lausanne; Chemin des Croisettes 22 1066 Epalinges Switzerland
| | - C. Schweizer Grundisch
- Swiss Laboratory for Doping Analyses; University Center of Legal Medicine Lausanne-Geneva, Centre Hospitalier Universitaire Vaudois, University of Lausanne; Chemin des Croisettes 22 1066 Epalinges Switzerland
| | - N. Baume
- Swiss Laboratory for Doping Analyses; University Center of Legal Medicine Lausanne-Geneva, Centre Hospitalier Universitaire Vaudois, University of Lausanne; Chemin des Croisettes 22 1066 Epalinges Switzerland
| | - M. Saugy
- Swiss Laboratory for Doping Analyses; University Center of Legal Medicine Lausanne-Geneva, Centre Hospitalier Universitaire Vaudois, University of Lausanne; Chemin des Croisettes 22 1066 Epalinges Switzerland
| | - R. Nicoli
- Swiss Laboratory for Doping Analyses; University Center of Legal Medicine Lausanne-Geneva, Centre Hospitalier Universitaire Vaudois, University of Lausanne; Chemin des Croisettes 22 1066 Epalinges Switzerland
| |
Collapse
|
17
|
Vogel M, Dib J, Tretzel L, Piper T, Thomas A, Schänzer W, Thevis M. Analytics of nonpeptidic erythropoietin mimetic agents in sports drug testing employing high-resolution/high-accuracy liquid chromatography-mass spectrometry. Anal Bioanal Chem 2016; 408:6431-42. [DOI: 10.1007/s00216-016-9761-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/15/2016] [Accepted: 07/01/2016] [Indexed: 12/16/2022]
|
18
|
Hansson A, Knych H, Stanley S, Thevis M, Bondesson U, Hedeland M. Investigation of the selective androgen receptor modulators S1, S4 and S22 and their metabolites in equine plasma using high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:833-42. [PMID: 26969924 DOI: 10.1002/rcm.7512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/13/2016] [Accepted: 01/16/2016] [Indexed: 05/21/2023]
Abstract
RATIONALE Selective androgen receptor modulators (SARMs) are prohibited in sports due to their performance enhancing ability. It is important to investigate the metabolism to determine appropriate targets for doping control. This is the first study where the equine metabolites of SARMs S1, S4 (Andarine) and S22 (Ostarine) have been studied in plasma. METHODS Each SARM was administered to three horses as an intravenous bolus dose and plasma samples were collected. The samples were pretreated with protein precipitation using cold acetonitrile before separation by liquid chromatography. The mass spectrometric analysis was performed using negative electrospray, quadrupole time-of-flight mass spectrometry operated in MS(E) mode and triple-quadrupole mass spectrometry operated in selected reaction monitoring mode. For the quantification of SARM S1, a deuterated analogue was used as internal standard. RESULTS The numbers of observed metabolites were eight, nine and four for the SARMs S1, S4 and S22, respectively. The major metabolite was formed by the same metabolic reactions for all three SARMs, namely amide hydrolysis, hydroxylation and sulfonation. The values of the determined maximum plasma concentrations were in the range of 97-170 ng/mL for SARM S1, 95-115 ng/mL for SARM S4 and 92-147 ng/mL for SARM S22 and the compounds could be detected for 96 h, 12 h and 18 h, respectively. CONCLUSIONS The maximum plasma concentration of SARMs S1, S4 and S22 was measured in the first sample (5 min) after administration and they were eliminated fast from plasma. The proposed targets to be used in equine doping control are the parent compounds for all three SARMs, but with the metabolite yielding the highest response as a complementary target. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Annelie Hansson
- Division of Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75123, Uppsala, Sweden
| | - Heather Knych
- K. L. Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine, University of California, Davis, CA, USA
- Department of Veterinary Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Scott Stanley
- K. L. Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Mario Thevis
- Institute of Biochemistry and Center for Preventive Doping Research, German Sport University, Cologne, Germany
| | - Ulf Bondesson
- Division of Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75123, Uppsala, Sweden
- National Veterinary Institute (SVA), Department of Chemistry, Environment and Feed Hygiene, SE-75651, Uppsala, Sweden
| | - Mikael Hedeland
- Division of Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75123, Uppsala, Sweden
- National Veterinary Institute (SVA), Department of Chemistry, Environment and Feed Hygiene, SE-75651, Uppsala, Sweden
| |
Collapse
|
19
|
Geldof L, Pozo OJ, Lootens L, Morthier W, Van Eenoo P, Deventer K. In vitro metabolism study of a black market product containing SARM LGD-4033. Drug Test Anal 2016; 9:168-178. [PMID: 26767942 DOI: 10.1002/dta.1930] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/05/2015] [Accepted: 11/15/2015] [Indexed: 01/02/2023]
Abstract
