1
|
Valipour M, Sheibani M, Dibaei M, Khatir ZZ, Ayati A, Motafeghi F, Irannejad H. Anticancer and Anti-Inflammatory Potential of Coptisine as a Planar Quaternary Benzo[C]Phenanthridine Alkaloid With G-Quadruplex DNA Telomeric Induction Activity. Drug Dev Res 2025; 86:e70071. [PMID: 40317769 DOI: 10.1002/ddr.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 05/07/2025]
Abstract
Coptisine, an isoquinoline-based phytochemical, exhibits a broad spectrum of biological activities, including anticancer and anti-inflammatory properties. Its planar chemical structure allows for the induction of anticancer effects by forming telomeric G-quadruplex structures. Despite its promising medicinal benefits, the clinical utilization of this compound is limited by critical shortcomings such as low efficacy and poor pharmacokinetics. While in vitro studies demonstrate high cytotoxicity, in vivo research highlights its favorable toxicity profile, attributed to the conversion of its iminium form to a less toxic alkanolamine form within the physiological setting. Past endeavors have focused on rectifying these limitations through structural modifications to yield more efficacious molecules. In the current review, we provide an overview of the anti-inflammatory and anticancer properties of coptisine and its semisynthetic derivatives, in conjunction with its pharmacokinetic profile, synthesis, and safety/toxicity considerations. This review draws upon information sourced from publications indexed in esteemed scientific databases like Web of Science, PubMed, and Scopus, among others. To prepare each section, we utilized Coptisine and section-specific keywords, emphasizing recent literature findings (2014-2024) while maintaining a broad scope due to the study's nature. In conclusion, this review underscores coptisine's remarkable anticancer and anti-inflammatory properties, suggesting that further exploration of structural modifications may yield semisynthetic derivatives with enhanced safety/toxicity profiles, pharmacokinetics, and therapeutic potential.
Collapse
Affiliation(s)
- Mehdi Valipour
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Dibaei
- Department of Pharmaceutics, Faculty of Pharmacy, Biopharmaceutics and Pharmacokinetic Division, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zakeri Khatir
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Adileh Ayati
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Motafeghi
- Reproductive Endocrine Research Center, Endocrine Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Xiang ZD, Guan HD, Zhao X, Xie Q, Cai FJ, Xie ZJ, Dang R, Li ML, Wang CH. Protoberberine alkaloids: A review of the gastroprotective effects, pharmacokinetics, and toxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155444. [PMID: 38367423 DOI: 10.1016/j.phymed.2024.155444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Stomach diseases have become global health concerns. Protoberberine alkaloids (PBAs) are a group of quaternary isoquinoline alkaloids from abundant natural sources and have been shown to improve gastric disorders in preclinical and clinical studies. The finding that PBAs exhibit low oral bioavailability but potent pharmacological activity has attracted great interest. PURPOSE This review aims to provide a systematic review of the molecular mechanisms of PBAs in the treatment of gastric disorders and to discuss the current understanding of the pharmacokinetics and toxicity of PBAs. METHODS The articles related to PBAs were collected from the Web of Science, Pubmed, and China National Knowledge Infrastructure databases using relevant keywords. The collected articles were screened and categorized according to their research content to focus on the gastroprotective effects, pharmacokinetics, and toxicity of PBAs. RESULTS Based on the results of preclinical studies, PBAs have demonstrated therapeutic effects on chronic atrophic gastritis and gastric cancer by activating interleukin-4 (IL-4)/signal transducer and activator of transcription 6 (STAT6) pathway and suppressing transforming growth factor-beta 1 (TGF-β1)/phosphoinositide 3-kinase (PI3K), Janus kinase-2 (JAK2)/signal transducers and activators of transcription 3 (STAT3), and mitogen-activated protein kinase (MAPK) pathways. The major PBAs exhibit similar pharmacokinetic properties, including rapid absorption, slow elimination, and low bioavailability. Notably, the natural organ-targeting property of PBAs may account for the finding of their low blood levels and high pharmacological activity. PBAs interact with other compounds, including conventional drugs and natural products, by modulation of metabolic enzymes and transporters. The potential tissue toxicity of PBAs should be emphasized due to their high tissue accumulation. CONCLUSION This review highlights the gastroprotective effects, pharmacokinetics, and toxicity of PBAs and will contribute to the evaluation of drug properties and clinical translational studies of PBAs, accelerating their transfer from the laboratory to the bedside.
Collapse
Affiliation(s)
- Ze-Dong Xiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Hui-Da Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Xiang Zhao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Fu-Jie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Zhe-Jun Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Rui Dang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Man-Lin Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China.
