1
|
Sanidad KZ, Wang G, Panigrahy A, Zhang G. Triclosan and triclocarban as potential risk factors of colitis and colon cancer: Roles of gut microbiota involved. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156776. [PMID: 35724794 DOI: 10.1016/j.scitotenv.2022.156776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
In recent decades there has been a dramatic increase in the incidence and prevalence of inflammatory bowel disease (IBD), a chronic inflammatory disease of the intestinal tissues and a major risk factor of developing colon cancer. While accumulating evidence supports that the rapid increase of IBD is mainly caused by exposure to environmental risk factors, the identities of the risk factors, as well as the mechanisms connecting environmental exposure with IBD, remain largely unknown. Triclosan (TCS) and triclocarban (TCC) are high-volume chemicals that are used as antimicrobial ingredients in consumer and industrial products. They are ubiquitous contaminants in the environment and are frequently detected in human populations. Recent studies showed that exposure to TCS/TCC, at human exposure-relevant doses, increases the severity of colitis and exacerbates colon tumorigenesis in mice, suggesting that they could be risk factors of IBD and associated diseases. The gut toxicities of these compounds require the presence of gut microbiota, since they fail to induce colonic inflammation in mice lacking the microbiota. Regarding the functional roles of the microbiota involved, gut commensal microbes and specific microbial β-glucuronidase (GUS) enzymes mediate colonic metabolism of TCS, leading to metabolic reactivation of TCS in the colon and contributing to its subsequent gut toxicity. Overall, these results support that these commonly used compounds could be environmental risk factors of IBD and associated diseases through gut microbiota-dependent mechanisms.
Collapse
Affiliation(s)
- Katherine Z Sanidad
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Guangqiang Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Anand Panigrahy
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA; Department of Food Science and Technology, National University of Singapore, Singapore.
| |
Collapse
|
2
|
Characterization of Clofazimine Metabolism in Human Liver Microsomal Incubation In Vitro. Antimicrob Agents Chemother 2022; 66:e0056522. [PMID: 36190267 PMCID: PMC9578437 DOI: 10.1128/aac.00565-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clofazimine [N,5-bis(4-chlorophenyl)-3-[(propane-2-yl)rimino]-3,5-dihydrophenazin-2-amine] is an antimycobacterial agent used as a second-line antituberculosis (anti-TB) drug. Nonetheless, little information is known about the metabolic routes of clofazimine, and the enzymes involved in metabolism. This study aimed to characterize the metabolic pathways and enzymes responsible for the metabolism of clofazimine in human liver microsomes. Eight metabolites, including four oxidative metabolites, three glucuronide conjugates, and one sulfate conjugate were identified, and their structures were deduced based on tandem mass spectrometry (MS/MS) spectra. Hydroxylated clofazimine and hydrated clofazimine was generated even in the absence of the NADPH generating system presumably via a nonenzymatic pathway. Hydrolytic-dehalogenated clofazimine was catalyzed mainly by CYP1A2 whereas hydrolytic-deaminated clofazimine was formed by CYP3A4/A5. In case of glucuronide conjugates, UGT1A1, UGT1A3, and UGT1A9 showed catalytic activity toward hydroxylated and hydrated clofazimine glucuronide whereas hydrolytic-deaminated clofazimine glucuronide was catalyzed by UGT1A4, UGT1A9, UGT1A3, and UGT2B4. Our results suggested that CYP1A2 and CYP3A are involved in the formation of oxidative metabolites while UGT1A1, 1A3, 1A4, 1A9, and 2B4 are involved in the formation of glucuronide conjugates of oxidative metabolites of clofazimine.
Collapse
|
3
|
Kampschulte N, Berking T, Çelik IE, Kirsch SF, Schebb NH. Inhibition of cytochrome P450 monooxygenase-catalyzed oxylipin formation by flavonoids: Evaluation of structure-activity relationship towards CYP4F2-selective inhibitors. Eur J Med Chem 2022; 238:114332. [DOI: 10.1016/j.ejmech.2022.114332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 11/03/2022]
|
4
|
Ishii H, Shibuya M, Kusano K, Sone Y, Kamiya T, Wakuno A, Ito H, Miyata K, Sato F, Kuroda T, Yamada M, Leung GNW. Pharmacokinetic Study of Vadadustat and High-Resolution Mass Spectrometric Characterization of its Novel Metabolites in Equines for the Purpose of Doping Control. Curr Drug Metab 2022; 23:850-865. [PMID: 36017833 DOI: 10.2174/1389200223666220825093945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Vadadustat, a hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) inhibitor, is a substance which carries a lifetime ban in both horse racing and equestrian competition. A comprehensive metabolic study of vadadustat in horses has not been previously reported. OBJECTIVE Metabolism and elimination profiles of vadadustat in equine plasma and urine were studied for the purpose of doping control. METHODS A nasoesophageal administration of vadadustat (3 g/day for 3 days) was conducted on three thoroughbred mares. Potential metabolites were comprehensively detected by differential analysis of full-scan mass spectral data obtained from both in vitro studies with liver homogenates and post-administration samples using liquid chromatography high-resolution mass spectrometry. The identities of metabolites were further substantiated by product ion scans. Quantification methods were developed and validated for the establishment of the excretion profiles of the total vadadustat (free and conjugates) in plasma and urine. RESULTS A total of 23 in vivo and 14 in vitro metabolites (12 in common) were identified after comprehensive analysis. We found that vadadustat was mainly excreted into urine as the parent drug together with some minor conjugated metabolites. The elimination profiles of total vadadustat in post-administration plasma and urine were successfully established by using quantification methods equipped with alkaline hydrolysis for cleavage of conjugates such as methylated vadadustat, vadadustat glucuronide, and vadadustat glucoside. CONCLUSION Based on our study, for effective control of the misuse or abuse of vadadustat in horses, total vadadustat could successfully be detected for up to two weeks after administration in plasma and urine.