Anabolic agents are often used by athletes to enhance their performance. However, use of steroids leads to considerable side effects. Non-steroidal selective androgen receptor modulators (SARMs) are a novel class of substances that have not been approved so far but seem to have a more favourable anabolic/androgenic ratio than steroids and produce fewer side effects. Therefore the use of SARMs has been prohibited since 2008 by the World Anti-Doping Agency (WADA). Several of these SARMs have been detected on the black market. Metabolism studies are essential to identify the best urinary markers to ensure effective control of emerging substances by doping control laboratories. As black market products often contain non-pharmaceutical-grade substances, alternatives for human excretion studies are needed to elucidate the metabolism. A black market product labelled to contain the SARM LGD-4033 was purchased over the Internet. Purity verification of the black market product led to the detection of LGD-4033, without other contaminants. Human liver microsomes and S9 liver fractions were used to perform phase I and phase II (glucuronidation) metabolism studies. The samples of the in vitro metabolism studies were analyzed by gas chromatography-(tandem) mass spectrometry (GC-MS(/MS)), liquid chromatography-high resolution-tandem mass spectrometry (LC-(HR)MS/MS). LC-HRMS product ion scans allowed to identify typical fragment ions for the parent compound and to further determine metabolite structures. In total five metabolites were detected, all modified in the pyrrolidine ring of LGD-4033. The metabolic modifications ranged from hydroxylation combined with keto-formation (M1) or cleavage of the pyrrolidine ring (M2), hydroxylation and methylation (M3/M4) and dihydroxylation (M5). The parent compound and M2 were also detected as glucuronide-conjugates. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lore Geldof
- Doping Control Laboratory (DoCoLab), Ghent University (UGent), Department of Clinical Chemistry, Microbiology and Immunology, Technologiepark 30B, Zwijnaarde, B-9052, Belgium
| | - Oscar J Pozo
- IMIM - Hospital del Mar Medical Research Institute, Bioanalysis Research Group, Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Leen Lootens
- Doping Control Laboratory (DoCoLab), Ghent University (UGent), Department of Clinical Chemistry, Microbiology and Immunology, Technologiepark 30B, Zwijnaarde, B-9052, Belgium
| | - Wouter Morthier
- Doping Control Laboratory (DoCoLab), Ghent University (UGent), Department of Clinical Chemistry, Microbiology and Immunology, Technologiepark 30B, Zwijnaarde, B-9052, Belgium
| | - Peter Van Eenoo
- Doping Control Laboratory (DoCoLab), Ghent University (UGent), Department of Clinical Chemistry, Microbiology and Immunology, Technologiepark 30B, Zwijnaarde, B-9052, Belgium
| | - Koen Deventer
- Doping Control Laboratory (DoCoLab), Ghent University (UGent), Department of Clinical Chemistry, Microbiology and Immunology, Technologiepark 30B, Zwijnaarde, B-9052, Belgium
| |
Collapse
|
20
|
Thevis M, Lagojda A, Kuehne D, Thomas A, Dib J, Hansson A, Hedeland M, Bondesson U, Wigger T, Karst U, Schänzer W. Characterization of a non-approved selective androgen receptor modulator drug candidate sold via the Internet and identification of in vitro generated phase-I metabolites for human sports drug testing. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:991-999. [PMID: 26044265 DOI: 10.1002/rcm.7189] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
RATIONALE Potentially performance-enhancing agents, particularly anabolic agents, are advertised and distributed by Internet-based suppliers to a substantial extent. Among these anabolic agents, a substance referred to as LGD-4033 has been made available, comprising the core structure of a class of selective androgen receptor modulators (SARMs). METHODS In order to provide comprehensive analytical data for doping controls, the substance was obtained and characterized by nuclear magnetic resonance spectroscopy (NMR) and liquid chromatography/electrospray ionization high resolution/high accuracy tandem mass spectrometry (LC/ESI-HRMS). Following the identification of 4-(2-(2,2,2-trifluoro-1-hydroxyethyl)pyrrolidin-1-yl)-2-(trifluoromethyl)benzonitrile, the substance was subjected to in vitro metabolism studies employing human liver microsomes and Cunninghamella elegans (C. elegans) preparations as well as electrochemical metabolism simulations. RESULTS By means of LC/ESI-HRMS, five main phase-I metabolites were identified as products of liver microsomal preparations including three monohydroxylated and two bishydroxylated species. The two most abundant metabolites (one mono- and one bishydroxylated product) were structurally confirmed by LC/ESI-HRMS and NMR. Comparing the metabolic conversion of 4-(2-(2,2,2-trifluoro-1-hydroxyethyl)pyrrolidin-1-yl)-2-(trifluoromethyl)benzonitrile observed in human liver microsomes with C. elegans and electrochemically derived metabolites, one monohydroxylated product was found to be predominantly formed in all three methodologies. CONCLUSIONS The implementation of the intact SARM-like compound and its presumed urinary phase-I metabolites into routine doping controls is suggested to expand and complement existing sports drug testing methods.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany
| | - Andreas Lagojda
- Bayer CropScience AG, Alfred-Nobel-Str. 50, 40789, Monheim, Germany
| | - Dirk Kuehne
- Bayer CropScience AG, Alfred-Nobel-Str. 50, 40789, Monheim, Germany
| | - Andreas Thomas
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Josef Dib
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Annelie Hansson
- Uppsala University, Division of Analytical Pharmaceutical Chemistry, P.O. Box 574, SE-751 23, Uppsala, Sweden
| | - Mikael Hedeland