| | - Chang-Hong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
3
|
Zhang L, Yang C, Zhao Y, Yang Z, Meng X, Yan D. Comparative pharmacokinetic analysis of six major bioactive constituents using UPLC-MS/MS in samples isolated from normal and diabetic nephropathy rats after oral administration of Gushen Jiedu capsule. J Pharm Biomed Anal 2023; 235:115638. [PMID: 37633162 DOI: 10.1016/j.jpba.2023.115638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 08/28/2023]
Abstract
Berberine, palmatine, physcion, rhein, calycosin-7-O-glucoside, and ferulic acid are six major active consituents that are present in Gushen Jiedu capsule (GSJD) extracts. The aim of this study was to determine the pharmacokinetics of the six active consituents in vivo by a rapid, sensitive, and precise UPLC-MS/MS method, which were compared between normal and diabetic nephropathy (DN) rats. Good separation of the target analytes and internal standards (ketoprofen and puerarin) was obtained on a Waters BEH C18 UPLC column with a mobile phase of 0.1 % formic acid acetonitrile-0.1 % formic acid water. All the calibration curves showed good linearity with a regression coefficient (r2) of ≥ 0.9908. The lower limits of quantification (LLOQ) for berberine, palmatine, physcion, rhein, calycosin-7-O-glucoside, and ferulic acid were 20, 2.5, 20, 20, 2.5, and 2.5 ng/mL, respectively. The relative standard deviations (RSDs) of intra-day and inter-day precision were all within 12.66 %, and the relative errors of intra-day and inter-day accuracy ranged from - 15.00 to 14.93 %. Good extraction recovery and matrix effects were obtained. The stability study confirmed the stability of the six analytes (RSD < 15 %). Finally, the data showed that the pharmacokinetic parameters (especially CLz/F, AUC and Tmax) of the six target analytes in DN rats were significantly different from those in normal rats. PK studies under pathological conditions could provide new thoughts to elucidate the underlying mechanism of GSJD and promote the clinical development of GSJD to treat DN.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Chunjing Yang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Yidan Zhao
- Department of Pharmacy, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Zhirui Yang
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China; Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xintong Meng
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Wang X, Dong Y, Song R, Yu A, Wei J, Fan Q, Yao J, Shan D, Zhong X, Lv F, She G. Intestinal metabolism and absorption mechanism of multi-components in Gaultheria leucocarpa var. yunnanensis - An assessment using in situ and in vitro models, comparing gut segments in pathological with physiological conditions. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114844. [PMID: 34798162 DOI: 10.1016/j.jep.2021.114844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/13/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dianbaizhu (Gaultheria leucocarpa var. yunnanensis) as a Chinese folk medicine exerts significant treatment effects on rheumatoid arthritis (RA) with a long historical time. Our previous reports showed that the anti-rheumatic arthritis fraction (ARF) extracted and enriched from Dianbaizhu possessed good druggability, which was better than its single active ingredients. However, the intestinal transport characteristics and mechanism of ARF have not been elucidated to date. AIM OF THE STUDY In order to illustrate the role of active ingredients of ARF in alleviating RA and promoting the development of dosage forms, the intestinal metabolism, absorption properties and mechanism of ARF in vitro and in situ models were investigated. MATERIALS AND METHODS Firstly, after incubating with 4 intestinal segments (duodenum, jejunum, ileum, and colon), 7 key components in ARF, including MATG-B, (+)-catechin, MSTG-A, Gaultherin, chlorogenic acid, quercetin, and kaempferol were quantitatively analyzed by a high-performance liquid chromatography (HPLC). Secondly, combining the physiological and pathological rats, the in situ single-pass intestinal perfusion and in vitro everted gut sacs of rats were performed to investigate the absorption features and transport mechanisms of ARF using HPLC and HPLC-Q-TOF-MS/MS. Subsequently, in situ studies were employed to determine the effect of P-glycoprotein (P-gp) inhibitor (verapamil) on the transport characteristics of ARF in RA model rats. RESULTS Comparing the absorption parameters of ARF incubated in different intestinal segments, data showed that the absorption of ARF in the small intestine was significantly stronger than that of the colon (P < 0.01). The number of characterized prototype components was subjected to the incubation time, drug concentration and rat body condition, but not the intestinal segments. There were no significant differences in the number of metabolites among different intestinal segments, administration concentrations and incubation time. The best small intestinal absorption site of ARF was duodenum and ileum in normal and model rats, respectively. The Peff values of 7 index compounds were all higher than 0.2 × 10-4cm/s, and the Fa values of 7 index compounds were all greater than 20% in the in situ perfusion investigation. The results showed that MSTG-B, MSTG-A and Gaultherin were likely to be substrates of P-gp as verapamil significantly enhanced their Peff and Ka values, while other ingredients were not P-gp substrates. CONCLUSIONS The intestinal membrane permeability of ARF was good. Its intestinal absorption mechanisms mainly involved active transportation processes and passive diffusion. Besides, this report provided data support and basis for clinical development, bioavailability improvement and formulation design.
Collapse
Affiliation(s)
- Xiuhuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China.
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China
| | - Axiang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China
| | - Jing Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China
| | - Qiqi Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China
| | - Jianling Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China
| | - Dongjie Shan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China
| | - Xiangjian Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China
| | - Fang Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, China.
| |
Collapse
|
5
|
Zhao J, Zhao Q, Lu JZ, Ye D, Mu S, Yang XD, Zhang WD, Ma BL. Natural Nano-Drug Delivery System in Coptidis Rhizoma Extract with Modified Berberine Hydrochloride Pharmacokinetics. Int J Nanomedicine 2021; 16:6297-6311. [PMID: 34552326 PMCID: PMC8451076 DOI: 10.2147/ijn.s323685] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose This study aimed to evaluate the pharmaceutical and pharmacokinetic effects of the natural nanoparticles (Nnps) isolated from Coptidis Rhizoma extract on berberine hydrochloride (BBR) and systematically explore the related mechanisms. Methods Firstly, Nnps were isolated from Coptidis Rhizoma extract and then an Nnps-BBR complex was prepared. After qualitative and quantitative analysis in terms of size, Zeta potential, morphology, and composition of the Nnps and the Nnps-BBR complex, the effects of the Nnps on the crystallization of BBR were characterized. The effects of the Nnps on the solubility and dissolution of BBR were then evaluated. In addition, the effects of the Nnps on BBR in terms of cellular uptake, transmembrane transport, metabolic stability, and pharmacokinetics in mice were studied. Results The Nnps had an average size of 166.6 ± 1.3 nm and Zeta potential of −12.5 ± 0.2 mV. The Nnps were formed by denaturation of co-existing plant proteins with molecular weight < 30 kDa. The Nnps adsorbed or dispersed BBR, thereby promoting BBR transformation from crystal to amorphous form and improving its solubility and dissolution. The Nnps carried and promoted BBR uptake by human colonic adenocarcinoma (Caco-2) cells via caveolae-mediated endocytosis, reducing P-gp-mediated efflux of BBR in mice gut sacs and Madin-Darby canine kidney cells stably expressing the transporter P-gp (MDCK-MDR1) cells. Moreover, the Nnps improved BBR metabolic stability in mouse intestinal S9, promoting BBR intestinal absorption in mice, as shown by increased peak BBR concentration (Cmax, 1182.3 vs 310.2 ng/mL) and exposure level (AUC0–12 h, 2842.8 vs 1447.0 ng·h/mL) in mouse portal vein. In addition, the Nnps increased BBR exposure level in mouse livers (95,443.2 vs 43,586.2 ng·h/g liver). Conclusion The proteinaceous nanoparticles isolated from Coptidis Rhizoma extract can form a natural nano-drug delivery system with BBR, thereby significantly improving the pharmacokinetics of oral BBR.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Qing Zhao
