1
|
Hsiao TH, Lee GH, Chang YS, Chen BH, Fu TF. The Incoherent Fluctuation of Folate Pools and Differential Regulation of Folate Enzymes Prioritize Nucleotide Supply in the Zebrafish Model Displaying Folate Deficiency-Induced Microphthalmia and Visual Defects. Front Cell Dev Biol 2021; 9:702969. [PMID: 34268314 PMCID: PMC8277299 DOI: 10.3389/fcell.2021.702969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/26/2021] [Indexed: 11/30/2022] Open
Abstract
Objective Congenital eye diseases are multi-factorial and usually cannot be cured. Therefore, proper preventive strategy and understanding the pathomechanism underlying these diseases become important. Deficiency in folate, a water-soluble vitamin B, has been associated with microphthalmia, a congenital eye disease characterized by abnormally small and malformed eyes. However, the causal-link and the underlying mechanism between folate and microphthalmia remain incompletely understood. Methods We examined the eye size, optomotor response, intracellular folate distribution, and the expression of folate-requiring enzymes in zebrafish larvae displaying folate deficiency (FD) and ocular defects. Results FD caused microphthalmia and impeded visual ability in zebrafish larvae, which were rescued by folate and dNTP supplementation. Cell cycle analysis revealed cell accumulation at S-phase and sub-G1 phase. Decreased cell proliferation and increased apoptosis were found in FD larvae during embryogenesis in a developmental timing-specific manner. Lowered methylenetetrahydrofolate reductase (mthfr) expression and up-regulated methylenetetrahydrofolate dehydrogenase (NADP+-dependent)-1-like (mthfd1L) expression were found in FD larvae. Knocking-down mthfd1L expression worsened FD-induced ocular anomalies; whereas increasing mthfd1L expression provided a protective effect. 5-CH3-THF is the most sensitive folate pool, whose levels were the most significantly reduced in response to FD; whereas 10-CHO-THF levels were less affected. 5-CHO-THF is the most effective folate adduct for rescuing FD-induced microphthalmia and defective visual ability. Conclusion FD impeded nucleotides formation, impaired cell proliferation and differentiation, caused apoptosis and interfered active vitamin A production, contributing to ocular defects. The developmental timing-specific and incoherent fluctuation among folate adducts and increased expression of mthfd1L in response to FD reflect the context-dependent regulation of folate-mediated one-carbon metabolism, endowing the larvae to prioritize the essential biochemical pathways for supporting the continuous growth in response to folate depletion.
Collapse
Affiliation(s)
- Tsun-Hsien Hsiao
- The Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gang-Hui Lee
- The Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Sheng Chang
- Department of Ophthalmology, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Department of Ophthalmology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tzu-Fun Fu
- The Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
A novel zebrafish model to emulate lung injury by folate deficiency-induced swim bladder defectiveness and protease/antiprotease expression imbalance. Sci Rep 2019; 9:12633. [PMID: 31477754 PMCID: PMC6718381 DOI: 10.1038/s41598-019-49152-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023] Open
Abstract
Lung injury is one of the pathological hallmarks of most respiratory tract diseases including asthma, acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). It involves progressive pulmonary tissue damages which are usually irreversible and incurable. Therefore, strategies to facilitate drug development against lung injury are needed. Here, we characterized the zebrafish folate-deficiency (FD) transgenic line that lacks a fully-developed swim bladder. Whole-mount in-situ hybridization revealed comparable distribution patterns of swim bladder tissue markers between wild-type and FD larvae, suggesting a proper development of swim bladder in early embryonic stages. Unexpectedly, neutrophils infiltration was not observed in the defective swim bladder. Microarray analysis revealed a significant increase and decrease of the transcripts for cathepsin L and a cystatin B (CSTB)-like (zCSTB-like) proteins, respectively, in FD larvae. The distribution of cathepsin L and the zCSTB-like transcripts was spatio-temporally specific in developing wild-type embryos and, in appropriate measure, correlated with their potential roles in maintaining swim bladder integrity. Supplementing with 5-formyltetrahydrofolate successfully prevented the swim bladder anomaly and the imbalanced expression of cathepsin L and the zCSTB-like protein induced by folate deficiency. Injecting the purified recombinant zebrafish zCSTB-like protein alleviated FD-induced swim bladder anomaly. We concluded that the imbalanced expression of cathepsin L and the zCSTB-like protein contributed to the swim bladder malformation induced by FD and suggested the potential application of this transgenic line to model the lung injury and ECM remodeling associated with protease/protease inhibitor imbalance.