- Uppsala University, Division of Analytical Pharmaceutical Chemistry, P.O. Box 574, SE-751 23, Uppsala, Sweden
- National Veterinary Institute (SVA), Department of Chemistry, Environment and Feed Hygiene, SE-751 89, Uppsala, Sweden
| | - Ulf Bondesson
- Uppsala University, Division of Analytical Pharmaceutical Chemistry, P.O. Box 574, SE-751 23, Uppsala, Sweden
- National Veterinary Institute (SVA), Department of Chemistry, Environment and Feed Hygiene, SE-751 89, Uppsala, Sweden
| | - Tina Wigger
- Westfälische Wilhelms-Universität Münster, Institute of Inorganic and Analytical Chemistry, Corrensstr. 30, 48149, Münster, Germany
| | - Uwe Karst
- Westfälische Wilhelms-Universität Münster, Institute of Inorganic and Analytical Chemistry, Corrensstr. 30, 48149, Münster, Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
21
|
Domínguez-Romero JC, García-Reyes JF, Lara-Ortega FJ, Molina-Díaz A. Screening and confirmation capabilities of liquid chromatography-time-of-flight mass spectrometry for the determination of 200 multiclass sport drugs in urine. Talanta 2015; 134:74-88. [DOI: 10.1016/j.talanta.2014.10.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/15/2014] [Accepted: 10/24/2014] [Indexed: 12/25/2022]
|
22
|
Hansson A, Knych H, Stanley S, Thevis M, Bondesson U, Hedeland M. Characterization of equine urinary metabolites of selective androgen receptor modulators (SARMs) S1, S4 and S22 for doping control purposes. Drug Test Anal 2015; 7:673-83. [DOI: 10.1002/dta.1768] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/21/2014] [Accepted: 11/27/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Annelie Hansson
- Division of Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry; Uppsala University; Box 574 SE-75123 Uppsala Sweden
| | - Heather Knych
- K. L. Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine; University of California; Davis CA 956161 USA
- Department of Veterinary Molecular Biosciences, School of Veterinary Medicine; University of California; Davis CA 956161 USA
| | - Scott Stanley
- K. L. Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine; University of California; Davis CA 956161 USA
| | - Mario Thevis
- Institute of Biochemistry and Center for Preventive Doping Research, German Sport University; 50933 Cologne Germany
| | - Ulf Bondesson
- Division of Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry; Uppsala University; Box 574 SE-75123 Uppsala Sweden
- National Veterinary Institute (SVA); Department of Chemistry, Environment and Feed Hygiene; SE-75651 Uppsala Sweden
| | - Mikael Hedeland
- Division of Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry; Uppsala University; Box 574 SE-75123 Uppsala Sweden
- National Veterinary Institute (SVA); Department of Chemistry, Environment and Feed Hygiene; SE-75651 Uppsala Sweden
| |
Collapse
|
23
|
Knoop A, Krug O, Vincenti M, Schänzer W, Thevis M. In vitro metabolism studies on the selective androgen receptor modulator (SARM) LG121071 and its implementation into human doping controls using liquid chromatography-mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:27-36. [PMID: 25906032 DOI: 10.1255/ejms.1328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
LG121071 is a member of the tetrahydroquinolinone-based class of selective androgen receptor modulator (SARM) drug candidates. These nonsteroidal compounds are supposed to act as full anabolic agents with reduced androgenic properties. As SARMs provide an alternative to anabolic androgenic steroids, they represent an emerging class of potential doping substances abused by athletes for illicit performance enhancement. According to the World Anti-Doping Agency's regulations, SARMs are banned substances and part of the Prohibited List since 2008. In consideration of the increasing number of adverse analytical findings in doping controls caused by SARMs abuse, potential drug candidates such as LG121071 have been proactively investigated to enable a timely integration into routine testing procedures even though clinical trials are not yet complete. In the present approach, the collision-induced dissociation (CID) of LG121071 was characterized by means of electrospray ionization-high resolution/high accuracy mass spectrometry, MS(n), and isotope labeling experiments. Interestingly, the even-electron precursor ion [M + H](+) at m/z 297 was found to produce a radical cation at m/z 268 under CID conditions, violating the even-electron rule that commonly applies. For doping control purposes, metabolites were generated in vitro and a detection method for urine samples based on liquid chromatography-tandem mass spectrometry was established. The overall metabolic conversion of LG121071 was modest, yielding primarily mono-, bis- and trishydroxylated species. Notable, however, was the identification of a glucuronic acid conjugate of the intact drug, attributed to an N-glucuronide structure. The sample preparation procedure included the enzymatic hydrolysis of glucuronides prior to liquid-liquid extraction, allowing intact LG121071 to be measured, as well as the corresponding phase-I metabolites. The method was characterized concerning inter alia lower limit of detection (0.5 ng mL(-1) in urine), recovery (40%), and intra-/interday precision (2.3% to 11.7%) to assess its fitness for purpose. Prospectively, the assay can serve as detection method for LG121071 in drug testing and/or doping controls.