Collapse
Affiliation(s)
- Hideaki Ishii
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, Zip 320-0851, Japan.,Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Zip 980-8574, Japan
| | - Mariko Shibuya
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, Zip 320-0851, Japan
| | - Kanichi Kusano
- Veterinarian Section, Equine Department, Japan Racing Association, 6-11-1 Roppongi, Minato-ku, Tokyo, Zip 105-0003, Japan
| | - Yu Sone
- Veterinarian Section, Equine Department, Japan Racing Association, 6-11-1 Roppongi, Minato-ku, Tokyo, Zip 105-0003, Japan
| | - Takahiro Kamiya
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba, Zip 270-1431, Japan
| | - Ai Wakuno
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba, Zip 270-1431, Japan
| | - Hideki Ito
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba, Zip 270-1431, Japan
| | - Kenji Miyata
- JRA Equestrian Park Utsunomiya Office, 321-4 Tokamicho, Utsunomiya, Tochigi, Zip 320-0856, Japan
| | - Fumio Sato
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke, Tochigi, Zip 329-0412, Japan
| | - Taisuke Kuroda
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke, Tochigi, Zip 329-0412, Japan
| | - Masayuki Yamada
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, Zip 320-0851, Japan
| | - Gary Ngai-Wa Leung
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, Zip 320-0851, Japan
| |
Collapse
|
5
|
The Different Facets of Triclocarban: A Review. Molecules 2021; 26:molecules26092811. [PMID: 34068616 PMCID: PMC8126057 DOI: 10.3390/molecules26092811] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
In the late 1930s and early 1940s, it was discovered that the substitution on aromatic rings of hydrogen atoms with chlorine yielded a novel chemistry of antimicrobials. However, within a few years, many of these compounds and formulations showed adverse effects, including human toxicity, ecotoxicity, and unwanted environmental persistence and bioaccumulation, quickly leading to regulatory bans and phase-outs. Among these, the triclocarban, a polychlorinated aromatic antimicrobial agent, was employed as a major ingredient of toys, clothing, food packaging materials, food industry floors, medical supplies, and especially of personal care products, such as soaps, toothpaste, and shampoo. Triclocarban has been widely used for over 50 years, but only recently some concerns were raised about its endocrine disruptive properties. In September 2016, the U.S. Food and Drug Administration banned its use in over-the-counter hand and body washes because of its toxicity. The withdrawal of triclocarban has prompted the efforts to search for new antimicrobial compounds and several analogues of triclocarban have also been studied. In this review, an examination of different facets of triclocarban and its analogues will be analyzed.
Collapse
|
6
|
Zhu H, Chinthakindi S, Kannan K. A method for the analysis of 121 multi-class environmental chemicals in urine by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2021; 1646:462146. [PMID: 33895641 DOI: 10.1016/j.chroma.2021.462146] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
Biomonitoring of human exposure to environmental chemicals has gained momentum in recent years. Biomonitoring methods often include analysis of a single class of chemicals with similar chemical properties. In this study, we describe a method that involves solid-phase extraction (SPE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and capable of measuring 121 environmental chemicals comprising plasticizers (PMs; n = 45), environmental phenols (EPs; n = 45), and pesticides (n = 31) through a single extraction of urine. Urine samples were incubated with 20 µL of β-glucuronidase/arylsulfatase (4000 units/mL urine) (from Helix pomatia) buffered at pH 5.5 for 2 h at 37 °C for optimal deconjugation conditions. We compared two extraction methods, namely liquid-liquid extraction and SPE, and the latter with ABS Elut NEXUS® cartridges was optimized to yield best extraction efficiencies. For increased resolution and chromatographic separation, two methods involving Ultra AQ C18® and Betasil™ C18® columns were used. The MS/MS analyses were performed under both negative and positive ionization modes. The optimized method yielded excellent intra- and inter-day variabilities (relative standard deviation: 0.40-11%) and satisfactory recoveries (80-120%) for >95% of the analytes. The limits of detection were ≤ 0.1 ng/mL for 101 analytes and between 0.1 and 1.0 ng/mL for 18 analytes. The optimized SPE LC-MS/MS method was validated through the analysis of standard reference materials and proficiency test urine samples and further applied in the analysis of 21 real urine samples to demonstrate simultaneous determination of 121 environmental chemicals in urine samples.
Collapse
Affiliation(s)
- Hongkai Zhu
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, MSB 6-698, 550 1st Avenue, New York, NY 10016, United States
| | - Sridhar Chinthakindi
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, MSB 6-698, 550 1st Avenue, New York, NY 10016, United States
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, MSB 6-698, 550 1st Avenue, New York, NY 10016, United States.
| |
Collapse
|
7
|
Paper spray ionization-high-resolution mass spectrometry (PSI-HRMS) of peroxide explosives in biological matrices. Anal Bioanal Chem 2021; 413:3069-3079. [PMID: 33723626 DOI: 10.1007/s00216-021-03244-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/26/2021] [Accepted: 02/19/2021] [Indexed: 10/21/2022]
Abstract
Mitigation of the peroxide explosive threat, specifically triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD), is a priority among the law enforcement community, as scientists and canine (K9) units are constantly working to improve detection. We propose the use of paper spray ionization-high-resolution mass spectrometry (PSI-HRMS) for detection of peroxide explosives in biological matrices. Occurrence of peroxide explosives and/or their metabolites in biological samples, obtained from urine or blood tests, give scientific evidence of peroxide explosives exposure. PSI-HRMS promote analysis of samples in situ by eliminating laborious sample preparation steps. However, it increases matrix background issues, which were overcome by the formation of multiple alkali metal adducts with the peroxide explosives. Multiple ion formation increases confidence when identifying these peroxide explosives in direct sample analysis. Our previous work examined aspects of TATP metabolism. Herein, we investigate the excretion of a TATP glucuronide conjugate in the urine of bomb-sniffing dogs and demonstrate its detection using PSI from the in vivo sample.