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jing-Ze Lu
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Dan Ye
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Sheng Mu
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Xiao-Di Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Wei-Dong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Bing-Liang Ma
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
6
|
Liu J, Xu H, Zhang L, Wang S, Lu D, Chen M, Wu B. Chronoeffects of the Herbal Medicines Puerariae radix and Coptidis rhizoma in Mice: A Potential Role of REV-ERBα. Front Pharmacol 2021; 12:707844. [PMID: 34393786 PMCID: PMC8355589 DOI: 10.3389/fphar.2021.707844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Identifying drugs with dosing time-dependent effects (chronoeffects) and understanding the underlying mechanisms would help to improve drug treatment outcome. Here, we aimed to determine chronoeffects of the herbal medicines Puerariae radix (PR) and Coptidis rhizoma (CR), and investigate a potential role of REV-ERBα as a drug target in generating chronoeffects. The pharmacological effect of PR on hyperhomocysteinemia in mice was evaluated by measuring total homocysteine, triglyceride levels and lipid accumulation. PR dosed at ZT10 generated a stronger effect on hyperhomocysteinemia than drug dosed at ZT2. Furthermore, PR increased the expression levels of REV-ERBα target genes Bhmt, Cbs and Cth (encoding three key enzymes responsible for homocysteine catabolism), thereby alleviating hyperhomocysteinemia in mice. Moreover, CR attenuated chronic colitis in mice in a dosing time-dependent manner based on measurements of disease activity index, colon length, malondialdehyde/myeloperoxidase activities and IL-1β/IL-6 levels. ZT10 dosing generated a stronger anti-colitis effect as compared to ZT2 dosing. This was accompanied by lower production of colonic inflammatory cytokines (i.e., Nlrp3, IL-1β, IL-6, Tnf-α and Ccl2, REV-ERBα target genes) in colitis mice dosed at ZT10. The diurnal patterns of PR and CR effects were respectively consistent with those of puerarin (a main active constituent of PR, a REV-ERBα antagonist) and berberine (a main active constituent of CR, a REV-ERBα agonist). In addition, loss of Rev-erbα in mice abolished the dosing time-dependency in PR and CR effects. In conclusion, the therapeutic effects of PR and CR depend on dosing time in mice, which are probably attributed to diurnal expression of REV-ERBα as the drug target. Our findings have implications for improving therapeutic outcomes of herbal medicines with a chronotherapeutic approach.
Collapse
Affiliation(s)
- Jinming Liu
- Department of Critical Care Medicine, Zhongshan Torch Development Zone Hospital, Zhongshan, China
| | - Haiman Xu
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhang
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuai Wang
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danyi Lu
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Zhao J, Zhou T, Lu JZ, Ye D, Mu S, Tian XH, Zhang WD, Ma BL. Intra-Herb Interactions: Primary Metabolites in Coptidis Rhizoma Extract Improved the Pharmacokinetics of Oral Berberine Hydrochloride in Mice. Front Pharmacol 2021; 12:675368. [PMID: 34163360 PMCID: PMC8215677 DOI: 10.3389/fphar.2021.675368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/24/2021] [Indexed: 11/23/2022] Open
Abstract
Primary plant metabolites can be used for artificial preparation of natural deep eutectic solvents (NADESs), which have strong dissolving capacity, good biocompatibility, and biodegradability. In this study, for the first time, we verified that NADESs were present in Coptidis Rhizoma extract and systematically investigated its effects and mechanisms on the pharmacokinetics of oral berberine hydrochloride (BBR), a co-existing bioactive constituent. First, three LC-MS/MS based methods were established and fully validated to determine the levels of 11 primary metabolites in Coptidis Rhizoma extract. According to the weight ratio of four major primary metabolites in the Coptidis Rhizoma extract, a stable “endogenous” NADES was prepared using the heating method by the addition of 350 μl of water to 1,307.8 mg of the mixture of malic acid (490.5 mg), glucose (280.6 mg), sucrose (517.7 mg), and choline chloride (19.0 mg). The prepared NADES showed significant acute toxicity in mice and cytotoxicity in MDCK-MDR1 cells. However, after being diluted 10 times or 100 times, the NADES had no significant acute toxicity or cytotoxicity, respectively. The dilutions of the NADES significantly increased the water solubility of BBR, reduced its efflux in gut sacs and MDCK-MDR1 cell monolayer, and improved its metabolic stability in intestinal S9. In addition, the NADES dilutions reversibly opened the tight junctions between the enterocytes in the gut sacs. Moreover, the NADES dilutions significantly improved the exposure levels of BBR in the portal vein and livers of mice that were administered oral BBR. Malic acid was identified as a major component in the NADES in terms of solubility, acute toxicity, cytotoxicity, and pharmacokinetic-improving effects on oral BBR. In conclusion, the primary metabolites of Coptidis Rhizoma extract could form “endogenous” NADES, and its dilutions improve the pharmacokinetics of oral BBR. This study demonstrates the synergistic interaction of the constituents of Coptidis Rhizoma extract and the potential use of the NADES dilutions in oral BBR delivery.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhou
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Ze Lu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Ye
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Mu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin-Hui Tian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei-Dong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Bing-Liang Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Jamshaid F, Dai J, Yang LX. New Development of Novel Berberine Derivatives against Bacteria. Mini Rev Med Chem 2020; 20:716-724. [PMID: 31902359 DOI: 10.2174/1389557520666200103115124] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 08/02/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Many berberine derivatives have been synthesized for their antibacterial activity in the past years. In order to elucidate their new Structural Activity Relationship (SAR), the recently synthesized berberine derivatives are reviewed. The newly synthesized berberine derivatives are reported in this review with novel modifications on the berberine structure at various positions. It is hoped that this article would help scientists to design and synthesize new berberine derivatives with high potency and a broad spectrum of antimicrobial activities, more effectiveness and lower toxicity for improved antimicrobial therapy. These berberine derivatives could be developed as novel antibacterial agents to treat patients with infectious diseases, especially caused by resistant bacteria.
