1
|
Li Z, Wang B, Li H, Jian L, Luo H, Wang B, Zhang C, Zhao X, Xue Y, Peng S, Zuo S. Maternal Folic Acid Supplementation Differently Affects the Small Intestinal Phenotype and Gene Expression of Newborn Lambs from Differing Litter Sizes. Animals (Basel) 2020; 10:E2183. [PMID: 33266421 PMCID: PMC7700240 DOI: 10.3390/ani10112183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to investigate the effect of maternal dietary folic acid (FA) supplementation during gestation on small intestinal development of newborn lambs of different litter sizes, focusing on the intestinal morphology and development-, apoptosis- and digestion-related genes expression. One hundred and twenty Hu ewes (Ovis aries) were inseminated and randomly allotted to three groups. One group received a control diet [without FA supplementation, control (CON)] and the other two groups received control diets supplemented with different amount of FA [16 or 32 mg FA per kg dry matter (DM), i.e., F16 and F32] during pregnancy. After lambing, according to the dietary FA levels and litter size (twins, TW; triplets, TR), the neonatal lambs were divided into 6 (TW-CON, TW-F16, TW-F32, TR-CON, TR-F16, TR-F32) treatment groups. The results showed that the ratio of small intestinal weight to live body weight and the thickness of the intestinal muscle layer in the offspring was enhanced significantly with increasing maternal FA supplementation (p < 0.05). Meanwhile, the expression levels of insulin-like growth factor I (IGF-I), B-cell lymphoma-2 (BCL-2) and sodium/glucose co-transporter-1 (SGLT1) in the small intestines of the newborn lambs were increased, while the opposite was true for Bcl2-associated × (BAX) in response to FA supplementation (p < 0.05). Moreover, the small intestinal weights of twins were significantly higher than those of triplets (p < 0.01), and the expression levels of IGF-I (p < 0.05), sucrase-isomaltase (SI) (p < 0.05) and solute carrier family 2 member 5 (SLC2A5) (p < 0.01) were significantly lower than those in triplets. These findings suggest that maternal FA supplementation could improve the offspring's small intestinal phenotype and the expression of development-, apoptosis- and digestion-related genes, so it could promote the small intestinal development of newborn lambs. Furthermore, the small intestine phenotypic development of twins was generally better than that of triplets, while the expression levels of the above genes of twins were lower than those of triplets.
Collapse
Affiliation(s)
| | | | | | | | - Hailing Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (B.W.); (H.L.); (L.J.); (B.W.); (C.Z.); (X.Z.); (Y.X.); (S.P.); (S.Z.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Ogura J, Yamaguchi H, Mano N. Stimulatory effect on the transport mediated by organic anion transporting polypeptide 2B1. Asian J Pharm Sci 2020; 15:181-191. [PMID: 32373198 PMCID: PMC7193449 DOI: 10.1016/j.ajps.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Drug-drug interaction (DDI) is one of causes of adverse drug events and can result in life-threatening consequences. Organic anion-transporting polypeptide (OATP) 2B1 is a major uptake transporter in the intestine and contributes to transport various clinically used therapeutic agents. The intestine has a high risk of DDI, because it has a special propensity to be exposed to a high concentration of drugs. Thus, understanding drug interaction mediated by OATP2B1 in the absorption process is important for the prevention of adverse drug events, including decrease in the therapeutic effect of co-administered drugs. Acute drug interaction occurs through the direct inhibitory effect on transporters, including OATP2B1. Moreover, some compounds such as clinically used drugs and food components have an acute stimulatory effect on transport of co-administered drugs by OATP2B1. This review summarizes the acute stimulatory effect on the transport mediated by OATP2B1 and discusses the mechanisms of the acute stimulatory effects of compounds. There are two types of acute stimulatory effects, substrate-independent and -dependent interactions on OATP2B1 function. The facilitating translocation of OATP2B1 to the plasma membrane is one of causes for the substrate-independent acute stimulatory effect. On the contrary, the substrate-dependent effect is based on the direct binding to the substrate-binding site or allosteric progesterone-binding site of OATP2B1.