Collapse
|
8
|
Waidyanatha S, Black SR, Patel PR, Watson SL, Snyder RW, Sutherland V, Stanko J, Fennell TR. Disposition and metabolism of antibacterial agent, triclocarban, in rodents; a species and route comparison. Xenobiotica 2020; 50:1469-1482. [PMID: 32501182 PMCID: PMC7584751 DOI: 10.1080/00498254.2020.1779391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/26/2023]
Abstract
Triclocarban is a residue-producing antibacterial agent used in a variety of consumer products. These studies investigated the disposition and metabolism of [14C]triclocarban. In male rats following a single gavage administration of 50, 150, and 500 mg/kg, excretion was primarily via feces (feces, 85-86%; urine, 3-6%) with no apparent dose-related effect. In male rats, 29% of the administered dose was excreted in bile suggesting some of the fecal excretion is from the absorbed dose which was excreted to the intestine via bile. The tissue retention of radioactivity was low in male rats (24 h, 3.9%; 72 h, 0.1%). Disposition pattern following gavage administration of 50 mg/kg in female rats and male and female mice were similar to male rats. Plasma elimination half-life of triclocarban in rats following gavage administration was shorter (∼2 h) compared to that based on total radioactivity (≥9 h) which included all products of triclocarban. Absorption following a single dermal application of 1.5 or 3% was low (≤3%) in rodents. Hydroxylated and conjugated metabolites of triclocarban predominated in bile. In hepatocytes, clearance of triclocarban in mouse and human was similar and was faster than in rat.
Collapse
Affiliation(s)
- Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sherry R. Black
- RTI International, Discovery Sciences, Research Triangle Park, NC, USA
| | - Purvi R. Patel
- RTI International, Discovery Sciences, Research Triangle Park, NC, USA
| | - Scott L. Watson
- RTI International, Discovery Sciences, Research Triangle Park, NC, USA
| | - Rodney W. Snyder
- RTI International, Discovery Sciences, Research Triangle Park, NC, USA
| | - Vicki Sutherland
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jason Stanko
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | |
Collapse
|
9
|
Gonsalves MD, Colizza K, Smith JL, Oxley JC. In vitro and in vivo studies of triacetone triperoxide (TATP) metabolism in humans. Forensic Toxicol 2020. [DOI: 10.1007/s11419-020-00540-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Abstract
Purpose
Triacetone triperoxide (TATP) is a volatile but powerful explosive that appeals to terrorists due to its ease of synthesis from household items. For this reason, bomb squad, canine (K9) units, and scientists must work with this material to mitigate this threat. However, no information on the metabolism of TATP is available.
Methods
In vitro experiments using human liver microsomes and recombinant enzymes were performed on TATP and TATP-OH for metabolite identification and enzyme phenotyping. Enzyme kinetics for TATP hydroxylation were also investigated. Urine from laboratory personnel collected before and after working with TATP was analyzed for TATP and its metabolites.
Results
While experiments with flavin monooxygenases were inconclusive, those with recombinant cytochrome P450s (CYPs) strongly suggested that CYP2B6 was the principle enzyme responsible for TATP hydroxylation. TATP-O-glucuronide was also identified and incubations with recombinant uridine diphosphoglucuronosyltransferases (UGTs) indicated that UGT2B7 catalyzes this reaction. Michaelis–Menten kinetics were determined for TATP hydroxylation, with Km = 1.4 µM and Vmax = 8.7 nmol/min/nmol CYP2B6. TATP-O-glucuronide was present in the urine of all three volunteers after being exposed to TATP vapors showing good in vivo correlation to in vitro data. TATP and TATP-OH were not observed.
Conclusions
Since scientists working to characterize and detect TATP to prevent terrorist attacks are constantly exposed to this volatile compound, attention should be paid to its metabolism. This paper is the first to elucidate some exposure, metabolism and excretion of TATP in humans and to identify a marker of TATP exposure, TATP-O-glucuronide in urine.
Collapse
|
10
|
Wan D, Yang J, McReynolds CB, Barnych B, Wagner KM, Morisseau C, Hwang SH, Sun J, Blöcher R, Hammock BD. In vitro and in vivo Metabolism of a Potent Inhibitor of Soluble Epoxide Hydrolase, 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea. Front Pharmacol 2019; 10:464. [PMID: 31143115 PMCID: PMC6520522 DOI: 10.3389/fphar.2019.00464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (TPPU) is a potent soluble epoxide hydrolase (sEH) inhibitor that is used extensively in research for modulating inflammation and protecting against hypertension, neuropathic pain, and neurodegeneration. Despite its wide use in various animal disease models, the metabolism of TPPU has not been well-studied. A broader understanding of its metabolism is critical for determining contributions of metabolites to the overall safety and effectiveness of TPPU. Herein, we describe the identification of TPPU metabolites using LC-MS/MS strategies. Four metabolites of TPPU (M1–M4) were identified from rat urine by a sensitive and specific LC-MS/MS method with double precursor ion scans. Their structures were further supported by LC-MS/MS comparison with synthesized standards. Metabolites M1 and M2 were formed from hydroxylation on a propionyl group of TPPU; M3 was formed by amide hydrolysis of the 1-propionylpiperdinyl group on TPPU; and M4 was formed by further oxidation of the hydroxylated metabolite M2. Interestingly, the predicted α-keto amide metabolite and 4-(trifluoromethoxy)aniline (metabolite from urea cleavage) were not detected by the LC-MRM-MS method. This indicates that if formed, the two potential metabolites represent <0.01% of TPPU metabolism. Species differences in the formation of these four identified metabolites was assessed using liver S9 fractions from dog, monkey, rat, mouse, and human. M1, M2, and M3 were generated in liver S9 fractions from all species, and higher amounts of M3 were generated in monkey S9 fractions compared to other species. In addition, rat and human S9 metabolism showed the highest species similarity based on the quantities of each metabolite. The presence of all four metabolites were confirmed in vivo in rats over 72-h post single oral dose of TPPU. Urine and feces were major routes for TPPU excretion. M1, M4 and parent drug were detected as major substances, and M2 and M3 were minor substances. In blood, M1 accounted for ~9.6% of the total TPPU-related exposure, while metabolites M2, M3, and M4 accounted for <0.4%. All four metabolites were potent inhibitors of human sEH but were less potent than the parent TPPU. In conclusion, TPPU is metabolized via oxidation and amide hydrolysis without apparent breakdown of the urea. The aniline metabolites were not observed either in vitro or in vivo. Our findings increase the confidence in the ability to translate preclinical PK of TPPU in rats to humans and facilitates the potential clinical development of TPPU and other sEH inhibitors.
