1
|
Li Y, Zang X, Song J, Xie Y, Chen X. pH/ROS dual-responsive nanoparticles with curcumin entrapment to promote antitumor efficiency in triple negative breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Sun R, Ying Y, Tang Z, Liu T, Shi F, Li H, Guo T, Huang S, Lai R. The Emerging Role of the SLCO1B3 Protein in Cancer Resistance. Protein Pept Lett 2020; 27:17-29. [PMID: 31556849 PMCID: PMC6978646 DOI: 10.2174/0929866526666190926154248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Currently, chemotherapy is one of the mainstays of oncologic therapies. But the efficacy of chemotherapy is often limited by drug resistance and severe side effects. Consequently, it is becoming increasingly important to investigate the underlying mechanism and overcome the problem of anticancer chemotherapy resistance. The solute carrier organic anion transporter family member 1B3 (SLCO1B3), a functional transporter normally expressed in the liver, transports a variety of endogenous and exogenous compounds, including hormones and their conjugates as well as some anticancer drugs. The extrahepatic expression of SLCO1B3 has been detected in different cancer cell lines and cancer tissues. Recently, accumulating data indicates that the abnormal expression and function of SLCO1B3 are involved in resistance to anticancer drugs, such as taxanes, camptothecin and its analogs, SN-38, and Androgen Deprivation Therapy (ADT) in breast, prostate, lung, hepatic, and colorectal cancer, respectively. Thus, more investigations have been implemented to identify the potential SLCO1B3-related mechanisms of cancer drug resistance. In this review, we focus on the emerging roles of SLCO1B3 protein in the development of cancer chemotherapy resistance and briefly discuss the mechanisms of resistance. Elucidating the function of SLCO1B3 in chemoresistance may bring out novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Ruipu Sun
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China.,Nanchang Joint Program, Queen Mary University of London, London, United Kingdom
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Zhimin Tang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Ting Liu
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Fuli Shi
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China
| | - Huixia Li
- Nanchang Joint Program, Queen Mary University of London, London, United Kingdom
| | - Taichen Guo
- Nanchang Joint Program, Queen Mary University of London, London, United Kingdom
| | - Shibo Huang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University Medical College, Nanchang, China.,Department of Pharmacy, Medical College, Nanchang University, Nanchang 330006, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences / Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| |
Collapse
|
3
|
Tang F, Tsakalozou E, Arnold SM, Ng CM, Leggas M. Population pharmacokinetic analysis of AR-67, a lactone stable camptothecin analogue, in cancer patients with solid tumors. Invest New Drugs 2019; 37:1218-1230. [PMID: 30820810 DOI: 10.1007/s10637-019-00744-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/06/2019] [Indexed: 01/11/2023]
Abstract
Background AR-67 is a novel camptothecin analogue at early stages of drug development. The phase 1 clinical trial in cancer patients with solid tumors was completed and a population pharmacokinetic model (POP PK) was developed to facilitate further development of this investigational agent. Methods Pharmacokinetic data collected in the phase 1 clinical trial were utilized for the development of a population POP PK by implementing the non-linear mixed effects approach. Patient characteristics at study entry were evaluated as covariates in the model. Subjects (N = 26) were treated at nine dosage levels (1.2-12.4 mg/m2/day) on a daily × 5 schedule. Hematological toxicity data were modeled against exposure metrics. Results A two-compartment POP PK model best described the disposition of AR-67 by fitting a total of 328 PK observations from 25 subjects. Following covariate model selection, age remained as a significant covariate on central volume. The final model provided a good fit for the concentration versus time data and PK parameters were estimated with good precision. Clearance, inter-compartmental clearance, central volume and peripheral volume were estimated to be 32.2 L/h, 28.6 L/h, 6.83 L and 25.0 L, respectively. Finally, exposure-pharmacodynamic analysis using Emax models showed that plasma drug concentration versus time profiles are better predictors of AR-67-related hematologic toxicity were better predictors of leukopenia and thrombocytopenia, as compared to total dose. Conclusions A POP PK model was developed to characterize AR-67 pharmacokinetics and identified age as a significant covariate. Exposure PK metrics Cmax and AUC were shown to predict hematological toxicity. Further efforts to identify clinically relevant determinants of AR-67 disposition and effects in a larger patient population are warranted.
