1
|
Sychterz C, Shen H, Zhang Y, Sinz M, Rostami‐Hodjegan A, Schmidt BJ, Gaohua L, Galetin A. A close examination of BCRP's role in lactation and methods for predicting drug distribution into milk. CPT Pharmacometrics Syst Pharmacol 2024; 13:1856-1869. [PMID: 39292199 PMCID: PMC11578132 DOI: 10.1002/psp4.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Breastfeeding is the most complete nutritional method of feeding infants, but several impediments affect the decision to breastfeed, including questions of drug safety for medications needed during lactation. Despite recent FDA guidance, few labels provide clear dosing advice during lactation. Physiologically based pharmacokinetic modeling (PBPK) is well suited to mechanistically explore pharmacokinetics and dosing paradigms to fill gaps in the absence of extensive clinical studies and complement existing real-world data. For lactation-focused PBPK (Lact-PBPK) models, information on system parameters (e.g., expression of drug transporters in mammary epithelial cells) is sparse. The breast cancer resistance protein (BCRP) is expressed on the apical side of mammary epithelial cells where it actively transports drugs/substrates into milk (reported milk: plasma ratios range from 2 to 20). A critical review of BCRP and its role in lactation was conducted. Longitudinal changes in BCRP mRNA expression have been identified in women with a maximum reached around 5 months postpartum. Limited data are available on the ontogeny of BCRP in infant intestine; however, data indicate lower BCRP abundance in infants compared to adults. Current status of incorporation of drug transporter information in Lact-PBPK models to predict active secretion of drugs into breast milk and consequential exposure of breast-fed infants is discussed. In addition, this review highlights novel clinical tools for evaluation of BCRP activity, namely a potential non-invasive BCRP biomarker (riboflavin) and liquid biopsy that could be used to quantitatively elucidate the role of this transporter without the need for administration of drugs and to inform Lact-PBPK models.
Collapse
Affiliation(s)
- Caroline Sychterz
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | - Hong Shen
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | | | | | - Amin Rostami‐Hodjegan
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
- Certara Predictive Technologies, Certara UKSheffieldUK
| | | | - Lu Gaohua
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | - Aleksandra Galetin
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
| |
Collapse
|
2
|
Transporters in the Mammary Gland-Contribution to Presence of Nutrients and Drugs into Milk. Nutrients 2019; 11:nu11102372. [PMID: 31590349 PMCID: PMC6836069 DOI: 10.3390/nu11102372] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
A large number of nutrients and bioactive ingredients found in milk play an important role in the nourishment of breast-fed infants and dairy consumers. Some of these ingredients include physiologically relevant compounds such as vitamins, peptides, neuroactive compounds and hormones. Conversely, milk may contain substances-drugs, pesticides, carcinogens, environmental pollutants-which have undesirable effects on health. The transfer of these compounds into milk is unavoidably linked to the function of transport proteins. Expression of transporters belonging to the ATP-binding cassette (ABC-) and Solute Carrier (SLC-) superfamilies varies with the lactation stages of the mammary gland. In particular, Organic Anion Transporting Polypeptides 1A2 (OATP1A2) and 2B1 (OATP2B1), Organic Cation Transporter 1 (OCT1), Novel Organic Cation Transporter 1 (OCTN1), Concentrative Nucleoside Transporters 1, 2 and 3 (CNT1, CNT2 and CNT3), Peptide Transporter 2 (PEPT2), Sodium-dependent Vitamin C Transporter 2 (SVCT2), Multidrug Resistance-associated Protein 5 (ABCC5) and Breast Cancer Resistance Protein (ABCG2) are highly induced during lactation. This review will focus on these transporters overexpressed during lactation and their role in the transfer of products into the milk, including both beneficial and harmful compounds. Furthermore, additional factors, such as regulation, polymorphisms or drug-drug interactions will be described.