Collapse
Affiliation(s)
- Jiro Ogura
- Corresponding author. Tohoku University Hospital, Department of Pharmaceutical Sciences, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan. Tel.: +81 22 7177541
| | | | | |
Collapse
|
3
|
Sun Y, Chiu TT, Foley KP, Bilan PJ, Klip A. Myosin Va mediates Rab8A-regulated GLUT4 vesicle exocytosis in insulin-stimulated muscle cells. Mol Biol Cell 2014; 25:1159-70. [PMID: 24478457 PMCID: PMC3967978 DOI: 10.1091/mbc.e13-08-0493] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rab-GTPases are important molecular switches regulating intracellular vesicle traffic, and we recently showed that Rab8A and Rab13 are activated by insulin in muscle to mobilize GLUT4-containing vesicles to the muscle cell surface. Here we show that the unconventional motor protein myosin Va (MyoVa) is an effector of Rab8A in this process. In CHO-IR cell lysates, a glutathione S-transferase chimera of the cargo-binding COOH tail (CT) of MyoVa binds Rab8A and the related Rab10, but not Rab13. Binding to Rab8A is stimulated by insulin in a phosphatidylinositol 3-kinase-dependent manner, whereas Rab10 binding is insulin insensitive. MyoVa-CT preferentially binds GTP-locked Rab8A. Full-length green fluorescent protein (GFP)-MyoVa colocalizes with mCherry-Rab8A in perinuclear small puncta, whereas GFP-MyoVa-CT collapses the GTPase into enlarged perinuclear depots. Further, GFP-MyoVa-CT blocks insulin-stimulated translocation of exofacially myc-tagged GLUT4 to the surface of muscle cells. Mutation of amino acids in MyoVa-CT predicted to bind Rab8A abrogates both interaction with Rab8A (not Rab10) and inhibition of insulin-stimulated GLUT4myc translocation. Of importance, small interfering RNA-mediated MyoVa silencing reduces insulin-stimulated GLUT4myc translocation. Rab8A colocalizes with GLUT4 in perinuclear but not submembrane regions visualized by confocal total internal reflection fluorescence microscopy. Hence insulin signaling to the molecular switch Rab8A connects with the motor protein MyoVa to mobilize GLUT4 vesicles toward the muscle cell plasma membrane.
Collapse
Affiliation(s)
- Yi Sun
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | | | | | | |
Collapse
|
4
|
Subramanian VS, Subramanya SB, Ghosal A, Marchant JS, Harada A, Said HM. Modulation of function of sodium-dependent vitamin C transporter 1 (SVCT1) by Rab8a in intestinal epithelial cells: studies utilizing Caco-2 cells and Rab8a knockout mice. Dig Dis Sci 2013; 58:641-9. [PMID: 23014846 PMCID: PMC3547156 DOI: 10.1007/s10620-012-2388-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/24/2012] [Indexed: 01/19/2023]
Abstract
BACKGROUND Ascorbic acid (AA) is required for normal human health and development. Human intestine expresses two sodium-dependent vitamin C transporters (hSVCT-1 and -2) that mediate cellular AA transport, with hSVCT1 targeting to the apical membrane of polarized epithelia. Studies have shown a role for the Rab8a in the apical membrane targeting of transporters in intestinal cells. AIMS The purpose of this study was to determine whether Rab8a impacts the function and/or targeting of hSVCT1, and intestinal AA uptake. METHODS We used human intestinal cells and cells from a Rab8a knockout mouse. (14)C-AA uptake was performed to determine functionality. PCR and western blotting were performed to determine RNA and protein expression, respectively. Confocal imaging was performed to determine co-localization. RESULTS We show that hSVCT1 co-localized with Rab8a in intestinal cells. Knockdown of Rab8a lead to a significant inhibition in AA uptake and cell surface biotinylation studies revealed a lower cell surface expression of hSVCT1 in Rab8a siRNA-treated cells. Similarly, in the small intestine of a Rab8a knockout mouse, AA uptake was significantly inhibited. This effect again resulted from a decreased expression level of mSVCT1 protein, even though mRNA expression of SVCT1 was similar in intestinal cells from Rab8a knockout and wild-type litter-mates. The latter data are suggestive of enhanced lysosomal degradation of hSVCT1 protein in Rab8a-deficient cells; indeed, confocal imaging of Rab8a siRNA-treated intestinal cells revealed a strong overlap between hSVCT1-YFP and LAMP1-RFP. CONCLUSIONS These findings show a role for Rab8a in the physiological function of hSVCT1 in intestinal epithelia.