Collapse
Affiliation(s)
- Fei Tang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536, USA
| | - Eleftheria Tsakalozou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536, USA
| | - Susanne M Arnold
- Department of Internal Medicine, Division of Medical Oncology, Markey Cancer Center, University of Kentucky, 800 Rose St., Lexington, KY 40536, Lexington, KY, 40536, USA.,National Cancer Institute Designated Markey Cancer Center, Lexington Kentucky, Lexington, KY, USA
| | - Chee M Ng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536, USA.,National Cancer Institute Designated Markey Cancer Center, Lexington Kentucky, Lexington, KY, USA
| | - Markos Leggas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536, USA. .,National Cancer Institute Designated Markey Cancer Center, Lexington Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
New ABCC2 rs3740066 and rs2273697 Polymorphisms Identified in a Healthy Colombian Cohort. Pharmaceutics 2018; 10:pharmaceutics10030093. [PMID: 30018187 PMCID: PMC6160965 DOI: 10.3390/pharmaceutics10030093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Multidrug resistance-associated proteins (MRP) 1 and 2 belong to the ABC (ATP-Binding Cassette) transporters. These transport proteins are involved in the removal of various drugs and xenobiotics, as well as in multiple physiological, pathological, and pharmacological processes. There is a strong correlation between different polymorphisms and their clinical implication in resistance to antiepileptic drugs, anticancer, and anti-infective agents. In our study, we evaluated exon regions of MRP1 (ABCC1)/MRP2 (ABCC2) in a Colombian cohort of healthy subjects to determine single nucleotide polymorphisms (SNPs) and to determine the allelic and genomic frequency. Results showed there are SNPs in our population that have been previously reported for both MRP1/ABCC1 (rs200647436, rs200624910, rs150214567) and MRP2/ABCC2 (rs2273697, rs3740066, rs142573385, rs17216212). Additionally, 13 new SNPs were identified. Evidence also shows a significant clinical correlation for polymorphisms rs3740066 and rs2273697 in the transport of multiple drugs, which suggests a genetic variability in regards to that reported in other populations.
Collapse
|
5
|
Sajitha TP, Manjunatha BL, Siva R, Gogna N, Dorai K, Ravikanth G, Uma Shaanker R. Mechanism of Resistance to Camptothecin, a Cytotoxic Plant Secondary Metabolite, by Lymantria sp. Larvae. J Chem Ecol 2018; 44:611-620. [DOI: 10.1007/s10886-018-0960-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/07/2018] [Accepted: 04/13/2018] [Indexed: 10/16/2022]
|
6
|
Lazareva NF, Baryshok VP, Lazarev IM. Silicon-containing analogs of camptothecin as anticancer agents. Arch Pharm (Weinheim) 2017; 351. [PMID: 29239010 DOI: 10.1002/ardp.201700297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022]
Abstract
The plant pentacyclic alkaloid camptothecin and its structural analogs were extensively studied. These compounds are interesting due to the antitumor activity associated with their ability to inhibit topoisomerase I in tumor cells. During the last decades of the 20th century, a large number of the silicon-containing camptothecins (silatecans) were synthesized. 7-tert-Butyldimethylsilyl-10-hydroxy-camptothecin (DB-67 or AR-67) has enhanced lipophilicity and demonstrates a antitumor activity superior to its carbon analog. To date, certain silatecans are under clinical trials and their ultimate role in cancer therapy appears promising. In this review, we present chemical methodologies for the synthesis of silicon-containing camptothecins, their chemical properties, biological activity, and results of clinical trials.