Collapse
|
3
|
Kochanek SJ, Close DA, Wang AX, Shun T, Empey PE, Eiseman JL, Johnston PA. Confirmation of Selected Synergistic Cancer Drug Combinations Identified in an HTS Campaign and Exploration of Drug Efflux Transporter Contributions to the Mode of Synergy. SLAS DISCOVERY 2019; 24:653-668. [PMID: 31039321 DOI: 10.1177/2472555219844566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Systematic unbiased high-throughput screening (HTS) of drug combinations (DCs) in well-characterized tumor cell lines is a data-driven strategy to identify novel DCs with potential to be developed into effective therapies. Four DCs from a DC HTS campaign were selected for confirmation; only one appears in clinicaltrials.gov and limited preclinical in vitro data indicates that the drug pairs interact synergistically. Nineteen DC-tumor cell line sets were confirmed to interact synergistically in three pharmacological interaction models. We developed an imaging assay to quantify accumulation of the ABCG2 efflux transporter substrate Hoechst. Gefitinib and raloxifene enhanced Hoechst accumulation in ABCG2 (BCRP)-expressing cells, consistent with inhibition of ABCG2 efflux. Both drugs also inhibit ABCB1 efflux. Mitoxantrone, daunorubicin, and vinorelbine are substrates of one or more of the ABCG2, ABCB1, or ABCC1 efflux transporters expressed to varying extents in the selected cell lines. Interactions between ABC drug efflux transporter inhibitors and substrates may have contributed to the observed synergy; however, other mechanisms may be involved. Novel synergistic DCs identified by HTS were confirmed in vitro, and plausible mechanisms of action studied. Similar approaches may justify the testing of novel HTS-derived DCs in mouse xenograft human cancer models and support the clinical evaluation of effective in vivo DCs in patients.
Collapse
Affiliation(s)
- Stanton J Kochanek
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Close
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allen Xinwei Wang
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tongying Shun
- 2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Philip E Empey
- 3 Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julie L Eiseman
- 4 University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA.,5 Cancer Therapeutics Program, The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA.,6 Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Paul A Johnston
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.,4 University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
4
|
|
5
|
Abstract
Potential drug-drug interactions mediated by the ATP-binding cassette (ABC) transporter and solute carrier (SLC) transporter families are of clinical and regulatory concern. However, the endogenous functions of these drug transporters are not well understood. Discussed here is evidence for the roles of ABC and SLC transporters in the handling of diverse substrates, including metabolites, antioxidants, signalling molecules, hormones, nutrients and neurotransmitters. It is suggested that these transporters may be part of a larger system of remote communication ('remote sensing and signalling') between cells, organs, body fluid compartments and perhaps even separate organisms. This broader view may help to clarify disease mechanisms, drug-metabolite interactions and drug effects relevant to diabetes, chronic kidney disease, metabolic syndrome, hypertension, gout, liver disease, neuropsychiatric disorders, inflammatory syndromes and organ injury, as well as prenatal and postnatal development.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics, Medicine, and Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| |
Collapse
|
6
|
Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics. Arch Toxicol 2014; 88:1205-48. [PMID: 24777822 DOI: 10.1007/s00204-014-1224-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022]
|
7
|
Synthesis of methylated quercetin derivatives and their reversal activities on P-gp- and BCRP-mediated multidrug resistance tumour cells. Eur J Med Chem 2012; 54:413-22. [DOI: 10.1016/j.ejmech.2012.05.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/01/2012] [Accepted: 05/17/2012] [Indexed: 11/21/2022]
