1
|
Xie S, Ma W, Shen M, Guo Q, Wang E, Huang C, Wang Y, Chen X, Liu Z, Zhang W, McLeod HL, He Y. Clinical and pharmacogenetics associated with recovery time from general anesthesia. Pharmacogenomics 2018; 19:1111-1123. [PMID: 30136624 DOI: 10.2217/pgs-2018-0085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIM Delayed recovery from general anesthesia is a well-known complication that requires predictive tools and approaches. This study aimed to determine significant factors associated with postanesthesia recovery and to develop an algorithm for estimating recovery time from general anesthesia. MATERIALS & METHODS The genotypes of patients were determined by SNaPshot or ARMS-qPCR. The algorithm was developed via machine-learning and tested by the worm plot. RESULTS Results showed that OPRM1 rs1799971 (p = 0.006) and ABCG2 rs2231142 (p = 0.041) were significantly associated with recovery time. Ten factors after random forest and stepwise selection were associated with recovery time. Ten factors after random forest and stepwise selection were associated with recovery time. Meanwhile, seven factors were associated with delayed recovery. CONCLUSION This study demonstrated that both clinical and pharmacogenetic data are significantly associated with recovery from general anesthesia and provide the basis for pre-emptive prediction tools.
Collapse
Affiliation(s)
- Shangchen Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, PR China
| | - Wenjuan Ma
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Minxue Shen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yueling Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, PR China
| | - Howard L McLeod
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, PR China.,Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, 33612 FL, USA
| | - Yijing He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.,Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, 33612 FL, USA
| |
Collapse
|
2
|
Orcholski ME, Khurshudyan A, Shamskhou EA, Yuan K, Chen IY, Kodani SD, Morisseau C, Hammock BD, Hong EM, Alexandrova L, Alastalo TP, Berry G, Zamanian RT, de Jesus Perez VA. Reduced carboxylesterase 1 is associated with endothelial injury in methamphetamine-induced pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2017; 313:L252-L266. [PMID: 28473326 DOI: 10.1152/ajplung.00453.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 01/08/2023] Open
Abstract
Pulmonary arterial hypertension is a complication of methamphetamine use (METH-PAH), but the pathogenic mechanisms are unknown. Given that cytochrome P450 2D6 (CYP2D6) and carboxylesterase 1 (CES1) are involved in metabolism of METH and other amphetamine-like compounds, we postulated that loss of function variants could contribute to METH-PAH. Although no difference in CYP2D6 expression was seen by lung immunofluorescence, CES1 expression was significantly reduced in endothelium of METH-PAH microvessels. Mass spectrometry analysis showed that healthy pulmonary microvascular endothelial cells (PMVECs) have the capacity to both internalize and metabolize METH. Furthermore, whole exome sequencing data from 18 METH-PAH patients revealed that 94.4% of METH-PAH patients were heterozygous carriers of a single nucleotide variant (SNV; rs115629050) predicted to reduce CES1 activity. PMVECs transfected with this CES1 variant demonstrated significantly higher rates of METH-induced apoptosis. METH exposure results in increased formation of reactive oxygen species (ROS) and a compensatory autophagy response. Compared with healthy cells, CES1-deficient PMVECs lack a robust autophagy response despite higher ROS, which correlates with increased apoptosis. We propose that reduced CES1 expression/activity could promote development of METH-PAH by increasing PMVEC apoptosis and small vessel loss.
Collapse
Affiliation(s)
- Mark E Orcholski
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center, Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center, Stanford, California
| | | | - Elya A Shamskhou
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center, Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center, Stanford, California
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center, Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center, Stanford, California
| | - Ian Y Chen
- Stanford Cardiovascular Institute, Stanford University Medical Center, Stanford, California
| | - Sean D Kodani
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Ellen M Hong
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center, Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center, Stanford, California
| | - Ludmila Alexandrova
- The Vincent Coates Foundation Mass Spectrometry Laboratory, Stanford University, Stanford, California
| | - Tero-Pekka Alastalo
- Children's Hospital Helsinki, University of Helsinki, Helsinki, Finland; and
| | - Gerald Berry
- Department of Pathology, Stanford University Medical Center, Stanford, California
| | - Roham T Zamanian
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center, Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center, Stanford, California
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, California; .,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center, Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center, Stanford, California
| |
Collapse
|
3
|
Grasing K, Mathur D, DeSouza C, Newton TF, Moody DE, Sturgill M. Cocaine cardiovascular effects and pharmacokinetics after treatment with the acetylcholinesterase inhibitor donepezil. Am J Addict 2016; 25:392-9. [PMID: 27392137 DOI: 10.1111/ajad.12402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/11/2016] [Accepted: 06/25/2016] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND In rodents, cholinesterase inhibitors can cause sustained decreases in the reinforcing effects of cocaine. Nonetheless, cocaine is metabolized by butyrylcholinesterase (BuChE), raising concerns that cholinesterase inhibition could increase its peripheral concentrations, perhaps augmenting toxicity. Although donepezil is approved for use in patients and selective for inhibiting acetylcholinesterase over BuChE, no studies have reported cocaine bioavailability in human subjects receiving donepezil. METHODS Twelve cocaine-dependent veterans received three days of treatment with either oral placebo or 5 mg daily of donepezil, followed by cross-over to the opposite treatment. During both oral treatments, double-blind intravenous cocaine was administered at .0, .18, and .36 mg/kg in a laboratory setting, followed by determinations of heart rate, blood pressure, and plasma concentrations of cocaine and major metabolites. RESULTS Intravenous cocaine produced dose-related increases in systolic blood pressure that were most pronounced over the initial 30 minutes after treatment. Oral donepezil attenuated drug-induced elevations of systolic blood pressure following low-dose cocaine (.18 mg/kg). No significant difference in blood pressure following treatment with placebo or donepezil after high-dose cocaine (.36 mg/kg). Peak values of blood pressure and heart rate were unaffected by donepezil. Plasma concentrations of cocaine and metabolites did not differ in donepezil- and placebo-treated participants. CONCLUSIONS AND SCIENTIFIC SIGNIFICANCE We conclude that donepezil can attenuate drug-induced increases in systolic blood pressure following low-dose cocaine, but does not otherwise modify the cardiovascular effects of intravenous cocaine. Clinically significant changes in cocaine bioavailability and cardiovascular effects do not occur following this dose of donepezil. (Am J Addict 2016;25:392-399).