Collapse
Affiliation(s)
- Andre Knoop
- Institute for Biochemistry- Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany..
| | - Oliver Krug
- Institute for Biochemistry- Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany. European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany.
| | - Marco Vincenti
- Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy.
| | - Wilhelm Schänzer
- Institute for Biochemistry- Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany..
| | - Mario Thevis
- Institute for Biochemistry- Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany. European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany.
| |
Collapse
|
24
|
Isolation and characterization of a β-glucuronide of hydroxylated SARM S1 produced using a combination of biotransformation and chemical oxidation. J Pharm Biomed Anal 2014; 98:36-9. [PMID: 24879518 DOI: 10.1016/j.jpba.2014.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/28/2014] [Accepted: 05/01/2014] [Indexed: 11/24/2022]
Abstract
In this study, using mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, it has been confirmed that biotransformation with the fungus Cunninghamella elegans combined with chemical oxidation with the free radical tetramethylpiperidinyl-1-oxy (TEMPO) can produce drug glucuronides of β-configuration. Glucuronic acid conjugates are a common type of metabolites formed by the human body. The detection of such conjugates in doping control and other kinds of forensic analysis would be beneficial owing to a decrease in analysis time as hydrolysis can be omitted. However the commercial availability of reference standards for drug glucuronides is poor. The selective androgen receptor modulator (SARM) SARM S1 was incubated with the fungus C. elegans. The sample was treated with the free radical TEMPO oxidizing agent and was thereafter purified by SPE. A glucuronic acid conjugate was isolated using a fraction collector connected to an ultra high performance liquid chromatographic (UHPLC) system. The isolated compound was characterized by NMR spectroscopy and mass spectrometry and its structure was confirmed as a glucuronic acid β-conjugate of hydroxylated SARM S1 bearing the glucuronide moiety on carbon C-10.
Collapse
|
25
|
Targeting misuse of 2-amino-N-ethyl-1-phenylbutane in urine samples:in vitro-in vivocorrelation of metabolic profiles and development of LC-TOF-MS method. Drug Test Anal 2014; 7:89-94. [DOI: 10.1002/dta.1642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/15/2014] [Accepted: 02/16/2014] [Indexed: 11/07/2022]
|
26
|
Mazzarino M, de la Torre X, Fiacco I, Botrè F. Drug-drug interaction and doping, part 2: Anin vitrostudy on the effect of non-prohibited drugs on the phase I metabolic profile of stanozolol. Drug Test Anal 2014; 6:969-77. [DOI: 10.1002/dta.1608] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/08/2013] [Accepted: 12/22/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Monica Mazzarino
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Largo Giulio Onesti, 1 00197 Rome Italy
| | - Xavier de la Torre
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Largo Giulio Onesti, 1 00197 Rome Italy
| | - Ilaria Fiacco
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Largo Giulio Onesti, 1 00197 Rome Italy
| | - Francesco Botrè
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Largo Giulio Onesti, 1 00197 Rome Italy
- Dipartimento di Medicina Sperimentale; ‘Sapienza’ Università di Roma; Viale Regina Elena 324 00161 Rome Italy
| |
Collapse
|
27
|
Thevis M, Thomas A, Piper T, Krug O, Delahaut P, Schänzer W. Liquid chromatography-high resolution/ high accuracy (tandem) mass spectrometry-based identification of in vivo generated metabolites of the selective androgen receptor modulator ACP-105 for doping control purposes. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:73-83. [PMID: 24881457 DOI: 10.1255/ejms.1236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Selective androgen receptor modulators (SARMs) represent an emerging class of therapeutics which have been prohibited in sport as anabolic agents according to the regulations of the World Anti-Doping Agency (WADA) since 2008. Within the past three years, numerous adverse analytical findings with SARMs in routine doping control samples have been reported despite missing clinical approval of these substances. Hence, preventive doping research concerning the metabolism and elimination of new therapeutic entities of the class of SARMs are vital for efficient and timely sports drug testing programs as banned compounds are most efficiently screened when viable targets (for example, characteristic metabolites) are identified. In the present study, the metabolism of ACP-105, a novel SARM drug candidate, was studied in vivo in rats. Following oral administration, urine samples were collected over a period of seven days and analyzed for metabolic products by Liquid chromatography-high resolution/high accuracy (tandem) mass spectrometry. Samples were subjected to enzymatic hydrolysis prior to liquid-liquid extraction and a total of seven major phase-I metabolites were detected, three of which were attributed to monohydroxylated and four to bishydroxylated ACP-105. The hydroxylation sites were assigned by means of diagnostic product ions and respective dissociation pathways of the analytes following positive or negative ionization and collisional activation as well as selective chemical derivatization. The identified metabolites were used as target compounds to investigate their traceability in a rat elimination urine samples study and monohydroxylated and bishydroxylated species were detectable for up to four and six days post-administration, respectively.