Collapse
Affiliation(s)
- Debin Wan
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Jun Yang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Cindy B McReynolds
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Bogdan Barnych
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Karen M Wagner
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Jia Sun
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States.,State Forestry Administration Key Open Laboratory, International Center for Bamboo and Rattan, Beijing, China
| | - René Blöcher
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev 2019; 99:1153-1222. [DOI: 10.1152/physrev.00058.2017] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A. McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Siti Nurul Mubarokah
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z. Haines
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
12
|
Zhang S, Wang Z, Chen J. Physiologically based toxicokinetics (PBTK) models for pharmaceuticals and personal care products in wild common carp (Cyprinus carpio). CHEMOSPHERE 2019; 220:793-801. [PMID: 30612048 DOI: 10.1016/j.chemosphere.2018.12.172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 05/12/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) are regarded as "pseudo-persistent" pollutants due to their being continuously loaded into the aquatic environment. Physiologically based toxicokinetics (PBTK) models that can quantitatively describe absorption, distribution, metabolism and excretion processes of chemicals in biota are of importance to predict internal exposure (e.g. doses at specific target tissues/organs) from external exposure concentrations. In this study, PBTK models with up to six compartments including brain, liver, kidney, gills, richly perfused tissues and poorly perfused tissues, were developed for predicting internal distribution of 10 PPCPs in wild common carp (Cyprinus carpio). The PBTK predicted concentrations were close to the measured ones, with deviations less than 1 log unit for most of PPCPs. Sensitivity analysis showed that various partition coefficients of the chemicals exerted significant influence on model outputs.
Collapse
Affiliation(s)
- Shuying Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| |
Collapse
|
13
|
Zhou T, Wei J, Su Y, Hu Z, Li Y, Yuan H, Zhao K, Liu C, Zhang H. Triclocarban at environmentally relevant concentrations induces the endoplasmic reticulum stress in zebrafish. ENVIRONMENTAL TOXICOLOGY 2019; 34:223-232. [PMID: 30592132 DOI: 10.1002/tox.22675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 06/09/2023]
Abstract
Triclocarban (TCC) is an antibacterial agent commonly found in environmental, wildlife, and human samples. However, with in-depth study of TCC, its negative effects are increasingly presented. Toxicological studies of TCC at environmentally relevant concentrations have been conducted in zebrafish embryos and indicated that TCC leads to deformity of development causes developmental deformities. However, the molecular mechanisms underlying the toxicity of TCC in zebrafish embryos have not been entirely elucidated. We investigated whether exposure to TCC at environmentally relevant concentrations induces endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in zebrafish. Zebrafish embryos were grown to 32 hours post fertilization and exposed to 2.5, 5, and 10 μg/L TCC and used in whole-mount in situ hybridization to visualize the expression of ER chaperone hspa5 and ER stress-related apoptosis factor chop. Zebrafish livers were exposed to different concentrations of TCC to elaborate the relationships between fatty degeneration and ER stress. Then, a human hepatic cell line (HL-7702) was used to test whether TCC induced ER stress in human livers similar to those of zebrafish. In zebrafish embryos, TCC induced high hspa5 expression, which could defend against external stimulations. Furthermore, hapa5, hsp90b1, and chop exhibited ectopic expressions in the neuromast, intestinal tract, and tail tip of zebrafish embryos. On the one hand, significant differences were observed in the mRNA and protein expressions of the ER stress molecular chaperone pPERK-pEIF2a-ATF4 and ATF6 pathways in HL-7702 cells exposed to TCC. On the other hand, lipid droplet accumulation slightly increased in zebrafish livers exposed to 10 μg/L TCC in vitro. These results demonstrate that TCC not only damages the development of zebrafish embryos and structure of zebrafish liver but also influences human hepatic cells by activating ER stress and the UPR signaling pathway.