|
8
|
Wang L, McNamara PJ. Stereoselective interaction of pantoprazole with ABCG2. I. Drug accumulation in rat milk. Drug Metab Dispos 2012; 40:1018-23. [PMID: 22344699 DOI: 10.1124/dmd.111.041608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Active transport of drug into milk is a major concern in breastfeeding. Abcg2 plays a critical role in drug transfer into rat milk, which is consistent with evidence in humans. Although it is estimated that approximately half of all therapeutic agents are chiral, there have been few reports of stereoselective interactions with ABCG2. The purpose of this study was to investigate the interaction of pantoprazole (PAN) isomers with Abcg2 in in vitro and in vivo experiments. Pantoprazole isomer flux was characterized using Abcg2-Madin-Darby canine kidney II (MDCKII) cells in Transwell plates. In a crossover design, Sprague-Dawley lactating rats were used to study PAN accumulation in milk after an intravenous infusion of pantoprazole mixture in the presence/absence of Abcg2 inhibitor [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918)]. Samples were analyzed by high-performance liquid chromatography/liquid chromatography-mass spectrometry. The results indicated that pantoprazole isomers were transported in an identical fashion in vector-MDCKII cell lines, whereas a significant difference in flux was observed in Abcg2-MDCKII cell line. The administration of GF120918 slightly increased the concentration of both isomers in serum, but no statistical difference was observed. However, the systemic clearance of (+)PAN (0.57 ± 0.1) was larger than (-)PAN (0.44 ± 0.12) (P < 0.01). Milk to serum ratio (M/S) of (-)PAN (1.36 ± 0.20) was 2.5-fold greater than that of (+)PAN (0.54 ± 0.09) (P < 0.01). Administration of GF120918 decreased M/S of (-)PAN to 0.50 ± 0.08 (P < 0.001) and (+)PAN to 0.38 ± 0.07 (P > 0.05). In conclusion, Abcg2, which is responsible for differential accumulation in milk, interacts stereoselectively with PAN isomers. Stereoselective transport of ABCG2 may have broader consequences in drug disposition.
Collapse
Affiliation(s)
- Lipeng Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536, USA
| | | |
Collapse
|
9
|
Wang L, Leggas M, Empey PE, McNamara PJ. Stereoselective interaction of pantoprazole with ABCG2. II. In vitro flux analysis. Drug Metab Dispos 2012; 40:1024-31. [PMID: 22355035 PMCID: PMC3336798 DOI: 10.1124/dmd.111.041616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 02/21/2012] [Indexed: 12/27/2022] Open
Abstract
(-)Pantoprazole [(-)PAN] accumulated in rat milk stereoselectively, and this accumulation was attributed to rat Abcg2 (rAbcg2). In contrast, flux experiments at 25 μM showed that (+)pantoprazole [(+)PAN] was preferentially transported by rAbcg2. The purpose of the current study was to comprehensively evaluate the transport of PAN isomers in empty-Madin-Darby canine kidney II (MDCKII) and MDCKII cells expressing the human/rat (ABCG2/rAbcg2) isoforms at concentrations ranging from 3 to 200 μM. The apical-to-basolateral and basolateral-to-apical directional flux and the asymmetry efflux ratios were virtually identical for both isomers in empty (mock transfected)-MDCKII monolayers but were concentration dependent for both isomers in ABCG2 (human/rat)-MDCKII. Kinetic analysis using predicted cellular concentrations showed that (-)PAN had an 8-fold lower K(M) compared with (+)PAN for both rAbcg2 (0.25 versus 1.85 μM) and ABCG2 (0.6 versus 5.32 μM). (+)PAN had a 3-fold higher T(Max) compared with the (-)PAN for both rAbcg2 (7.86 versus 2.49 nmol/h · cm(2)) and ABCG2 (10.2 versus 3.29 nmol/h · cm(2)). Effective ABCG2 surface-area permeability of (-)PAN was 9920 and 5480 (μl/h)/cm(2) for rAbcg2 and ABCG2, respectively, compared with the (+)PAN isomer (4250 and 1920 μl/h · cm(2), respectively). These results indicate a stereoselective interaction of PAN with similar kinetic parameters for both human and rat ABCG2. (-)PAN is a better substrate than (+)PAN for ABCG2/rAbcg2 and provide a rationale for the preferential accumulation of (-)PAN into rat milk.