Collapse
Affiliation(s)
- Faisal Jamshaid
- Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai, PC 200240, China.,Changzhou FangYuan Pharmaceutical Co. Ltd. Changzhou, Jiangsu, China
| | - Jun Dai
- Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai, PC 200240, China.,Changzhou FangYuan Pharmaceutical Co. Ltd. Changzhou, Jiangsu, China
| | - Li Xi Yang
- Changzhou FangYuan Pharmaceutical Co. Ltd. Changzhou, Jiangsu, China
| |
Collapse
|
9
|
Zhang JQ, Wang R, Zhou T, Zhao Q, Zhao CC, Ma BL. Pharmacokinetic incompatibility of the Huanglian-Gancao herb pair. BMC Complement Med Ther 2020; 20:61. [PMID: 32087732 PMCID: PMC7076871 DOI: 10.1186/s12906-020-2845-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background Pharmacokinetic interaction is one of the most important indices for the evaluation of the compatibility of herbal medicines. Both Gancao (Glycyrrhizae Radix et Rhizoma) and Huanglian (Coptidis Rhizoma) are commonly used traditional Chinese medicines (TCMs). In this study, the influence of Gancao on the pharmacokinetics of Huanglian was systematically studied by using berberine as a pharmacokinetic marker. Methods Extracts of the herbal pieces of Huanglian and the herb pair (Huanglian plus Gancao) were prepared with boiling water. The concentration of berberine in the samples was analyzed using liquid chromatography-mass spectrometry. The total amounts of berberine in all extract samples were compared. Comparative pharmacokinetic studies of Huanglian and the herb pair were conducted in ICR mice. In vitro berberine absorption and efflux were studied using mice gut sacs. The equilibrium solubility of berberine in the extracts was determined. The in vitro dissolution of berberine was comparatively studied using a rotating basket method. Results Gancao significantly reduced berberine exposure in the portal circulation (425.8 ng·h/mL vs. 270.4 ng·h/mL) and the liver (29,500.8 ng·h/mL vs. 15,422.4 ng·h/mL) of the mice. In addition, Gancao decreased the peak concentration (Cmax) of berberine in the portal circulation (104.3 ng·h/mL vs. 76.5 ng·h/mL) and liver (4926.1 ng·h/mL vs. 2642.8 ng·h/mL) of mice. Significant influences of Gancao on the amount of berberine extracted (32% reduction), the solubility of berberine (34.7% compared with the control group), and dissolution (88.7% vs. 66.1% at 15 min in acid buffer and 68% vs. 51.8% at 15 min in phosphate buffer) were also revealed. Comparative pharmacokinetic studies in ICR mice indicated that the formation of sediment was unfavorable in terms of berberine absorption (345.3 ng·h/mL vs. 119.8 ng·h/mL). Conclusions Gancao was able to reduce intestinal absorption and in vivo exposure of berberine in Huanglian via the formation of sediment, which caused reductions in the extracted amount, solubility, and dissolution of berberine.
Collapse
Affiliation(s)
- Ji-Quan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rui Wang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ting Zhou
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, China
| | - Qing Zhao
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, China
| | - Chun-Cao Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bing-Liang Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, China.
| |
Collapse
|
10
|
Tarabasz D, Kukula-Koch W. Palmatine: A review of pharmacological properties and pharmacokinetics. Phytother Res 2019; 34:33-50. [PMID: 31496018 DOI: 10.1002/ptr.6504] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/18/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
The aim of this review is to collect together the results of the numerous studies over the last two decades on the pharmacological properties of palmatine published in scientific databases like Scopus and PubMed, which are scattered across different publications. Palmatine, an isoquinoline alkaloid from the class of protoberberines, is a yellow compound present in the extracts from different representatives of Berberidaceae, Papaveraceae, Ranunculaceae, and Menispermaceae. It has been extensively used in traditional medicine of Asia in the treatment of jaundice, liver-related diseases, hypertension, inflammation, and dysentery. New findings describe its possible applications in the treatment of civilization diseases like central nervous system-related problems. This review intends to let this alkaloid come out from the shade of a more frequently described alkaloid: berberine. The toxicity, pharmacokinetics, and biological activities of this protoberberine alkaloid will be developed in this work.
Collapse
Affiliation(s)
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
11
|
Hu Q, Li X, Shi Q, Yang G, Feng F. Deciphering the absorption profile and interaction of multi-components of Zhi-Zi-Da-Huang decoction based on in vitro–in silico–in vivo integrated strategy. Xenobiotica 2018; 49:762-777. [DOI: 10.1080/00498254.2018.1497220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Qing Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Xixi Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Qingshui Shi
- Jiangsu Institute for Food and Drug Control, Nanjing, China
| | - Gongjun Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Fang Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
12
|
Li Q, Yang Y, Zhou T, Wang R, Li N, Zheng M, Li YY, Zhang JQ, Wu F, Yang BC, Ma YM, Ma BL. A Compositive Strategy to Study the Pharmacokinetics of TCMs: Taking Coptidis Rhizoma, and Coptidis Rhizoma-Glycyrrhizae Radix et Rhizoma as Examples. Molecules 2018; 23:molecules23082042. [PMID: 30111723 PMCID: PMC6222803 DOI: 10.3390/molecules23082042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/07/2018] [Accepted: 08/11/2018] [Indexed: 12/30/2022] Open
Abstract
Pharmacokinetic studies are crucial for elucidating the effective constituents and formula compatibility of traditional Chinese medicines (TCMs). However, studies have usually been limited to single dosages and detection of systemic blood concentrations. To obtain comprehensive pharmacokinetic information, here we propose a multi-dosage and multi-sampling (blood from portal vein or systemic circulation, and liver) strategy to comparatively study the pharmacokinetics of multi-form TCMs, i.e., pure constituents, TCMs, or TCM formula extracts. Based on this strategy, we studied the pharmacokinetics of pure berberine, berberine in Coptidis Rhizoma (CRE), and berberine in Coptidis Rhizoma-Glycyrrhizae Radix et Rhizoma extracts (CR-GRE). After simple calculation and comparison of the obtained area under the curve (AUC) values, the results revealed the drastically different pharmacokinetic properties of pure berberine compared to CRE and CR-GRE. The results contribute to explaining the pharmacological loss of berberine activity after purification and the compatibility of the CR-GR drug pair. The results also innovatively showed that it was intestinal absorption that differentiated the pharmacokinetics of CRE and pure berberine, and CRE and CR-GRE. In conclusion, we propose a composite strategy to comparatively study the pharmacokinetics of TCMs, which could provide sufficient information to obtain a comprehensive view, before follow-up mechanism-of-action studies.