Collapse
Affiliation(s)
- Ting Zhou
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Jiajing Wei
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Yufang Su
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Zhiyong Hu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Ying Li
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Hongfang Yuan
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Kai Zhao
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Chunyan Liu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Huiping Zhang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
14
|
Dwivedi P, Zhou X, Powell TG, Calafat AM, Ye X. Impact of enzymatic hydrolysis on the quantification of total urinary concentrations of chemical biomarkers. CHEMOSPHERE 2018; 199:256-262. [PMID: 29448192 PMCID: PMC5941949 DOI: 10.1016/j.chemosphere.2018.01.177] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 05/25/2023]
Abstract
Human exposure to consumer and personal care products chemicals such as phenols, including parabens and other antimicrobial agents, can be assessed through biomonitoring by quantifying urinary concentrations of the parent chemical or its metabolites, often after hydrolysis of phase II conjugates. Developing suitable analytical methods for the concurrent quantification of multiple exposure biomarkers is challenging because optimal conditions for the hydrolysis of such conjugates (e.g., O-glucuronides, N-glucuronides, sulfates) may differ depending on the biomarker. We evaluated the effectiveness of seven commercial hydrolytic enzymes to simultaneously hydrolyze N-glucuronides (using the antibacterial triclocarban as example compound) and other conjugates (using select phenols and parabens as examples) by using on-line solid phase extraction-high performance liquid chromatography-isotope dilution-tandem mass spectrometry. Incubation (30 min, 55 °C) with a genetically engineered β-glucuronidase (IMCS, ≥15 units/μL urine) hydrolyzed N-glucuronide triclocarban, but did not fully hydrolyze the conjugates of phenols and parabens. By contrast, incubation (4 h, 37 °C) with solid β-glucuronidase (Helix pomatia, Type H-1, ≥30 units/μL urine) or liquid β-glucuronidase/arylsulfatase (Helix pomatia, 30 units/μL urine [i.e., 30 μL/100 μL urine]) in the presence of 100 μL methanol for 100 μL urine completely hydrolyzed N-glucuronide triclocarban and the conjugates of several phenols and parabens, without cleaving the ester bond of the parabens to form p-hydroxybenzoic acid. These results highlight the relevance of method validation procedures that include optimizing the hydrolysis of phase II urinary conjugates (e.g., enzyme type and amount used, reaction time, temperature) to quantify accurately and concurrently multiple exposure biomarkers for biomonitoring purposes.
Collapse
Affiliation(s)
- Prabha Dwivedi
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, Mailstop F-53, Atlanta, GA 30341, USA.
| | - Xiaoliu Zhou
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, Mailstop F-53, Atlanta, GA 30341, USA
| | - Tolar G Powell
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, Mailstop F-53, Atlanta, GA 30341, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, Mailstop F-53, Atlanta, GA 30341, USA
| | - Xiaoyun Ye
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, Mailstop F-53, Atlanta, GA 30341, USA
| |
Collapse
|
15
|
Huynh K, Banach E, Reinhold D. Transformation, Conjugation, and Sequestration Following the Uptake of Triclocarban by Jalapeno Pepper Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4032-4043. [PMID: 29637774 DOI: 10.1021/acs.jafc.7b06150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant uptake and metabolism of emerging organic contaminants, such as personal-care products, pose potential risks to human health. In this study, jalapeno pepper ( Capsicum annuum) plants cultured in hydroponic media were exposed to both 14C-labeled and unlabeled triclocarban (TCC) to investigate the accumulation, distribution, and metabolism of TCC following plant uptake. The results revealed that TCC was detected in all plant tissues; after 12 weeks, the TCC concentrations in root, stem, leaf, and fruit tissues were 19.74 ± 2.26, 0.26 ± 0.04, 0.11 ± 0.01, and 0.03 ± 0.01 mg/kg dry weight, respectively. More importantly, a substantial portion of the TCC taken up by plants was metabolized, especially in the stems, leaves, and fruits. Hydroxylated TCC (e.g., 2'-OH TCC and 6-OH TCC) and glycosylated OH-TCC were the main phase I and phase II metabolites in plant tissues, respectively. Bound (or nonextractable) residues of TCC accounted for approximately 44.6, 85.6, 69.0, and 47.5% of all TCC species that accumulated in roots, stems, leaves, and fruits, respectively. The concentrations of TCC metabolites were more than 20 times greater than the concentrations of TCC in the above-ground tissues of the jalapeno pepper plants after 12 weeks; crucially, approximately 95.6% of the TCC was present as metabolites in the fruits. Consequently, human exposure to TCC through the consumption of pepper fruits is expected to be substantially higher when phytometabolism is considered.
Collapse
Affiliation(s)
- Khang Huynh
- Department of Biosystems and Agricultural Engineering , Michigan State University , 524 South Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Emily Banach
- Department of Biosystems and Agricultural Engineering , Michigan State University , 524 South Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Dawn Reinhold
- Department of Biosystems and Agricultural Engineering , Michigan State University , 524 South Shaw Lane , East Lansing , Michigan 48824 , United States
| |
Collapse
|
16
|
Wagner KM, McReynolds CB, Schmidt WK, Hammock BD. Soluble epoxide hydrolase as a therapeutic target for pain, inflammatory and neurodegenerative diseases. Pharmacol Ther 2017; 180:62-76. [PMID: 28642117 PMCID: PMC5677555 DOI: 10.1016/j.pharmthera.2017.06.006] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Eicosanoids are biologically active lipid signaling molecules derived from polyunsaturated fatty acids. Many of the actions of eicosanoid metabolites formed by cyclooxygenase and lipoxygenase enzymes have been characterized, however, the epoxy-fatty acids (EpFAs) formed by cytochrome P450 enzymes are newly described by comparison. The EpFA metabolites modulate a diverse set of physiologic functions that include inflammation and nociception among others. Regulation of EpFAs occurs primarily via release, biosynthesis and enzymatic transformation by the soluble epoxide hydrolase (sEH). Targeting sEH with small molecule inhibitors has enabled observation of the biological activity of the EpFAs in vivo in animal models, greatly contributing to the overall understanding of their role in the inflammatory response. Their role in modulating inflammation has been demonstrated in disease models including cardiovascular pathology and inflammatory pain, but extends to neuroinflammation and neuroinflammatory disease. Moreover, while EpFAs demonstrate activity against inflammatory pain, interestingly, this action extends to blocking chronic neuropathic pain as well. This review outlines the role of modulating sEH and the biological action of EpFAs in models of pain and inflammatory diseases.