Collapse
Affiliation(s)
- Kenneth Grasing
- Substance Abuse Research Laboratory, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri.,Division of Clinical Pharmacology, Department of Medicine, University of Kansas School of Medicine, Kansas City, Kansas
| | - Deepan Mathur
- Substance Abuse Research Laboratory, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Cherilyn DeSouza
- Substance Abuse Research Laboratory, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri.,Department of Psychiatry, University of Kansas School of Medicine, Kansas City, Kansas
| | - Thomas F Newton
- Department of Psychiatry and Behavioral Science and The Michael E. DeBakey Department of Veterans Affairs Medical Center, Baylor College of Medicine, Houston, Texas
| | - David E Moody
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Marc Sturgill
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
4
|
Pohanka M. Determination of acetylcholinesterase and butyrylcholinesterase activity without dilution of biological samples. CHEMICAL PAPERS 2015. [DOI: 10.1515/chempap-2015-0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractTwo cholinesterases: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), are known. The enzymes are important in the body and alteration of their activity has significant use in the diagnosis of poisoning, liver function, etc. Currently available methods for the determination of cholinesterases have some major drawbacks including various interferences and the inability to be used for decreasing the enzyme activity in the presence of reversible inhibitors due to sample dilution; hence, a method for dilution free assay of cholinesterases is desired. Here, microplates were modified with indoxylacetate (100 μL of 10 mmol L
Collapse
|
5
|
Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. CHEMICAL PAPERS 2015. [DOI: 10.2478/s11696-014-0542-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractAcetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are enzymes expressed in the human body under physiological conditions. AChE is an important part of the cholinergic nerves where it hydrolyses neurotransmitter acetylcholine. Both cholinesterases are sensitive to inhibitors acting as neurotoxic compounds. In analytical applications, the enzymes can serve as a biorecognition element in biosensors as well as simple disposable sensors (dipsticks) and be used for assaying the neurotoxic compounds. In the present review, the mechanism of AChE and BChE inhibition by disparate compounds is explained and methods for assaying the enzymes activity are shown. Optical, electrochemical, and piezoelectric biosensors are described. Attention is also given to the application of sol-gel techniques and quantum dots in the biosensors’ construction. Examples of the biosensors are provided and the pros and cons are discussed.
Collapse
|
6
|
|
7
|
Abstract
Articaine is an intermediate-potency, short-acting amide local anesthetic with a fast metabolism due to an ester group in its structure. It is effective with local infiltration or peripheral nerve block in dentistry, when administered as a spinal, epidural, ocular, or regional nerve block, or when injected intravenously for regional anesthesia. In comparative trials, its clinical effects were not generally significantly different from those of other short-acting local anesthetics like lidocaine, prilocaine, and chloroprocaine, and there is no conclusive evidence demonstrating above-average neurotoxicity. Articaine proved to be suitable and safe for procedures requiring a short duration of action in which a fast onset of anesthesia is desired, eg, dental procedures and ambulatory spinal anesthesia, in normal and in special populations.
Collapse
Affiliation(s)
- Marc Snoeck
- Department of Anaesthesia, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Abstract
The pharmacokinetic treatment strategy targets the drug molecule itself, aiming to reduce drug concentration at the site of action, thereby minimizing any pharmacodynamic effect. This approach might be useful in the treatment of acute drug toxicity/overdose and in the long-term treatment of addiction. Phase IIa controlled clinical trials with anticocaine and antinicotine vaccines have shown good tolerability and some efficacy, but Phase IIb and III trials have been disappointing because of the failure to generate adequate antibody titers in most participants. Monoclonal antibodies against cocaine, methamphetamine and phencyclidine have shown promise in animal studies, as has enhancing cocaine metabolism with genetic variants of human butyrylcholinesterase, with a bacterial esterase, and with catalytic monoclonal antibodies. Pharmacokinetic treatments offer potential advantages in terms of patient adherence, absence of medication interactions and benefit for patients who cannot take standard medications.
Collapse
Affiliation(s)
- David A Gorelick
- Chemistry & Drug Metabolism Section Intramural Research Program, National Institute on Drug Abuse, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| |
Collapse
|