Collapse
Affiliation(s)
- Qiao Li
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Yang
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ting Zhou
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Rui Wang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Na Li
- Department of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Min Zheng
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yuan-Yuan Li
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ji-Quan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bai-Can Yang
- Department of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue-Ming Ma
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing-Liang Ma
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
13
|
Meng FC, Wu ZF, Yin ZQ, Lin LG, Wang R, Zhang QW. Coptidis rhizoma and its main bioactive components: recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin Med 2018. [PMID: 29541156 PMCID: PMC5842587 DOI: 10.1186/s13020-018-0171-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Coptidis rhizoma (CR) is the dried rhizome of Coptis chinensis Franch., C. deltoidea C. Y. Cheng et Hsiao or C. teeta Wall. (Ranunculaceae) and is commonly used in Traditional Chinese Medicine for the treatment of various diseases including bacillary dysentery, typhoid, tuberculosis, epidemic cerebrospinal meningitis, empyrosis, pertussis, and other illnesses. Methods A literature survey was conducted via SciFinder, ScieneDirect, PubMed, Springer, and Wiley databases. A total of 139 selected references were classified on the basis of their research scopes, including chemical investigation, quality evaluation and pharmacological studies. Results Many types of secondary metabolites including alkaloids, lignans, phenylpropanoids, flavonoids, phenolic compounds, saccharides, and steroids have been isolated from CR. Among them, protoberberine-type alkaloids, such as berberine, palmatine, coptisine, epiberberine, jatrorrhizine, columamine, are the main components of CR. Quantitative determination of these alkaloids is a very important aspect in the quality evaluation of CR. In recent years, with the advances in isolation and detection technologies, many new instruments and methods have been developed for the quantitative and qualitative analysis of the main alkaloids from CR. The quality control of CR has provided safety for pharmacological applications. These quality evaluation methods are also frequently employed to screen the active components from CR. Various investigations have shown that CR and its main alkaloids exhibited many powerful pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetic, neuroprotective, cardioprotective, hypoglycemic, anti-Alzheimer and hepatoprotective activities. Conclusion This review summarizes the recent phytochemical investigations, quality evaluation methods, the biological studies focusing on CR as well as its main alkaloids.
Collapse
Affiliation(s)
- Fan-Cheng Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Zheng-Feng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Zhi-Qi Yin
- 2Department of Traditional Chinese Medicines Pharmaceuticals, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| |
Collapse
|
14
|
Metabolism of Rhizoma coptidis in Human Urine by Ultra-High-Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry. Eur J Drug Metab Pharmacokinet 2018; 43:441-452. [DOI: 10.1007/s13318-018-0463-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Zhang QS, Wang GW, Han ZQ, Chen XM, Na R, Jin H, Li P, Bu R. Metabolic profile of Rhizoma coptidis in human plasma determined using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:63-73. [PMID: 28926137 DOI: 10.1002/rcm.7990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Rhizoma coptidis extract and its alkaloids show various pharmacological activities, but its metabolic profile in human plasma has not been thoroughly investigated. In the present research, the metabolism of Rhizoma coptidis at a clinical dose (5 g/60 kg/day) was systematically analyzed to determine its biotransformation processes in human plasma. METHODS In this research, the metabolites of Rhizoma coptidis in human plasma after oral administration of Rhizoma coptidis extract at a clinical dose were investigated using ultra-high-performance liquid chromatography (UHPLC) coupled with high-resolution LTQ-Orbitrap mass spectrometry. The structural elucidation of the constituents was confirmed by comparing their retention times (tR ) and MSn fragments with those of standards and literature reports. RESULTS In total, two prototypes and twelve metabolites were detected in human plasma. The two prototypes were confidently identified using reference standards. Of the compounds detected, M7 (berberrubinen-9-O-glucuronide) was the most abundant based on its peak area, which indicates that this compound might be a pharmacokinetic marker for Rhizoma coptidis alkaloids in humans. Based on the metabolites detected in human plasma, a possible metabolic pathway for Rhizoma coptidis in vivo was proposed. CONCLUSIONS The results indicated that the alkaloids in Rhizoma coptidis were extensively biotransformed in vivo mainly via conjugation with glucuronic acid (GluA) or sulfuric acid (SulA) to form phase II metabolites, and the GluA metabolites are likely the dominant form in human plasma. To the best of our knowledge, this is the first in vivo evaluation of the metabolic profile of the whole Rhizoma coptidis extract in human plasma, which is essential for determining the chemicals responsible for the pharmacological activities of Rhizoma coptidis in vivo. Moreover, it would be beneficial for us to further systematically study the pharmacokinetic behavior of Rhizoma coptidis in humans.