Collapse
Affiliation(s)
- Karen M Wagner
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Cindy B McReynolds
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | | | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States.
| |
Collapse
|
17
|
Rochester JR, Bolden AL, Pelch KE, Kwiatkowski CF. Potential Developmental and Reproductive Impacts of Triclocarban: A Scoping Review. J Toxicol 2017; 2017:9679738. [PMID: 29333157 PMCID: PMC5733165 DOI: 10.1155/2017/9679738] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Triclocarban (TCC) is an antimicrobial agent used in personal care products. Although frequently studied with another antimicrobial, triclosan, it is not as well researched, and there are very few reviews of the biological activity of TCC. TCC has been shown to be a possible endocrine disruptor, acting by enhancing the activity of endogenous hormones. TCC has been banned in the US for certain applications; however, many human populations, in and outside the US, exhibit exposure to TCC. Because of the concern of the health effects of TCC, we conducted a scoping review in order to map the current body of literature on the endocrine, reproductive, and developmental effects of TCC. The aim of this scoping review was to identify possible endpoints for future systematic review and to make recommendations for future research. A search of the literature until August 2017 yielded 32 relevant studies in humans, rodents, fish, invertebrates, and in vitro. Based on the robustness of the literature in all three evidence streams (human, animal, and in vitro), we identified three endpoints for possible systematic review: estrogenic activity, androgenic activity, and offspring growth. In this review, we describe the body of evidence and make recommendations for future research.
Collapse
Affiliation(s)
| | | | | | - Carol F. Kwiatkowski
- The Endocrine Disruption Exchange (TEDX), Eckert, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
18
|
Enright HA, Falso MJS, Malfatti MA, Lao V, Kuhn EA, Hum N, Shi Y, Sales AP, Haack KW, Kulp KS, Buchholz BA, Loots GG, Bench G, Turteltaub KW. Maternal exposure to an environmentally relevant dose of triclocarban results in perinatal exposure and potential alterations in offspring development in the mouse model. PLoS One 2017; 12:e0181996. [PMID: 28792966 PMCID: PMC5549899 DOI: 10.1371/journal.pone.0181996] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022] Open
Abstract
Triclocarban (TCC) is among the top 10 most commonly detected wastewater contaminants in both concentration and frequency. Its presence in water, as well as its propensity to bioaccumulate, has raised numerous questions about potential endocrine and developmental effects. Here, we investigated whether exposure to an environmentally relevant concentration of TCC could result in transfer from mother to offspring in CD-1 mice during gestation and lactation using accelerator mass spectrometry (AMS). 14C-TCC (100 nM) was administered to dams through drinking water up to gestation day 18, or from birth to post-natal day 10. AMS was used to quantify 14C-concentrations in offspring and dams after exposure. We demonstrated that TCC does effectively transfer from mother to offspring, both trans-placentally and via lactation. TCC-related compounds were detected in the tissues of offspring with significantly higher concentrations in the brain, heart and fat. In addition to transfer from mother to offspring, exposed offspring were heavier in weight than unexposed controls demonstrating an 11% and 8.5% increase in body weight for females and males, respectively. Quantitative real-time polymerase chain reaction (qPCR) was used to examine changes in gene expression in liver and adipose tissue in exposed offspring. qPCR suggested alterations in genes involved in lipid metabolism in exposed female offspring, which was consistent with the observed increased fat pad weights and hepatic triglycerides. This study represents the first report to quantify the transfer of an environmentally relevant concentration of TCC from mother to offspring in the mouse model and evaluate bio-distribution after exposure using AMS. Our findings suggest that early-life exposure to TCC may interfere with lipid metabolism and could have implications for human health.
Collapse
Affiliation(s)
- Heather A. Enright
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
- * E-mail:
| | - Miranda J. S. Falso
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Michael A. Malfatti
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Victoria Lao
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Edward A. Kuhn
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Nicholas Hum
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Yilan Shi
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Ana Paula Sales
- Data Analytics and Decision Sciences, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Kurt W. Haack
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Kristen S. Kulp
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Bruce A. Buchholz
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Gabriela G. Loots
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Graham Bench
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Kenneth W. Turteltaub
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| |
Collapse
|
19
|
Ostermann AI, Herbers J, Willenberg I, Chen R, Hwang SH, Greite R, Morisseau C, Gueler F, Hammock BD, Schebb NH. Oral treatment of rodents with soluble epoxide hydrolase inhibitor 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea (TPPU): Resulting drug levels and modulation of oxylipin pattern. Prostaglandins Other Lipid Mediat 2015; 121:131-7. [PMID: 26117215 DOI: 10.1016/j.prostaglandins.2015.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/03/2015] [Accepted: 06/09/2015] [Indexed: 11/29/2022]
Abstract
Epoxides from polyunsaturated fatty acids (PUFAs) are potent lipid mediators. In vivo stabilization of these epoxides by blockade of the soluble epoxide hydrolase (sEH) leads to anti-inflammatory, analgesic and normotensive effects. Therefore, sEH inhibitors (sEHi) are a promising new class of drugs. Herein, we characterized pharmacokinetic (PK) and pharmacodynamic properties of a commercially available potent sEHi 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea (TPPU). Cell culture studies suggest its high absorption and metabolic stability. Following administration in drinking water to rats (0.2, 1, and 5mg TPPU/L with 0.2% PEG400), TPPU's blood concentration increased dose dependently within the treatment period to reach an almost steady state after 8 days. TPPU was found in all the tissues tested. The linoleic epoxide/diol ratios in most tissues were dose dependently increased, indicating significant sEH inhibition. Overall, administration of TPPU with the drinking water led to systemic distribution as well as high drug levels and thus makes chronic sEH inhibition studies possible.