Collapse
Affiliation(s)
- Lipeng Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
10
|
The anthelmintic triclabendazole and its metabolites inhibit the membrane transporter ABCG2/BCRP. Antimicrob Agents Chemother 2012; 56:3535-43. [PMID: 22508302 DOI: 10.1128/aac.06345-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
ABCG2/BCRP is an ATP-binding cassette transporter that extrudes compounds from cells in the intestine, liver, kidney, and other organs, such as the mammary gland, affecting pharmacokinetics and milk secretion of antibiotics, anticancer drugs, and other compounds and mediating drug-drug interactions. In addition, ABCG2 expression in cancer cells may directly cause resistance by active efflux of anticancer drugs. The development of ABCG2 modulators is critical in order to improve drug pharmacokinetic properties, reduce milk secretion of xenotoxins, and/or increase the effective intracellular concentrations of substrates. Our purpose was to determine whether the anthelmintic triclabendazole (TCBZ) and its main plasma metabolites triclabendazole sulfoxide (TCBZSO) and triclabendazole sulfone (TCBZSO(2)) inhibit ABCG2 activity. ATPase assays using human ABCG2-enriched membranes demonstrated a clear ABCG2 inhibition exerted by these compounds. Mitoxantrone accumulation assays using murine Abcg2- and human ABCG2-transduced MDCK-II cells confirmed that TCBZSO and TCBZSO(2) are ABCG2 inhibitors, reaching inhibitory potencies between 40 and 55% for a concentration range from 5 to 25 μM. Transepithelial transport assays of ABCG2 substrates in the presence of both TCBZ metabolites at 15 μM showed very efficient inhibition of the Abcg2/ABCG2-mediated transport of the antibacterial agents nitrofurantoin and danofloxacin. TCBZSO administration also inhibited nitrofurantoin Abcg2-mediated secretion into milk by more than 2-fold and increased plasma levels of the sulfonamide sulfasalazine by more than 1.5-fold in mice. These results support the potential role of TCBZSO and TCBZSO(2) as ABCG2 inhibitors to participate in drug interactions and modulate ABCG2-mediated pharmacokinetic processes.
Collapse
|
11
|
Koshimichi H, Ito K, Hisaka A, Honma M, Suzuki H. Analysis and prediction of drug transfer into human milk taking into consideration secretion and reuptake clearances across the mammary epithelia. Drug Metab Dispos 2011; 39:2370-80. [PMID: 21940904 DOI: 10.1124/dmd.111.040972] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Medication use during lactation is a matter of concern due to unnecessary exposure of infants to drugs. Although some studies have predicted the extent of drug transfer into milk from physicochemical parameters, drug concentration-time profiles in milk have not been predicted or even analyzed yet. In the present study, a drug transfer model was constructed by defining secretion and reuptake clearances (CL(sec) and CL(re), respectively) between milk and plasma based on unbound drug concentrations. Through the use of this model, drug concentration-time profiles were analyzed in human milk and plasma based on data collected from the literature. CL(sec) and CL(re) values were obtained successfully for 49 drugs. Because the CL(sec) and CL(re) values were in general similar for each drug, transport across the mammary epithelia was mediated by passive diffusion in most cases. This study demonstrated that the logarithmically transformed values of CL(sec) and CL(re) can be predicted from physicochemical parameters with adjusted R(2) values of 0.705 and 0.472, respectively. Moreover, 66.7 and 77.8% of predicted CL(sec) and CL(re) values were within 3-fold error ranges of the observed values for 45 and 27 drugs, respectively. Finally, time profiles of drug concentrations in milk were simulated from physicochemical parameters. The milk-to-plasma area under the concentration-time curve ratios also were predicted successfully within 3-fold error ranges of the observed values for 71.9% of the drugs analyzed. The method described herein therefore may be useful in predicting drug concentration-time profiles in human milk for newly developed drugs.