Collapse
|
3
|
Rachamim T, Morgenstern D, Aharonovich D, Brekhman V, Lotan T, Sher D. The Dynamically Evolving Nematocyst Content of an Anthozoan, a Scyphozoan, and a Hydrozoan. Mol Biol Evol 2014; 32:740-53. [DOI: 10.1093/molbev/msu335] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
4
|
Chang WN, Lee GH, Kao TT, Lin CY, Hsiao TH, Tsai JN, Chen BH, Chen YH, Wu HR, Tsai HJ, Fu TF. Knocking down 10-Formyltetrahydrofolate dehydrogenase increased oxidative stress and impeded zebrafish embryogenesis by obstructing morphogenetic movement. Biochim Biophys Acta Gen Subj 2014; 1840:2340-50. [PMID: 24747731 DOI: 10.1016/j.bbagen.2014.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/25/2014] [Accepted: 04/09/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Folate is an essential nutrient for cell survival and embryogenesis. 10-Formyltetrahydrofolate dehydrogenase (FDH) is the most abundant folate enzyme in folate-mediated one-carbon metabolism. 10-Formyltetrahydrofolate dehydrogenase converts 10-formyltetrahydrofolate to tetrahydrofolate and CO2, the only pathway responsible for formate oxidation in methanol intoxication. 10-Formyltetrahydrofolate dehydrogenase has been considered a potential chemotherapeutic target because it was down-regulated in cancer cells. However, the normal physiological significance of 10-Formyltetrahydrofolate dehydrogenase is not completely understood, hampering the development of therapeutic drug/regimen targeting 10-Formyltetrahydrofolate dehydrogenase. METHODS 10-Formyltetrahydrofolate dehydrogenase expression in zebrafish embryos was knocked-down using morpholino oligonucleotides. The morphological and biochemical characteristics of fdh morphants were examined using specific dye staining and whole-mount in-situ hybridization. Embryonic folate contents were determined by HPLC. RESULTS The expression of 10-formyltetrahydrofolate dehydrogenase was consistent in whole embryos during early embryogenesis and became tissue-specific in later stages. Knocking-down fdh impeded morphogenetic movement and caused incorrect cardiac positioning, defective hematopoiesis, notochordmalformation and ultimate death of morphants. Obstructed F-actin polymerization and delayed epiboly were observed in fdh morphants. These abnormalities were reversed either by adding tetrahydrofolate or antioxidant or by co-injecting the mRNA encoding 10-formyltetrahydrofolate dehydrogenase N-terminal domain, supporting the anti-oxidative activity of 10-formyltetrahydrofolate dehydrogenase and the in vivo function of tetrahydrofolate conservation for 10-formyltetrahydrofolate dehydrogenase N-terminal domain. CONCLUSIONS 10-Formyltetrahydrofolate dehydrogenase functioned in conserving the unstable tetrahydrofolate and contributing to the intracellular anti-oxidative capacity of embryos, which was crucial in promoting proper cell migration during embryogenesis. GENERAL SIGNIFICANCE These newly reported tetrahydrofolate conserving and anti-oxidative activities of 10-formyltetrahydrofolate dehydrogenase shall be important for unraveling 10-formyltetrahydrofolate dehydrogenase biological significance and the drug development targeting 10-formyltetrahydrofolate dehydrogenase.