Collapse
Affiliation(s)
- Annika I Ostermann
- University of Veterinary Medicine Hannover, Institute for Food Toxicology and Analytical Chemistry, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Jan Herbers
- University of Veterinary Medicine Hannover, Institute for Food Toxicology and Analytical Chemistry, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Ina Willenberg
- University of Veterinary Medicine Hannover, Institute for Food Toxicology and Analytical Chemistry, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Rongjun Chen
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Sung Hee Hwang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Robert Greite
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Nils Helge Schebb
- University of Veterinary Medicine Hannover, Institute for Food Toxicology and Analytical Chemistry, Bischofsholer Damm 15, 30173 Hannover, Germany; University of Wuppertal, Institute of Food Chemistry, Wuppertal, Germany.
| |
Collapse
|
20
|
Hu DG, Meech R, McKinnon RA, Mackenzie PI. Transcriptional regulation of human UDP-glucuronosyltransferase genes. Drug Metab Rev 2014; 46:421-58. [PMID: 25336387 DOI: 10.3109/03602532.2014.973037] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucuronidation is an important metabolic pathway for many small endogenous and exogenous lipophilic compounds, including bilirubin, steroid hormones, bile acids, carcinogens and therapeutic drugs. Glucuronidation is primarily catalyzed by the UDP-glucuronosyltransferase (UGT) 1A and two subfamilies, including nine functional UGT1A enzymes (1A1, 1A3-1A10) and 10 functional UGT2 enzymes (2A1, 2A2, 2A3, 2B4, 2B7, 2B10, 2B11, 2B15, 2B17 and 2B28). Most UGTs are expressed in the liver and this expression relates to the major role of hepatic glucuronidation in systemic clearance of toxic lipophilic compounds. Hepatic glucuronidation activity protects the body from chemical insults and governs the therapeutic efficacy of drugs that are inactivated by UGTs. UGT mRNAs have also been detected in over 20 extrahepatic tissues with a unique complement of UGT mRNAs seen in almost every tissue. This extrahepatic glucuronidation activity helps to maintain homeostasis and hence regulates biological activity of endogenous molecules that are primarily inactivated by UGTs. Deciphering the molecular mechanisms underlying tissue-specific UGT expression has been the subject of a large number of studies over the last two decades. These studies have shown that the constitutive and inducible expression of UGTs is primarily regulated by tissue-specific and ligand-activated transcription factors (TFs) via their binding to cis-regulatory elements (CREs) in UGT promoters and enhancers. This review first briefly summarizes published UGT gene transcriptional studies and the experimental models and tools utilized in these studies, and then describes in detail the TFs and their respective CREs that have been identified in the promoters and/or enhancers of individual UGT genes.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre , Bedford Park, SA , Australia
| | | | | | | |
Collapse
|
21
|
Schebb NH, Muvvala JB, Morin D, Buckpitt AR, Hammock BD, Rice RH. Metabolic activation of the antibacterial agent triclocarban by cytochrome P450 1A1 yielding glutathione adducts. Drug Metab Dispos 2014; 42:1098-102. [PMID: 24733789 PMCID: PMC4170114 DOI: 10.1124/dmd.114.058206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/14/2014] [Indexed: 01/25/2023] Open
Abstract
Triclocarban (3,4,4'-trichlorocarbanilide; TCC) is an antibacterial agent used in personal care products such as bar soaps. Small amounts of chemical are absorbed through the epidermis. Recent studies show that residues of reactive TCC metabolites are bound covalently to proteins in incubations with keratinocytes, raising concerns about the potential toxicity of this antimicrobial agent. To obtain additional information on metabolic activation of TCC, this study characterized the reactive metabolites trapped as glutathione conjugates. Incubations were carried out with (14)C-labeled TCC, recombinant CYP1A1 or CYP1B1, coexpressed with cytochrome P450 reductase, glutathione-S-transferases (GSH), and an NADPH-generating system. Incubations containing CYP1A1, but not 1B1, led to formation of a single TCC-GSH adduct with a conversion rate of 1% of parent compound in 2 hours. Using high-resolution mass spectrometry and diagnostic fragmentation, the adduct was tentatively identified as 3,4-dichloro-3'-glutathionyl-4'-hydroxycarbanilide. These findings support the hypothesis that TCC is activated by oxidative dehalogenation and oxidation to a quinone imine. Incubations of TCDD-induced keratinocytes with (14)C-TCC yielded a minor radioactive peak coeluting with TCC-GSH. Thus, we conclude that covalent protein modification by TCC in TCDD-induced human keratinocyte incubations is mainly caused by activation of TCC by CYP1A1 via a dehalogenated TCC derivative as reactive species.