Collapse
|
28
|
Höppner S, Delahaut P, Schänzer W, Thevis M. Mass spectrometric studies on the in vivo metabolism and excretion of SIRT1 activating drugs in rat urine, dried blood spots, and plasma samples for doping control purposes. J Pharm Biomed Anal 2014; 88:649-59. [DOI: 10.1016/j.jpba.2013.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/09/2013] [Accepted: 10/12/2013] [Indexed: 12/24/2022]
|
29
|
Tyrkkö E, Pelander A, Ketola RA, Ojanperä I. In silico and in vitro metabolism studies support identification of designer drugs in human urine by liquid chromatography/quadrupole-time-of-flight mass spectrometry. Anal Bioanal Chem 2013; 405:6697-709. [PMID: 23797910 DOI: 10.1007/s00216-013-7137-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 01/21/2023]
Abstract
Human phase I metabolism of four designer drugs, 2-desoxypipradrol (2-DPMP), 3,4-dimethylmethcathinone (3,4-DMMC), α-pyrrolidinovalerophenone (α-PVP), and methiopropamine (MPA), was studied using in silico and in vitro metabolite prediction. The metabolites were identified in drug abusers’ urine samples using liquid chromatography/quadrupole-time-of-flight mass spectrometry (LC/Q-TOF/MS). The aim of the study was to evaluate the ability of the in silico and in vitro methods to generate the main urinary metabolites found in vivo. Meteor 14.0.0 software (Lhasa Limited) was used for in silico metabolite prediction, and in vitro metabolites were produced in human liver microsomes (HLMs). 2-DPMP was metabolized by hydroxylation, dehydrogenation, and oxidation, resulting in six phase I metabolites. Six metabolites were identified for 3,4-DMMC formed via N-demethylation, reduction, hydroxylation, and oxidation reactions. α-PVP was found to undergo reduction, hydroxylation, dehydrogenation, and oxidation reactions, as well as degradation of the pyrrolidine ring, and seven phase I metabolites were identified. For MPA, the nor-MPA metabolite was detected. Meteor software predicted the main human urinary phase I metabolites of 3,4-DMMC, α-PVP, and MPA and two of the four main metabolites of 2-DPMP. It assisted in the identification of the previously unreported metabolic reactions for α-PVP. Eight of the 12 most abundant in vivo phase I metabolites were detected in the in vitro HLM experiments. In vitro tests serve as material for exploitation of in silico data when an authentic urine sample is not available. In silico and in vitro designer drug metabolism studies with LC/Q-TOF/MS produced sufficient metabolic information to support identification of the parent compound in vivo.
Collapse
Affiliation(s)
- Elli Tyrkkö
- Department of Forensic Medicine, Hjelt Institute, University of Helsinki, P.O. Box 40, 00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
30
|
Orlovius AK, Guddat S, Gütschow M, Thevis M, Schänzer W. In vitro synthesis and characterisation of three fenoterol sulfoconjugates detected in fenoterol post-administration urine samples. Anal Bioanal Chem 2013; 405:9477-87. [DOI: 10.1007/s00216-013-7383-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/16/2013] [Accepted: 09/16/2013] [Indexed: 11/30/2022]
|
31
|
Mass spectrometric characterization of glucuronides formed by a new concept, combining Cunninghamella elegans with TEMPO. J Pharm Biomed Anal 2013; 84:278-84. [DOI: 10.1016/j.jpba.2013.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 01/21/2023]
|
32
|
de Rijke E, Essers ML, Rijk JC, Thevis M, Bovee TF, van Ginkel LA, Sterk SS. Selective androgen receptor modulators:in vitroandin vivometabolism and analysis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30:1517-26. [DOI: 10.1080/19440049.2013.810346] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Höppner S, Schänzer W, Thevis M. Mass spectrometric studies on the in vitro generated metabolites of SIRT1 activating drugs for doping control purposes. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:830-843. [PMID: 23832939 DOI: 10.1002/jms.3227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 06/02/2023]
Abstract
The enzyme SIRT1 is a metabolic key regulator in mitochondrial biogenesis, fat and glucose metabolism. Its activation through pharmaceutical SIRT1 activators such as SRT2104 results in an increased deacetylation of substrates representing important targets for the treatment of metabolic diseases. Moreover, SRT1720 was found to enhance the physical performance of mice. As SIRT1 activators might therefore be relevant in a doping control context, metabolism studies of target substances need be conducted in order to develop a detection assay for SIRT1 activators in urine. In the present study, the in vitro metabolism of five SIRT1 activators was investigated using human liver microsomes. The mass spectrometric behavior of the resulting metabolites following positive electrospray ionization and collision-induced dissociation was elucidated by high-resolution/high-accuracy (tandem) mass spectrometry, and confirmation of the structure of a major metabolite of SRT1720 was accomplished by chemical synthesis. Subsequently, a screening procedure for urine samples was developed employing liquid-liquid-extraction and liquid chromatography/tandem mass spectrometry based on diagnostic ion transitions recorded in multiple reaction monitoring mode and the use of d8-SRT1720 as deuterated internal standard. The method was validated with regard to specificity, sensitivity (limit of detection 0.5 ng/ml), recovery (88-99%) and imprecision (7-18%) as well as ion suppression/enhancement effects (<10%), demonstrating its fitness-for-purpose for sports drug testing applications.