Collapse
Affiliation(s)
- Qing-Shan Zhang
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, P.R. China
| | - Gao-Wa Wang
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, P.R. China
| | - Zhi-Qiang Han
- Medical Institution Conducting Clinical Trials for Human Used Drug of Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, PR China
| | - Xiang-Mei Chen
- Mongolian Medicine College of Pharmacy of Inner Mongolia University for the Nationalities, Tongliao, 028000, PR China
| | - Risu Na
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, P.R. China
| | - Haburi Jin
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, P.R. China
| | - Ping Li
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, P.R. China
| | - Renbatu Bu
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, P.R. China
| |
Collapse
|
16
|
Zi-Min Y, Yue C, Hui G, Jia L, Gui-Rong C, Wang J. Comparative Pharmacokinetic Profiles of Three Protoberberine-type Alkaloids from Raw and Bile-processed Rhizoma coptidis in Heat Syndrome Rats. Pharmacogn Mag 2017; 13:51-57. [PMID: 28216883 PMCID: PMC5307914 DOI: 10.4103/0973-1296.197632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: The Bile-processed Rhizoma coptidis (BRC), which has a colder drug property than Rhizoma coptidis (RC), is widely used for the treatment of heat syndrome. We compared the pharmacokinetics of the protoberberine-type alkaloids in BRC and RC in rats with heat syndrome to elucidate the bile-processing mechanism. Material and Methods: We established a rapid and sensitive method for simultaneously determining three alkaloids: berberine, palmatine, and jatrorrhizine, in rat plasma based on ultra-performance liquid chromatography/tandem mass spectrometry. The separation was carried out on a Waters ACQUITY BEA C18 column. The mobile phase consisted of acetonitrile (containing 0.1% formic acid) and water (containing 0.1% formic acid and 10 mmol/L ammonium acetate) and carbamazepine was used as an internal standard. The detection was carried out in a multiple reaction monitoring mode (MRM) using electrospray ionization in the positive ion mode. Results: Pharmacokinetic profiles indicated that the Cmax of berberine and palmatine increased two times and the Tmax of the three alkaloids decreased three times after bile processing. AUC0→∞ and AUC0→t of the alkaloids were similar between RC and BRC. Conclusion: The results suggest that bile processing could increase the absorption rate of alkaloids. This study broadens our understanding of Chinese herbal medicine processing. SUMMARY Contents of berberine, palmatine and jatrorrhizine, in heat syndrome rats’ plasma between the raw and bile-processed Rhizoma coptidis (RC) were determined by UPLC-MS/MS. The whole pharmacokinetic profiles of three alkaloids in the bile-processed Rhizoma coptidis (BRC) were similar to those of RC. The shorter Tmax and increased 2-fold Cmax were obtained after RC bile-processing. Bile-processing could promote the absorption rate of alkaloids in a certain degree.
Abbreviation Used: RC: Rhizoma coptidis, BRC: Bile-processed Rhizoma coptidis, HPLC: high-performance liquid chromatography, UPLC-MS/MS: ultra-performance liquid chromatography-mass spectrometry/ mass spectrometry, LC-MS: liquid chromatography-mass spectrometry, MRM: multiple reaction monitoring mode, QC: quality control, RE: relative error, RSD: relative standard deviation, Cmax: maxium of drug concentration, Tmax: time for maxium of drug concentration, AUC: area under concentration-time curve, LLOQ: Linearity and lower limits of quantification, t1/2: half-life, Clz: body clearance
Collapse
Affiliation(s)
- Yuan Zi-Min
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Chen Yue
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Gao Hui
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Lv Jia
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Chen Gui-Rong
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Jing Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
17
|
Ma BL, Yang Y, Dai Y, Li Q, Lin G, Ma YM. Polyethylene glycol 400 (PEG400) affects the systemic exposure of oral drugs based on multiple mechanisms: taking berberine as an example. RSC Adv 2017. [DOI: 10.1039/c6ra26284h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
High concentrations of PEG400 increase in vivo exposure to berberine (D) by increasing its solubility (A), permeability (B), and lymphatic transport (C).
Collapse
Affiliation(s)
- Bing-Liang Ma
- Department of Pharmacology
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| | - Yan Yang
- Department of Pharmacology
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| | - Yan Dai
- Department of Pharmacology
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| | - Qiao Li
- Department of Pharmacology
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| | - Ge Lin
- School of Biomedical Sciences
- Faculty of Medicine
- The Chinese University of Hong Kong
- Shatin
- China
| | - Yue-Ming Ma
- Department of Pharmacology
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| |
Collapse
|
18
|
Tan HL, Chan KG, Pusparajah P, Duangjai A, Saokaew S, Mehmood Khan T, Lee LH, Goh BH. Rhizoma Coptidis: A Potential Cardiovascular Protective Agent. Front Pharmacol 2016; 7:362. [PMID: 27774066 PMCID: PMC5054023 DOI: 10.3389/fphar.2016.00362] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/20/2016] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the leading causes of morbidity and mortality in both the developed and developing world. Rhizoma coptidis (RC), known as Huang Lian in China, is the dried rhizome of medicinal plants from the family Ranunculaceae, such as Coptis chinensis Franch, C. deltoidea C.Y. Cheng et Hsiao, and C. teeta Wall which has been used by Chinese medicinal physicians for more than 2000 years. In China, RC is a common component in traditional medicines used to treat CVD associated problems including obesity, diabetes mellitus, hyperlipidemia, hyperglycemia and disorders of lipid metabolism. In recent years, numerous scientific studies have sought to investigate the biological properties of RC to provide scientific evidence for its traditional medical uses. RC has been found to exert significant beneficial effects on major risk factors for CVDs including anti-atherosclerotic effect, lipid-lowering effect, anti-obesity effect and anti-hepatic steatosis effect. It also has myocardioprotective effect as it provides protection from myocardial ischemia-reperfusion injury. These properties have been attributed to the presence of bioactive compounds contained in RC such as berberine, coptisine, palmatine, epiberberine, jatrorrhizine, and magnoflorine; all of which have been demonstrated to have cardioprotective effects on the various parameters contributing to the occurrence of CVD through a variety of pathways. The evidence available in the published literature indicates that RC is a herb with tremendous potential to reduce the risks of CVDs, and this review aims to summarize the cardioprotective properties of RC with reference to the published literature which overall indicates that RC is a herb with remarkable potential to reduce the risks and damage caused by CVDs.