Collapse
Affiliation(s)
- Nils Helge Schebb
- Institute of Food Toxicology and Chemical Analysis, University of Veterinary Medicine, Hanover Germany (N.H.S.); Department of Molecular Biosciences, School of Veterinary Medicine (J.B.M., D.M., A.R.B.), and Department of Entomology and Comprehensive Cancer Center (B.D.H.), and Environmental Toxicology, College of Agricultural and Environmental Sciences (R.H.R.), University of California, Davis, California
| | - Jaya B Muvvala
- Institute of Food Toxicology and Chemical Analysis, University of Veterinary Medicine, Hanover Germany (N.H.S.); Department of Molecular Biosciences, School of Veterinary Medicine (J.B.M., D.M., A.R.B.), and Department of Entomology and Comprehensive Cancer Center (B.D.H.), and Environmental Toxicology, College of Agricultural and Environmental Sciences (R.H.R.), University of California, Davis, California
| | - Dexter Morin
- Institute of Food Toxicology and Chemical Analysis, University of Veterinary Medicine, Hanover Germany (N.H.S.); Department of Molecular Biosciences, School of Veterinary Medicine (J.B.M., D.M., A.R.B.), and Department of Entomology and Comprehensive Cancer Center (B.D.H.), and Environmental Toxicology, College of Agricultural and Environmental Sciences (R.H.R.), University of California, Davis, California
| | - Alan R Buckpitt
- Institute of Food Toxicology and Chemical Analysis, University of Veterinary Medicine, Hanover Germany (N.H.S.); Department of Molecular Biosciences, School of Veterinary Medicine (J.B.M., D.M., A.R.B.), and Department of Entomology and Comprehensive Cancer Center (B.D.H.), and Environmental Toxicology, College of Agricultural and Environmental Sciences (R.H.R.), University of California, Davis, California
| | - Bruce D Hammock
- Institute of Food Toxicology and Chemical Analysis, University of Veterinary Medicine, Hanover Germany (N.H.S.); Department of Molecular Biosciences, School of Veterinary Medicine (J.B.M., D.M., A.R.B.), and Department of Entomology and Comprehensive Cancer Center (B.D.H.), and Environmental Toxicology, College of Agricultural and Environmental Sciences (R.H.R.), University of California, Davis, California
| | - Robert H Rice
- Institute of Food Toxicology and Chemical Analysis, University of Veterinary Medicine, Hanover Germany (N.H.S.); Department of Molecular Biosciences, School of Veterinary Medicine (J.B.M., D.M., A.R.B.), and Department of Entomology and Comprehensive Cancer Center (B.D.H.), and Environmental Toxicology, College of Agricultural and Environmental Sciences (R.H.R.), University of California, Davis, California
| |
Collapse
|
22
|
Maul R, Warth B, Kant JS, Schebb NH, Krska R, Koch M, Sulyok M. Investigation of the Hepatic Glucuronidation Pattern of the Fusarium Mycotoxin Deoxynivalenol in Various Species. Chem Res Toxicol 2012; 25:2715-7. [DOI: 10.1021/tx300348x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ronald Maul
- Division of Food Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Benedikt Warth
- Center for Analytical Chemistry,
Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU),
Konrad-Lorenz-Straße 20, 3430, Tulln, Austria
| | - Jill-Sandra Kant
- Division of Food Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Nils Helge Schebb
- Institute of Food Toxicology and
Chemical Analysis, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Rudolf Krska
- Center for Analytical Chemistry,
Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU),
Konrad-Lorenz-Straße 20, 3430, Tulln, Austria
| | - Matthias Koch
- Division of Food Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Michael Sulyok
- Center for Analytical Chemistry,
Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU),
Konrad-Lorenz-Straße 20, 3430, Tulln, Austria
| |
Collapse
|
23
|
Willenberg I, Brauer W, Empl MT, Schebb NH. Development of a rapid LC-UV method for the investigation of chemical and metabolic stability of resveratrol oligomers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7844-7850. [PMID: 22808987 DOI: 10.1021/jf302136t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Resveratrol, piceatannol, ε-viniferin, r-viniferin, r2-viniferin, and hopeaphenol are naturally occurring polyphenols, associated with potentially beneficial health effects. We developed a rapid liquid chromatography-ultraviolet detection (LC-UV) method, allowing for the simultaneous determination of these six compounds in biological samples in less than 2.5 min with standard LC equipment. Using this method for the assessment of the stability of the six analytes, we demonstrated that all stilbene polyphenols disappear rapidly in Dulbecco's modified Eagle's medium (e.g., half-life of resveratrol of 1 h). In contrast, the tetramer hopeaphenol was stable over the maximum incubation time of 72 h. In incubations with liver microsomes, ε-viniferin was rapidly glucuronidated, although to a lower extent than resveratrol. Hopeaphenol was not glucuronidated at all. Given that glucuronidation is the major metabolic pathway for polyphenols, hopeaphenol might exhibit significantly different pharmacokinetic properties than other polyphenols. When chemical and metabolic stability as well as biological activity of hopeaphenol are taken together, these findings warrant further investigation of this polyphenol.
Collapse
Affiliation(s)
- Ina Willenberg
- Institute for Food Toxicology and Chemical Analysis, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
24
|
Schebb NH, Buchholz BA, Hammock BD, Rice RH. Metabolism of the antibacterial triclocarban by human epidermal keratinocytes to yield protein adducts. J Biochem Mol Toxicol 2012; 26:230-4. [PMID: 22711420 PMCID: PMC3522462 DOI: 10.1002/jbt.21411] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous studies of triclocarban suggest that its biotransformation could yield reactive metabolites that form protein adducts. Since the skin is the major route of triclocarban exposure, present work examined this possibility in cultured human keratinocytes. The results provide evidence for considerable biotransformation and protein adduct formation when cytochrome P450 activity is induced in the cells by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a model Ah receptor ligand. Since detecting low adduct levels in cells and tissues is difficult, we utilized the novel approach of accelerator mass spectrometry for this purpose. Exploiting the sensitivity of the method, we demonstrated that a substantial portion of triclocarban forms adducts with keratinocyte protein under the P450 inducing conditions employed.
Collapse
Affiliation(s)
- Nils Helge Schebb
- Institute of Food Toxicology and Chemical Analysis, University of Veterinary Medicine Hannover, Germany
| | - Bruce A. Buchholz
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Bruce D. Hammock
- Department of Entomology and Cancer Center, University of California, Davis, CA
| | - Robert H. Rice
- Department of Environmental Toxicology, University of California, Davis, CA
| |
Collapse
|