Collapse
Affiliation(s)
- Sebastian Höppner
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Germany
| | | | | |
Collapse
|
34
|
Schragl KM, Forsdahl G, Gmeiner G, Enev VS, Gaertner P. Novel pathway for the synthesis of arylpropionamide-derived selective androgen receptor modulator (SARM) metabolites of andarine and ostarine. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.02.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Starcevic B, Ahrens BD, Butch AW. Detection of the selective androgen receptor modulator S-4 (Andarine) in a doping control sample. Drug Test Anal 2013; 5:377-9. [DOI: 10.1002/dta.1466] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Borislav Starcevic
- UCLA Olympic Analytical Laboratory, Department of Pathology & Laboratory Medicine; Geffen School of Medicine, Reagan UCLA Medical Center; Los Angeles; CA; USA
| | - Brian D. Ahrens
- UCLA Olympic Analytical Laboratory, Department of Pathology & Laboratory Medicine; Geffen School of Medicine, Reagan UCLA Medical Center; Los Angeles; CA; USA
| | - Anthony W. Butch
- UCLA Olympic Analytical Laboratory, Department of Pathology & Laboratory Medicine; Geffen School of Medicine, Reagan UCLA Medical Center; Los Angeles; CA; USA
| |
Collapse
|
36
|
Rydevik A, Thevis M, Krug O, Bondesson U, Hedeland M. The fungusCunninghamella eleganscan produce human and equine metabolites of selective androgen receptor modulators (SARMs). Xenobiotica 2012; 43:409-20. [DOI: 10.3109/00498254.2012.729102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Krug O, Thomas A, Beuck S, Schenk I, Machnik M, Schänzer W, Bondesson U, Hedeland M, Thevis M. Characterization of In Vitro Synthesized Equine Metabolites of the Selective Androgen Receptor Modulators S24 and S4. J Equine Vet Sci 2012. [DOI: 10.1016/j.jevs.2012.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Cadwallader AB, Lim CS, Rollins DE, Botrè F. The androgen receptor and its use in biological assays: looking toward effect-based testing and its applications. J Anal Toxicol 2012; 35:594-607. [PMID: 22080898 DOI: 10.1093/anatox/35.9.594] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Steroid abuse is a growing problem among amateur and professional athletes. Because of an inundation of newly and illegally synthesized steroids with minor structural modifications and other designer steroid receptor modulators, there is a need to develop new methods of detection which do not require prior knowledge of the abused steroid structure. The number of designer steroids currently being abused is unknown because detection methods in general are only identifying substances with a known structure. The detection of doping is moving away from merely checking for exposure to prohibited substance toward detecting an effect of prohibited substances, as biological assays can do. Cell-based biological assays are the next generation of assays which should be utilized by antidoping laboratories; they can detect androgenic anabolic steroid and other human androgen receptor (hAR) ligand presence without knowledge of their structure and assess the relative biological activity of these compounds. This review summarizes the hAR and its action and discusses its relevance to sports doping and its use in biological assays.
Collapse
Affiliation(s)
- Amy B Cadwallader
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti, Rome, Italy.
| | | | | | | |
Collapse
|
39
|
Beuck S, Bornatsch W, Lagojda A, Schänzer W, Thevis M. Development of liquid chromatography-tandem mass spectrometry-based analytical assays for the determination of HIF stabilizers in preventive doping research. Drug Test Anal 2011; 3:756-70. [DOI: 10.1002/dta.365] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Simon Beuck
- Institute of Biochemistry - Centre for Preventive Doping Research; German Sport University Cologne; Am Sportpark Müngersdorf 6; 50933; Cologne; Germany
| | | | - Andreas Lagojda
- Bayer CropScience AG; Alfred-Nobel-Str. 50; 40789; Monheim; Germany
| | - Wilhelm Schänzer
- Institute of Biochemistry - Centre for Preventive Doping Research; German Sport University Cologne; Am Sportpark Müngersdorf 6; 50933; Cologne; Germany
| | - Mario Thevis
- Institute of Biochemistry - Centre for Preventive Doping Research; German Sport University Cologne; Am Sportpark Müngersdorf 6; 50933; Cologne; Germany
| |
Collapse
|
40
|
Goebel C. Stimulating luteinizing hormone. Drug Test Anal 2011; 3:868-72. [DOI: 10.1002/dta.393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Catrin Goebel
- National Measurement Institute; Pymble; NSW; Australia
| |
Collapse
|
41
|
Guddat S, Solymos E, Orlovius A, Thomas A, Sigmund G, Geyer H, Thevis M, Schänzer W. High-throughput screening for various classes of doping agents using a new ‘dilute-and-shoot’ liquid chromatography-tandem mass spectrometry multi-target approach. Drug Test Anal 2011; 3:836-50. [DOI: 10.1002/dta.372] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/31/2011] [Accepted: 09/12/2011] [Indexed: 11/11/2022]
Affiliation(s)
- S. Guddat
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne
| | - E. Solymos
- Eötvös Loránd University; Joint Research and Training Laboratory on Separation Techniques; Budapest; Hungary
| | | | - A. Thomas
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne
| | - G. Sigmund
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne
| | - H. Geyer
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne
| | - M. Thevis
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne
| | - W. Schänzer
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne
| |
Collapse
|
42
|
Grata E, Perrenoud L, Saugy M, Baume N. SARM-S4 and metabolites detection in sports drug testing: A case report. Forensic Sci Int 2011; 213:104-8. [DOI: 10.1016/j.forsciint.2011.07.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 06/30/2011] [Accepted: 07/06/2011] [Indexed: 10/17/2022]
|
43
|
Thevis M, Fusshöller G, Schänzer W. Zeranol: doping offence or mycotoxin? A case-related study. Drug Test Anal 2011; 3:777-83. [PMID: 22095651 DOI: 10.1002/dta.352] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/19/2011] [Accepted: 08/02/2011] [Indexed: 11/08/2022]
Abstract