Collapse
Affiliation(s)
- Wen-Ni Chang
- Institute of Basic Medical Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Gang-Hui Lee
- Institute of Basic Medical Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Tseng-Ting Kao
- Institute of Basic Medical Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Cha-Ying Lin
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Tsun-Hsien Hsiao
- Institute of Basic Medical Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Jen-Ning Tsai
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University, Kao;hsiung 807, Taiwan
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, Taipei 106, Taiwan
| | - Hsin-Ru Wu
- Department of Chemistry, Tamkang University, Taipei 106, Taiwan
| | - Huai-Jen Tsai
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
| | - Tzu-Fun Fu
- Institute of Basic Medical Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
5
|
Ethanol-induced upregulation of 10-formyltetrahydrofolate dehydrogenase helps relieve ethanol-induced oxidative stress. Mol Cell Biol 2013; 34:498-509. [PMID: 24277932 DOI: 10.1128/mcb.01427-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alcoholism induces folate deficiency and increases the risk for embryonic anomalies. However, the interplay between ethanol exposure and embryonic folate status remains unclear. To investigate how ethanol exposure affects embryonic folate status and one-carbon homeostasis, we incubated zebrafish embryos in ethanol and analyzed embryonic folate content and folate enzyme expression. Exposure to 2% ethanol did not change embryonic total folate content but increased the tetrahydrofolate level approximately 1.5-fold. The expression of 10-formyltetrahydrofolate dehydrogenase (FDH), a potential intracellular tetrahydrofolate reservoir, was increased in both mRNA and protein levels. Overexpressing recombinant FDH in embryos alleviated the ethanol-induced oxidative stress in ethanol-exposed embryos. Further characterization of the zebrafish fdh promoter revealed that the -124/+40 promoter fragment was the minimal region required for transactivational activity. The results of site-directed mutagenesis and binding analysis revealed that Sp1 is involved in the basal level of expression of fdh but not in ethanol-induced upregulation of fdh. On the other hand, CEBPα was the protein that mediated the ethanol-induced upregulation of fdh, with an approximately 40-fold increase of fdh promoter activity when overexpressed in vitro. We concluded that upregulation of fdh involving CEBPα helps relieve embryonic oxidative stress induced by ethanol exposure.
Collapse
|
6
|
Chuankhayan P, Kao TT, Lin CC, Guan HH, Nakagawa A, Fu TF, Chen CJ. Structural Insights into the Hydrolysis and Polymorphism of Methotrexate Polyglutamate by Zebrafish γ-Glutamyl Hydrolase. J Med Chem 2013; 56:7625-35. [DOI: 10.1021/jm401013e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Phimonphan Chuankhayan
- Life
Science Group, Scientific Research
Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Tseng-Ting Kao
- Department of Medical Laboratory Science
and Biotechnology, College of
Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chien-Chih Lin
- Life
Science Group, Scientific Research
Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hong-Hsiang Guan
- Life
Science Group, Scientific Research
Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Atsushi Nakagawa
- Institute
for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tzu-Fun Fu
- Department of Medical Laboratory Science
and Biotechnology, College of
Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chun-Jung Chen
- Life
Science Group, Scientific Research
Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department
of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan
| |
Collapse
|
7
|