Collapse
Affiliation(s)
- Veedamali S. Subramanian
- Departments of Medicine, Physiology and Biophysics, University of California, Irvine, CA 92697
,Department of Veterans Affairs Medical Center, Long Beach, CA 90822
,To whom correspondence may be addressed: , Phone: 562-826-5803; Fax: 562-826-5018
| | - Sandeep B. Subramanya
- Departments of Medicine, Physiology and Biophysics, University of California, Irvine, CA 92697
,Department of Veterans Affairs Medical Center, Long Beach, CA 90822
| | - Abhisek Ghosal
- Departments of Medicine, Physiology and Biophysics, University of California, Irvine, CA 92697
,Department of Veterans Affairs Medical Center, Long Beach, CA 90822
| | | | | | - Hamid M. Said
- Departments of Medicine, Physiology and Biophysics, University of California, Irvine, CA 92697
,Department of Veterans Affairs Medical Center, Long Beach, CA 90822
| |
Collapse
|
5
|
Nakanishi T, Tamai I. Solute Carrier Transporters as Targets for Drug Delivery and Pharmacological Intervention for Chemotherapy. J Pharm Sci 2011; 100:3731-50. [DOI: 10.1002/jps.22576] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 01/11/2023]
|
6
|
Sugiura T, Shimizu T, Kijima A, Minakata S, Kato Y. PDZ adaptors: their regulation of epithelial transporters and involvement in human diseases. J Pharm Sci 2011; 100:3620-35. [PMID: 21538352 DOI: 10.1002/jps.22575] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 12/17/2022]
Abstract
Homeostasis in the body is at least partially maintained by mechanisms that control membrane permeability, and thereby serve to control the uptake of essential substances (e.g., nutrients) and the efflux of unwanted substances (e.g., xenobiotics and metabolites) in epithelial cells. Various transporters play fundamental roles in such bidirectional transport, but little is known about how they are organized on plasma membranes. Protein-protein interactions may play a key role: several transporters in epithelial cells interact with the so-called adaptor proteins, which are membrane anchored and interact with both transporters and other membranous proteins. Although most of the evidences for transporter-adaptor interaction has been obtained in vitro, recent studies suggest that adaptor-mediated transporter regulation does occur in vivo and could be relevant to human diseases. Thus, protein-protein interaction is not only associated with the formation of macromolecular complexes but is also involved in various cellular events, and may provide transporters with additional functionality by forming transporter networks on plasma membranes. Interactions between xenobiotic transporters and PSD95/Dlg/ZO1 (PDZ) adaptors were previously reviewed by Kato and Tsuji (2006. Eur J Pharm Sci 27:487-500); the present review focuses on the latest findings about PDZ adaptors as regulators of transporter networks and their potential role in human diseases.
Collapse
Affiliation(s)
- Tomoko Sugiura
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | | | | | | | | |
Collapse
|
7
|
Ma K, Hu Y, Smith DE. Peptide transporter 1 is responsible for intestinal uptake of the dipeptide glycylsarcosine: studies in everted jejunal rings from wild-type and Pept1 null mice. J Pharm Sci 2011; 100:767-74. [PMID: 20862774 PMCID: PMC3010518 DOI: 10.1002/jps.22277] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 01/02/2023]
Abstract
The purpose of this study was to determine the relative importance of peptide transporter 1 (PEPT1) in the uptake of peptides/mimetics from mouse small intestine, using glycylsarcosine (GlySar). After isolating jejunal tissue from wild-type and Pept1 null mice, 2 cm intestinal segments were everted and mounted on glass rods for tissue uptake studies. [(14)C]GlySar (4 μM) was studied as a function of time, temperature, sodium and pH, concentration, and potential inhibitors. Compared with wild-type animals, Pept1 null mice exhibited a 78% reduction in GlySar uptake at pH 6.0 at 37°C. GlySar uptake showed pH dependence, with peak values between pH 6.0 and 6.5 in wild-type animals, whereas no such tendency was observed in Pept1 null mice. GlySar exhibited Michaelis-Menten uptake kinetics and a minor nonsaturable component in wild-type animals. In contrast, GlySar uptake occurred only by a nonsaturable process in Pept1 null mice. GlySar uptake was significantly inhibited by dipeptides, aminocephalosporins, angiotensin-converting enzyme inhibitors, and the antiviral prodrug valacyclovir; these inhibitors had little, if any, effect on the uptake of GlySar in Pept1 null mice. The findings demonstrate that PEPT1 plays a critical role in the uptake of GlySar in jejunum and suggest that PEPT1 is the major transporter responsible for the intestinal absorption of small peptides.
Collapse
Affiliation(s)
- Katherine Ma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Yongjun Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - David E. Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Sugano K, Kansy M, Artursson P, Avdeef A, Bendels S, Di L, Ecker GF, Faller B, Fischer H, Gerebtzoff G, Lennernaes H, Senner F. Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov 2010; 9:597-614. [PMID: 20671764 DOI: 10.1038/nrd3187] [Citation(s) in RCA: 461] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The permeability of biological membranes is one of the most important determinants of the pharmacokinetic processes of a drug. Although it is often accepted that many drug substances are transported across biological membranes by passive transcellular diffusion, a recent hypothesis speculated that carrier-mediated mechanisms might account for the majority of membrane drug transport processes in biological systems. Based on evidence of the physicochemical characteristics and of in vitro and in vivo findings for marketed drugs, as well as results from real-life discovery and development projects, we present the view that both passive transcellular processes and carrier-mediated processes coexist and contribute to drug transport activities across biological membranes.