Collapse
Affiliation(s)
- Hui-Li Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetic and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Priyia Pusparajah
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Acharaporn Duangjai
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand; Division of Physiology, School of Medical Sciences, University of PhayaoPhayao, Thailand
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand; Faculty of Pharmaceutical Sciences, Pharmaceutical Outcomes Research Center, Naresuan UniversityPhitsanulok, Thailand
| | - Tahir Mehmood Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Department of Pharmacy, Abasyn University PeshawarPeshawar, Pakistan
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
19
|
Qiu F, Liu S, Miao P, Zeng J, Zhu L, Zhao T, Ye Y, Jiang J. Effects of the Chinese herbal formula “Zuojin Pill” on the pharmacokinetics of dextromethorphan in healthy Chinese volunteers with CYP2D6*10 genotype. Eur J Clin Pharmacol 2016; 72:689-95. [DOI: 10.1007/s00228-016-2048-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/16/2016] [Indexed: 11/29/2022]
|
20
|
Naturally occurring proteinaceous nanoparticles in Coptidis Rhizoma extract act as concentration-dependent carriers that facilitate berberine absorption. Sci Rep 2016; 6:20110. [PMID: 26822920 PMCID: PMC4731763 DOI: 10.1038/srep20110] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/24/2015] [Indexed: 12/19/2022] Open
Abstract
Pharmacological activities of some natural products diminish and even disappear after purification. In this study, we explored the mechanisms underlying the decrease of acute oral toxicity of Coptidis Rhizoma extract after purification. The water solubility, in vitro absorption, and plasma exposure of berberine (the major active compound) in the Coptidis Rhizoma extract were much better than those of pure berberine. Scanning electron microscopy, laser scanning confocal microscopy (LSCM), and dynamic light scattering experiments confirmed that nanoparticles attached to very fine precipitates existed in the aqueous extract solution. The LSCM experiment showed that the precipitates were absorbed with the particles by the mouse intestine. High-speed centrifugation of the extract could not remove the nanoparticles and did not influence plasma exposure or acute oral toxicity. However, after extract dilution, the attached precipitates vanished, although the nanoparticles were preserved, and there were no differences in the acute oral toxicity and plasma exposure between the extract and pure berberine. The nanoparticles were then purified and identified as proteinaceous. Furthermore, they could absorb co-dissolved berberine. Our results indicate that naturally occurring proteinaceous nanoparticles in Coptidis Rhizoma extract act as concentration-dependent carriers that facilitate berberine absorption. These findings should inspire related studies in other natural products.
Collapse
|
21
|
Campos-Vega R, Vázquez-Sánchez K, López-Barrera D, Loarca-Piña G, Mendoza-Díaz S, Oomah B. Simulated gastrointestinal digestion and in vitro colonic fermentation of spent coffee (Coffea arabica L.): Bioaccessibility and intestinal permeability. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.07.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Su J, Miao Q, Miao P, Zhao Y, Zhang Y, Chen N, Zhang Y, Ma S. Pharmacokinetics and Brain Distribution and Metabolite Identification of Coptisine, a Protoberberine Alkaloid with Therapeutic Potential for CNS Disorders, in Rats. Biol Pharm Bull 2015; 38:1518-28. [PMID: 26228628 DOI: 10.1248/bpb.b15-00293] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coptisine (COP), a protoberberine alkaloid (PBA) from Chinese medicinal plants (such as family Berberidaceae), may be useful for improving central nervous system disorders. However, its pharmacokinetics, disposition and metabolism are not well defined. In the present study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was established for the analysis of COP in biological samples. To better understand its in vivo pharmacological activities, COP concentrations in rat plasma were determined after oral (50 mg/kg) and intravenous administration (10 mg/kg). For the brain distribution study, the concentration of COP in five different regions was examined after intravenous administration at 10 mg/kg. Pharmacokinetic parameters from the COP concentration-time profiles in plasma and brain, and the brain-to-plasma coefficient (Kp, brain) were calculated by non-compartmental analysis. The metabolites of COP in rats in vivo and in vitro (urine, bile, liver microsomes and intestinal bacteria incubation) were also identified. Seventeen metabolites, including 11 unconjugated metabolites formed by hydroxylation, hydrogenation, demethylation, dehydrogenation, demethylation, and 6 glucuronide and sulfate conjugates were identified for the first time. The results suggested that COP had low oral bioavailability of 8.9% and a short (plasma) half-life (T1/2=0.71 h) in rats. After intravenous administration, it quickly crossed the blood-brain barrier, accumulating at higher concentrations and then was slowly eliminated from different brain regions. Moreover, COP was transformed into metabolites through multiple metabolic pathways in vivo and in vitro. These results should help to promote further research on COP and contribute to clarifying the metabolic pathways of PBAs.
Collapse
Affiliation(s)
- Jin Su
- School of Chinese Materia Medica, Beijing University of Chinese Medicine
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen C, Yu Z, Li Y, Fichna J, Storr M. Effects of berberine in the gastrointestinal tract - a review of actions and therapeutic implications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:1053-70. [PMID: 25183302 DOI: 10.1142/s0192415x14500669] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Berberine is an isoquinoline alkaloid present in several plant species, including Coptis sp. and Berberis sp. In traditional medicine, extracts of berberine are used in the treatment of diarrhea of different origins. Recent studies have shown that berberine and its derivatives have significant biological effects on gastrointestinal (GI) and other functions and may become therapeutics for the treatment of diarrhea, gastroenteritis, diabetes, hyperlipidemia, cardiovascular diseases and inflammatory conditions. This paper summarizes the current knowledge on the actions of berberine in the GI tract. Binding and target sites, activated intracellular pathways, as well as the absorption and metabolism of berberine are discussed. Effects that may be useful in future clinical treatment, like antidiarrheal, anti-inflammatory and antitumor effects are critically reviewed and potential clinical applications are presented in detail.
Collapse
Affiliation(s)
- Chunqiu Chen
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
24
|
Li J, Zhong W, Wang W, Hu S, Yuan J, Zhang B, Hu T, Song G. Ginsenoside metabolite compound K promotes recovery of dextran sulfate sodium-induced colitis and inhibits inflammatory responses by suppressing NF-κB activation. PLoS One 2014; 9:e87810. [PMID: 24504372 PMCID: PMC3913696 DOI: 10.1371/journal.pone.0087810] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 01/02/2014] [Indexed: 12/19/2022] Open
Abstract
Phytogenic compounds with anti-oxidant and anti-inflammatory properties, such as ginsenoside metabolite compound K (CK) or berberine (BBR), are currently discussed as promising complementary agents in the prevention and treatment of cancer and inflammation. The latest study showed that ginsenoside Rb1 and its metabolites could inhibit TNBS-induced colitis injury. However, the functional mechanisms of anti-inflammation effects of ginsenoside, particularly its metabolite CK are still not clear. Here, using dextran sulfate sodium (DSS)-induced colitis in mice, clinical parameters, intestinal integrity, pro-inflammatory cytokines production, and signaling pathways in colonic tissues were determined. In mild and sever colitis mice, CK and BBR (as a positive agent) alleviated colitis histopathology injury, ameliorated myeloperoxidase (MPO) activity, reduced pro-inflammatory cytokines production, such as, IL-6, IL-1β, TNF-α, and increased anti-inflammatory cytokine IL-10 production in both mice colon tissues and blood. Nevertheless, the results revealed that CK and BBR inhibited NF-κB p65 nuclear translocation, downregulated p-IκBα and upregulated IκBα, indicating that CK, as well as BBR, suppressed the activation of the NF-κB pathway in the progression of colitis with immunofluorescence, immunohistochemical and western blotting analysis. Furthermore, CK inhibited pro-inflammatory cytokines production in LPS-activated macrophages via down-regulation of NF-κB signaling pathway. Taken together, our results not only reveal that CK promotes the recovery of the progression of colitis and inhibits the inflammatory responses by suppressing NF-κB activation, but also suggest that CK downregulates intestinal inflammation through regulating the activation of macrophages and pro-inflammatory cytokines production.