Zeranol ((7R,11S)-7,15,17-trihydroxy-11-methyl-12-oxabicyclo[12.4.0]octadeca-1(14),15,17-trien-13-one, also referred to as 7α-zearalanol, Ralone®, Frideron®, Ralgro®, etc.) is a semi-synthetic estrogenic veterinary drug with growth-promoting properties. Its use regarding animal husbandry has been prohibited in the European Union since 1981 and, due to its anabolic effects, it is further recognized as a banned substance in sport. Numerous studies were conducted concerning the identification of the illicit application of zeranol to domestic livestock. These studies also considered the natural occurrence of zeranol as a metabolite of the mycotoxin zearalenone and the issue of differentiating both scenarios, i.e. illegal use or unintended contamination. Human sports drug testing authorities are facing comparable challenges since the deliberate misuse of the (for human application non-approved) drug should be discriminated from adverse analytical findings resulting from the biotransformation of the mycotoxin zearalenone possibly ingested with contaminated food. The active drug (zeranol), its major human metabolites (zearalanone, 7β-zearalanol) and the mycotoxin (zearalenone) plus its major and unique metabolic products (α-zearalenol, β-zearalenol) have been monitored in routine doping controls by means of validated gas chromatography-(tandem) mass spectrometry (GC-(MS/)MS) methods since 1996, and between 2005 and 2010 four samples providing suspicious signals were detected. In agreement with literature data, in vitro metabolism studies demonstrated the metabolic pathway from zearalenone towards zeranol (and common metabolites). In contrast, an administration study urine sample (collected after oral application of 20 mg of zeranol) yielded only ultra-trace amounts of zearalenone and its characteristic metabolites, which supported the assumption that a mycotoxin contamination caused the finding of zeranol in the doping control specimens rather than a misuse of the anabolic agent.
Collapse
Affiliation(s)
- Mario Thevis
- Institute of Biochemistry, Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany.
| | | | | |
Collapse
|
44
|
Mareck U, Guddat S, Schwenke A, Beuck S, Geyer H, Flenker U, Elers J, Backer V, Thevis M, Schänzer W. Determination of salbutamol and salbutamol glucuronide in human urine by means of liquid chromatography-tandem mass spectrometry. Drug Test Anal 2011; 3:820-7. [PMID: 22081503 DOI: 10.1002/dta.367] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/18/2011] [Accepted: 08/28/2011] [Indexed: 11/10/2022]
Abstract
The determination of salbutamol and its glucuronide in human urine following the inhalative and oral administration of therapeutic doses of salbutamol preparations was performed by means of direct urine injection utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS) and employing d(3)-salbutamol and d(3)-salbutamol glucuronide as internal standards. Unconjugated salbutamol was detected in all administration study urine samples. Salbutamol concentrations following inhalation were commonly (99%) below 1000 ng/ml whereas values after oral administration frequently (48%) exceeded this threshold. While salbutamol glucuronide was not detected in urine samples collected after inhalation of the drug, 26 out of 82 specimens obtained after oral application contained salbutamol glucuronide with a peak value of 63 ng/ml. The percentage of salbutamol glucuronide compared to unconjugated salbutamol was less than 3%. Authentic doping control urine samples indicating screening results for salbutamol less than 1000 ng/ml, showed salbutamol glucuronide concentrations between 2 and 6 ng/ml, whereas adverse analytical findings resulting from salbutamol levels higher than 1000 ng/ml, had salbutamol glucuronide values between 8 and 15 ng/ml. The approach enabled the rapid determination of salbutamol and its glucuronic acid conjugate in human urine and represents an alternative to existing procedures since time-consuming hydrolysis or derivatization steps were omitted. Moreover, the excretion of salbutamol glucuronide in human urine following the administration of salbutamol was proven.
Collapse
Affiliation(s)
- Ute Mareck
- Institute of Biochemistry, German Sport University Cologne, Cologne, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Thevis M, Geyer H, Thomas A, Schänzer W. Trafficking of drug candidates relevant for sports drug testing: detection of non-approved therapeutics categorized as anabolic and gene doping agents in products distributed via the Internet. Drug Test Anal 2011; 3:331-6. [PMID: 21538997 DOI: 10.1002/dta.283] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/02/2011] [Accepted: 03/05/2011] [Indexed: 12/11/2022]
Abstract
Identifying the use of non-approved drugs by cheating athletes has been a great challenge for doping control laboratories. This is due to the additional complexities associated with identifying relatively unknown and uncharacterized compounds and their metabolites as opposed to known and well-studied therapeutics. In 2010, the prohibited drug candidates and gene doping substances AICAR and GW1516, together with the selective androgen receptor modulator (SARM) MK-2866 were obtained by the Cologne Doping Control Laboratory from Internet suppliers and their structure, quantity, and formulation elucidated. All three compounds proved authentic as determined by liquid chromatography-high resolution/high accuracy (tandem) mass spectrometry and comparison to reference material. While AICAR was provided as a colourless powder in 100 mg aliquots, GW1516 was obtained as an orange/yellow suspension in water/glycerol (150 mg/ml), and MK-2866 (25 mg/ml) was shipped dissolved in polyethylene glycol (PEG) 300. In all cases, the quantified amounts were considerably lower than indicated on the label. The substances were delivered via courier, with packaging identifying them as containing 'amino acids' and 'green tea extract', arguably to circumvent customs control. Although all of the substances were declared 'for research only', their potential misuse in illicit performance-enhancement cannot be excluded; moreover sports drug testing authorities should be aware of the facile availability of black market copies of these drug candidates.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany.