Collapse
Affiliation(s)
- Kiyohiko Sugano
- Pfizer, Research Formulation, Sandwich Laboratories, Ramsgate Road, Sandwich, Kent CT13 9NJ, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mitsuoka K, Kato Y, Miyoshi S, Murakami Y, Hiraiwa M, Kubo Y, Nishimura S, Tsuji A. Inhibition of oligopeptide transporter suppress growth of human pancreatic cancer cells. Eur J Pharm Sci 2010; 40:202-8. [PMID: 20307658 DOI: 10.1016/j.ejps.2010.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 02/02/2010] [Accepted: 03/13/2010] [Indexed: 10/19/2022]
Abstract
Oligopeptide transporters are abundantly expressed in various types of cancer cells. We here synthesized two novel dipeptides, l-phenylalanyl sarcosine (Phe-Sar) and 4-(4-methoxyphenyl)-l-phenylalanyl sarcosine (Bip(OMe)-Sar), and examined their effect on the growth of human pancreatic cancer AsPC-1 cells, which are known to highly express oligopeptide transporter PEPT1/SLC15A1. Growth of AsPC-1 cells was inhibited by these two peptides and a typical PEPT1/SLC15A1 substrate Gly-Sar. Growth inhibition by Gly-Sar, Phe-Sar and Bip(OMe)-Sar was concentration-dependent with half-maximal inhibitory concentration of 50, 0.91 and 0.55mM, respectively. These peptides also inhibited PEPT1-mediated [(3)H]Gly-Sar uptake with half-maximal inhibitory concentration of 2.6, 0.81 and 0.27mM, respectively. Thus, the rank order of the tumor cell growth inhibition by these three peptides was the same as that of PEPT1-inhibitory activity. Growth of AsPC-1 cells was also inhibited by 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH), which is a typical inhibitor of amino acid transporter system L. The growth inhibition by BCH and Gly-Sar was additive, suggesting that these compounds act at distinct loci. Oligopeptide transporters thus appear to be a promising target for inhibition of pancreatic cancer progression. These results also proposed the idea that oligopeptide transporter is required for growth of AsPC-1 cells.
Collapse
Affiliation(s)
- Keisuke Mitsuoka
- Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Mitsuoka K, Tamai I, Morohashi Y, Kubo Y, Saitoh R, Tsuji A, Kato Y. Direct evidence for efficient transport and minimal metabolism of L-cephalexin by oligopeptide transporter 1 in budded baculovirus fraction. Biol Pharm Bull 2010; 32:1459-61. [PMID: 19652390 DOI: 10.1248/bpb.32.1459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The oligopeptide transporter PEPT1 (SLC15A1) is responsible for absorption of peptidic nutrients in the small intestine. Although the L-diastereomer of the beta-lactam antibiotic cephalexin (L-cephalexin) is likely to be transported by PEPT1, there has been no direct demonstration of PEPT1-mediated L-cephalexin transport. Indeed, after the incubation with L-cephalexin, the intact form of L-cephalexin has not been identified inside vesicles/proteoliposomes prepared from brush border membrane of intestinal epithelial cells or cultured cell lines exogenously transfected with PEPT1 gene. Thus, it appears that L-cephalexin is rapidly metabolized by PEPT1 or PEPT1-associated proteins. Here, we attempted to verify whether L-cephalexin is transported by PEPT1 and whether it is hydrolyzed by PEPT1 itself, by using budded baculovirus expressing PEPT1 protein. Marked uptake of L-cephalexin in PEPT1-expressing budded baculovirus, compared with wild-type virus, indicated that L-cephalexin is a substrate for PEPT1. The uptake was found to be pH sensitive, and was strongly inhibited by the D-diastereomer of cephalexin and glycylsarcosine, but not by glycine. Thus, L-cephalexin is transported by PEPT1 itself. Upon the transport of both L- and D-cephalexin by PEPT1, dose-dependent membrane depolarization was observed; the EC(50) values of 0.18 and 2.9 mM, respectively, indicate that the affinity of L-cephalexin for PEPT1-mediated transport is much higher than that of the D-diastereomer. On the other hand, the L-cephalexin metabolite 7-aminodesacetoxycephalosporanic acid was not detected in PEPT1-expressing or wild-type virus at either pH 6.0 or 7.4. We conclude that L-cephalexin is transported by PEPT1 with high affinity, but is not metabolized by PEPT1 itself.
Collapse
Affiliation(s)
- Keisuke Mitsuoka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|