Collapse
Affiliation(s)
- Juan Li
- Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Wei Zhong
- Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Weiwei Wang
- Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Shaoping Hu
- Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Jiahui Yuan
- Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Bing Zhang
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, China
| | - Tianhui Hu
- Cancer Research Center, Medical College of Xiamen University, Xiamen, China
- * E-mail: (TH); (GS)
| | - Gang Song
- Cancer Research Center, Medical College of Xiamen University, Xiamen, China
- * E-mail: (TH); (GS)
| |
Collapse
|
25
|
Liu QF, Shi XJ, Li ZD, Zhong MK, Jiao Z, Wang B. Pharmacokinetic comparisons of berberine and palmatine in normal and metabolic syndrome rats. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:287-291. [PMID: 24269776 DOI: 10.1016/j.jep.2013.10.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/01/2013] [Accepted: 10/22/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE San-Huang formula is a popular traditional Chinese medicine (TCM) preparation to replenish Qi, resolve phlegm, dissipate blood stasis, and therapy metabolic syndrome in China. Metabolic syndrome, which is accompanied by Qi and blood stasis, mainly arises from spleen deficiency in essence. There is limited information available for differences of pharmacokinetic properties of San-Huang formula between normal and metabolic syndrome rats. The present study was conducted to compare the pharmacokinetics of berberine as well as palmatine in normal and metabolic syndrome rats following oral administration of San-Huang formula extract. MATERIALS AND METHODS The animals were orally administered with San-Huang formula extract with the equivalent dose of 60.4 and 12.5mg/kg for berberine and palmatine, respectively. The blood samples were collected according to the time schedule. The concentrations of berberine and palmatine in rat plasma were determined by LC-ESI/MS. Various pharmacokinetic parameters were estimated from the plasma concentration versus time data using non-compartmental methods. RESULTS It was found that AUC0-t, Cmax, Vd and CL of berberine and palmatine in metabolic syndrome rats were significantly different (P<0.05) from normal rats. CONCLUSIONS The results indicated that berberine and palmatine have higher uptake and slower elimination in the rats with metabolic syndrome, which suggests that the rate and extent of drug metabolism were altered in metabolic syndrome rats.
Collapse
Affiliation(s)
- Qing-Feng Liu
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, 12 Wu Lu Mu Qi M Road, Shanghai 200040, PR China
| | - Xiao-Jin Shi
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, 12 Wu Lu Mu Qi M Road, Shanghai 200040, PR China
| | - Zhong-Dong Li
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, 12 Wu Lu Mu Qi M Road, Shanghai 200040, PR China
| | - Ming-kang Zhong
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, 12 Wu Lu Mu Qi M Road, Shanghai 200040, PR China.
| | - Zheng Jiao
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, 12 Wu Lu Mu Qi M Road, Shanghai 200040, PR China
| | - Bin Wang
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, 12 Wu Lu Mu Qi M Road, Shanghai 200040, PR China
| |
Collapse
|
26
|
Luo Z, Liu Y, Zhao B, Tang M, Dong H, Zhang L, Lv B, Wei L. Ex vivo and in situ approaches used to study intestinal absorption. J Pharmacol Toxicol Methods 2013; 68:208-216. [DOI: 10.1016/j.vascn.2013.06.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/25/2013] [Accepted: 06/25/2013] [Indexed: 02/02/2023]
|
27
|
Liu JY, Lee KF, Sze CW, Tong Y, Tang SCW, Ng TB, Zhang YB. Intestinal absorption and bioavailability of traditional Chinese medicines: a review of recent experimental progress and implication for quality control. J Pharm Pharmacol 2012; 65:621-33. [DOI: 10.1111/j.2042-7158.2012.01608.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 09/28/2012] [Indexed: 12/18/2022]
Abstract
Abstract
Objectives
Experimental studies on the pharmacokinetics of traditional Chinese medicines (TCMs) have achieved great progress in recent years. This review aims to summarize the progress made on intestinal absorption and bioavailability of TCMs, and proposes the application of intestinal absorption assays as new tools for the quality and safety control of these medicines.
Key findings
Since only the absorbed constituents may produce possible therapeutic effect (except those that directly target the digestive tract), intestinal absorption is of utmost importance for the drug action of TCMs, which are usually taken orally. Meanwhile, complicated drug interactions may occur among the multiple ingredients in a herbal mixture. In this regard, the intestinal permeability assays not only provide useful pharmacokinetic data of TCMs, but have potential applications for quality and safety control. Moreover, knockout animals, 2/4/A1 in-vitro cell model and physiologically-based in-silico models based on the online TCM database can be quite useful for the prediction of absorption and bioavailability of TCMs.
Summary
A variety of in-vivo, in-vitro, in-situ and in-silico models for predicting the intestinal absorption and bioavailability can be applied to study the herbal interactions and screen appropriate biomarkers for the quality and safety control of TCMs.
Collapse
Affiliation(s)
- Jing-Yi Liu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, China
| | - Cho-Wing Sze
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Yao Tong
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Sydney Chi-Wai Tang
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tzi-Bun Ng
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan-Bo Zhang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
28
|
Ma BL, Ma YM. Pharmacokinetic properties, potential herb–drug interactions and acute toxicity of oralRhizoma coptidisalkaloids. Expert Opin Drug Metab Toxicol 2012; 9:51-61. [DOI: 10.1517/17425255.2012.722995] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|