Collapse
Affiliation(s)
- Hiroki Koshimichi
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | |
Collapse
|
12
|
Gan Z, Audi SH, Bongard RD, Gauthier KM, Merker MP. Quantifying mitochondrial and plasma membrane potentials in intact pulmonary arterial endothelial cells based on extracellular disposition of rhodamine dyes. Am J Physiol Lung Cell Mol Physiol 2011; 300:L762-72. [PMID: 21239539 DOI: 10.1152/ajplung.00334.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Our goal was to quantify mitochondrial and plasma potential (Δψ(m) and Δψ(p)) based on the disposition of rhodamine 123 (R123) or tetramethylrhodamine ethyl ester (TMRE) in the medium surrounding pulmonary endothelial cells. Dyes were added to the medium, and their concentrations in extracellular medium ([R(e)]) were measured over time. R123 [R(e)] fell from 10 nM to 6.6 ± 0.1 (SE) nM over 120 min. TMRE [R(e)] fell from 20 nM to a steady state of 4.9 ± 0.4 nM after ∼30 min. Protonophore or high K(+) concentration ([K(+)]), used to manipulate contributions of membrane potentials, attenuated decreases in [R(e)], and P-glycoprotein (Pgp) inhibition had the opposite effect, demonstrating the qualitative impact of these processes on [R(e)]. A kinetic model incorporating a modified Goldman-Hodgkin-Katz model was fit to [R(e)] vs. time data for R123 and TMRE, respectively, under various conditions to obtain (means ± 95% confidence intervals) Δψ(m) (-130 ± 7 and -133 ± 4 mV), Δψ(p) (-36 ± 4 and -49 ± 4 mV), and a Pgp activity parameter (K(Pgp), 25 ± 5 and 51 ± 11 μl/min). The higher membrane permeability of TMRE also allowed application of steady-state analysis to obtain Δψ(m) (-124 ± 6 mV). The consistency of kinetic parameter values obtained from R123 and TMRE data demonstrates the utility of this experimental and theoretical approach for quantifying intact cell Δψ(m) and Δψ(p.) Finally, steady-state analysis revealed that although room air- and hyperoxia-exposed (95% O(2) for 48 h) cells have equivalent resting Δψ(m), hyperoxic cell Δψ(m) was more sensitive to depolarization with protonophore, consistent with previous observations of pulmonary endothelial hyperoxia-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhuohui Gan
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, USA
| | | | | | | | | |
Collapse
|
13
|
In vivo inhibition of BCRP/ABCG2 mediated transport of nitrofurantoin by the isoflavones genistein and daidzein: a comparative study in Bcrp1 (-/-) mice. Pharm Res 2010; 27:2098-105. [PMID: 20607366 DOI: 10.1007/s11095-010-0208-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 06/28/2010] [Indexed: 01/16/2023]
Abstract
PURPOSE The aim of this study was to determine in vivo inhibition by the isoflavones genistein and daidzein of nitrofurantoin (NTF), a well-known substrate of the ABC transporter BCRP/ABCG2. METHODS MDCKII cells and their human BCRP- and murine Bcrp1-transduced subclones were used to establish inhibition in transepithelial transport assays. Bcrp1(-/-) and wild-type mice were coadministered with nitrofurantoin (20 mg/kg) and a mixture of genistein (100 mg/kg) and daidzein (100 mg/kg). RESULTS Transepithelial NFT transport was inhibited by the isoflavones. Plasma concentration of NTF at 30 min was 1.7-fold higher (p ≤ 0.05) in wild-type mice after isoflavone administration. AUC values were not significantly different. BCRP/ABCG2-mediated secretion into milk was inhibited since milk/plasma ratios were lower in wild-type mice with isoflavones (7.1 ± 4.2 vs 4.2 ± 1.6, p ≤ 0.05). NTF bile levels were significantly decreased by isoflavone administration in wild-type animals (8.8 ± 3.4 μg/ml with isoflavones vs 3.7 ± 3.3 μg/ml without isoflavones). CONCLUSION Our data showed that in vivo interaction of high doses of soy isoflavones with BCRP substrates may affect plasma levels but the main effect occurs in specific target organs, in our case, liver and mammary glands.
Collapse
|
14
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 582] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|