| | | | | | | |
Collapse
|
46
|
Thevis M, Thomas A, Schänzer W. Current role of LC-MS(/MS) in doping control. Anal Bioanal Chem 2011; 401:405-20. [DOI: 10.1007/s00216-011-4859-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/24/2011] [Accepted: 02/26/2011] [Indexed: 11/30/2022]
|
47
|
Beuck S, Schänzer W, Thevis M. Investigation of the in vitro metabolism of the emerging drug candidate S107 for doping-preventive purposes. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:112-130. [PMID: 21254313 DOI: 10.1002/jms.1878] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 11/30/2010] [Indexed: 05/30/2023]
Abstract
The metabolic fate of the emerging drug candidate S107, possessing the potential for misuse as performance-enhancing agent in sports, was investigated by in vitro phase I and II experiments with human microsomal and S9 liver enzymes. The metabolites were identified by liquid chromatography-mass spectrometry with electrospray ionisation in positive mode (LC-ESI-MS/MS). Their collision-induced dissociation behaviour was studied by high-resolution/high accuracy Orbitrap MS(n) analysis, supported by stable isotope labelling, H/D-exchange experiments and density functional theory calculations. Monooxygenation accounted for the main phase I metabolic transformation due to N- and S-oxidation of the 1,4-benzothiazepine core, as substantiated by chemical synthesis, selective reduction methods and characteristic APCI in source fragmentation behaviour of the metabolites. Another dominant metabolic pathway was demethylation, yielding the N- and O-demethylated metabolite, respectively. The latter was further conjugated by glucuronidation as well as sulfonation in subsequent phase II metabolic reactions, whereas the N-demethylated metabolite was not amenable to conjugation. The active drug molecule itself was converted to two glucuronic acid conjugates, which are proposed to consist of two quaternary S107-N(+)-glucuronide isomers. All glucuronides were susceptible to enzymatic hydrolysis with β-glucuronidase (Escherichia coli). A comprehensive LC-ESI-MS(/MS)-based detection method for urine was developed and its fitness for purpose was assessed. The assay can serve as a potential screening and/or confirmation method for S107 in clinical drug testing and doping control analysis in the future.
Collapse
Affiliation(s)
- S Beuck
- Institute of Biochemistry, Center for Preventive Doping Research, German Sport University Cologne, Cologne, Germany
| | | | | |
Collapse
|
48
|
Gerace E, Salomone A, Fasano F, Costa R, Boschi D, Di Stilo A, Vincenti M. Validation of a GC/MS method for the detection of two quinolinone-derived selective androgen receptor modulators in doping control analysis. Anal Bioanal Chem 2010; 400:137-44. [DOI: 10.1007/s00216-010-4569-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/25/2010] [Accepted: 11/29/2010] [Indexed: 01/03/2023]
|
49
|
Thevis M, Gerace E, Thomas A, Beuck S, Geyer H, Schlörer N, Kearbey JD, Dalton JT, Schänzer W. Characterization of in vitro generated metabolites of the selective androgen receptor modulators S-22 and S-23 and in vivo comparison to post-administration canine urine specimens. Drug Test Anal 2010; 2:589-98. [DOI: 10.1002/dta.211] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 08/27/2010] [Accepted: 09/12/2010] [Indexed: 12/11/2022]
|
50
|
Thevis M, Thomas A, Fusshöller G, Beuck S, Geyer H, Schänzer W. Mass spectrometric characterization of urinary metabolites of the selective androgen receptor modulator andarine (S-4) for routine doping control purposes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2245-54. [PMID: 20623476 DOI: 10.1002/rcm.4637] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Selective androgen receptor modulators (SARMs) are potent anabolic agents with tissue-selective properties. Due to their potential misuse in elite sport, the World Anti-Doping Agency (WADA) has prohibited SARMs since 2008, and although no representative drug candidate has yet received full clinical approval, recent findings of SARMs illegally sold via the internet have further supported the need to efficiently test for these compounds in doping controls. In the present communication, the mass spectrometric characterization of urinary metabolites of the SARM Andarine (also referred to as S-4) compared with earlier in vitro and animal studies is reported. Liquid chromatography interfaced to high-resolution/high-accuracy (tandem) mass spectrometry was used to identify phase I and II metabolites, confirming the predicted target analytes for sports drug testing purposes including the glucuronic acid conjugates of the active drug, its monohydroxylated and/or deacetylated product, the hydrolysis product resulting from the removal of the compound's B-ring, as well as the sulfate of the monohydroxylated and the deacetylated phase I metabolite. The obtained data will support future efforts to effectively screen for and confirm the misuse of the non-approved drug candidate Andarine.
Collapse
Affiliation(s)
- Mario Thevis
- Institute of Biochemistry - Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany.
| | | | | | | | | | | |
Collapse
|