Kao TT, Lee GH, Fu CC, Chen BH, Chen LT, Fu TF. Methotrexate-induced decrease in embryonic 5-methyl-tetrahydrofolate is irreversible with leucovorin supplementation. Zebrafish 2013; 10:326-37. [PMID: 23758124 DOI: 10.1089/zeb.2013.0876] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Folate is a nutrient crucial for rapidly growing tissues, including developing embryos and cancer cells. Folate participates in the biosynthesis of nucleic acids, proteins, amino acids, S-adenosylmethionine, many neurotransmitters, and some vitamins. The intracellular folate pool consists of different folate adducts, which carry one-carbon units at three different oxidative states and participate in distinct biochemical reactions. Therefore, the content and dynamics of folate adducts will affect the homeostasis of the metabolites generated in these folate-mediated reactions. Currently, the knowledge on the level of each individual folate adduct in developing embryos is limited. With an improved high-performance liquid chromatography protocol, we found that tetrahydrofolate (THF), the backbone of one-carbon carrier, gradually increased and became dominant in developing zebrafish embryos. 5-methyl-tetrahydrofolate (5-CH3-THF) was abundant in unfertilized eggs but decreased rapidly when embryos started to proliferate and differentiate. 10-formyltetrahydrofolate at first increased after fertilization, and then dropped dramatically before reaching a sustained level at later stages. Dihydrofolate (DHF) slightly decreased initially and remained low throughout embryogenesis. Exposure to methotrexate significantly decreased 5-CH3-THF levels and increased DHF pools, besides causing brain ventricle anomaly. Rescuing with leucovorin partly reversed the abnormal phenotype. Unexpectedly, the level of 5-CH3-THF remained low even when leucovorin was added for rescue. Our results show that different folate adducts fluctuated significantly and differentially in concert with the physiological requirement specific for the corresponding developmental stages. Furthermore, methotrexate lowered the level of 5-CH3-THF in developing embryos, which could not be reversed with folate supplementation and might be more substantial to cellular methylation potential and epigenetic control than to nucleotide synthesis.
Collapse
Affiliation(s)
- Tseng-Ting Kao
- College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
8
|
Lee GH, Sung SY, Chang WN, Kao TT, Du HC, Hsiao TH, Safo MK, Fu TF. Zebrafish larvae exposed to ginkgotoxin exhibit seizure-like behavior that is relieved by pyridoxal-5'-phosphate, GABA and anti-epileptic drugs. Dis Model Mech 2012; 5:785-95. [PMID: 22736461 PMCID: PMC3484861 DOI: 10.1242/dmm.009449] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/27/2012] [Indexed: 01/29/2023] Open
Abstract
The etiology of epilepsy is a very complicated, multifactorial process that is not completely understood. Therefore, the availability of epilepsy animal models induced by different mechanisms is crucial in advancing our knowledge and developing new therapeutic regimens for this disorder. Considering the advantages of zebrafish, we have developed a seizure model in zebrafish larvae using ginkgotoxin, a neurotoxin naturally occurring in Ginkgo biloba and hypothesized to inhibit the formation of the neurotransmitter γ-aminobutyric acid (GABA). We found that a 2-hour exposure to ginkgotoxin induced a seizure-like behavior in zebrafish larvae. This seizure-like swimming pattern was alleviated by the addition of either pyridoxal-5'-phosphate (PLP) or GABA and responded quickly to the anti-convulsing activity of gabapentin and phenytoin, two commonly prescribed anti-epileptic drugs (AEDs). Unexpectedly, the ginkgotoxin-induced PLP depletion in our experimental setting did not affect the homeostasis of folate-mediated one-carbon metabolism, another metabolic pathway playing a crucial role in neural function that also relies on the availability of PLP. This ginkgotoxin-induced seizure behavior was also relieved by primidone, which had been tested on a pentylenetetrazole-induced zebrafish seizure model but failed to rescue the seizure phenotype, highlighting the potential use and complementarity of this ginkgotoxin-induced seizure model for AED development. Structural and morphological characterization showed that a 2-hour ginkgotoxin exposure did not cause appreciable changes in larval morphology and tissues development. In conclusion, our data suggests that this ginkgotoxin-induced seizure in zebrafish larvae could serve as an in vivo model for epileptic seizure research and potential AED screening.
Collapse
Affiliation(s)
| | - Shian-Ying Sung
- Graduate Institute of Cancer Biology
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404 Taiwan
| | | | | | - Hung-Chi Du
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 701 Taiwan
| | | | - Martin K. Safo
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | - Tzu-Fun Fu
- Institute of Basic Medical Science
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 701 Taiwan
| |
Collapse
|