Collapse
Affiliation(s)
- Nataliya F Lazareva
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation
| | - Viktor P Baryshok
- Irkutsk National Research Technical University, Irkutsk, Russian Federation
| | - Igor M Lazarev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation
| |
Collapse
|
7
|
Szumilak M, Galdyszynska M, Dominska K, Bak-Sypien II, Merecz-Sadowska A, Stanczak A, Karwowski BT, Piastowska-Ciesielska AW. Synthesis, Biological Activity and Preliminary in Silico ADMET Screening of Polyamine Conjugates with Bicyclic Systems. Molecules 2017; 22:E794. [PMID: 28498338 PMCID: PMC6153941 DOI: 10.3390/molecules22050794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/28/2017] [Accepted: 05/09/2017] [Indexed: 11/17/2022] Open
Abstract
Polyamine conjugates with bicyclic terminal groups including quinazoline, naphthalene, quinoline, coumarine and indole have been obtained and their cytotoxic activity against PC-3, DU-145 and MCF-7 cell lines was evaluated in vitro. Their antiproliferative potential differed markedly and depended on both their chemical structure and the type of cancer cell line. Noncovalent DNA-binding properties of the most active compounds have been examined using ds-DNA thermal melting studies and topo I activity assay. The promising biological activity, DNA intercalative binding mode and favorable drug-like properties of bis(naphthalene-2-carboxamides) make them a good lead for further development of potential anticancer drugs.
Collapse
Affiliation(s)
- Marta Szumilak
- Department of Hospital Pharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland.
| | - Malgorzata Galdyszynska
- Department of Comparative Endocrinology, Medical University of Lodz, 7/9 Zeligowskiego Street, 90-752 Lodz, Poland.
| | - Kamila Dominska
- Department of Comparative Endocrinology, Medical University of Lodz, 7/9 Zeligowskiego Street, 90-752 Lodz, Poland.
| | - Irena I Bak-Sypien
- Food Science Department, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland.
| | - Anna Merecz-Sadowska
- Food Science Department, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland.
| | - Andrzej Stanczak
- Department of Hospital Pharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland.
| | - Boleslaw T Karwowski
- Food Science Department, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland.
| | - Agnieszka W Piastowska-Ciesielska
- Department of Comparative Endocrinology, Medical University of Lodz, 7/9 Zeligowskiego Street, 90-752 Lodz, Poland.
- Laboratory of Cell Cultures and Genomic Analysis, Medical University of Lodz, 7/9 Zeligowskiego Street, Lodz 90-752, Poland.
| |
Collapse
|
8
|
Niedermeyer THJ, Daily A, Swiatecka-Hagenbruch M, Moscow JA. Selectivity and potency of microcystin congeners against OATP1B1 and OATP1B3 expressing cancer cells. PLoS One 2014; 9:e91476. [PMID: 24614281 PMCID: PMC3948918 DOI: 10.1371/journal.pone.0091476] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/13/2014] [Indexed: 11/19/2022] Open
Abstract
Microcystins are potent phosphatase inhibitors and cellular toxins. They require active transport by OATP1B1 and OATP1B3 transporters for uptake into human cells, and the high expression of these transporters in the liver accounts for their selective hepatic toxicity. Several human tumors have been shown to have high levels of expression of OATP1B3 but not OATP1B1, the main transporter in liver cells. We hypothesized that microcystin variants could be isolated that are transported preferentially by OATP1B3 relative to OATP1B1 to advance as anticancer agents with clinically tolerable hepatic toxicity. Microcystin variants have been isolated and tested for cytotoxicity in cancer cells stably transfected with OATP1B1 and OATP1B3 transporters. Microcystin variants with cytotoxic OATP1B1/OATP1B3 IC50 ratios that ranged between 0.2 and 32 were found, representing a 150-fold range in transporter selectivity. As microcystin structure has a significant impact on transporter selectivity, it is potentially possible to develop analogs with even more pronounced OATP1B3 selectivity and thus enable their development as anticancer drugs.
Collapse
Affiliation(s)
- Timo H. J. Niedermeyer
- Cyano Biotech GmbH, Berlin, Germany
- Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- * E-mail:
| | - Abigail Daily
- Department of Pediatrics, University of Kentucky, Lexington, Kentucky, United States of America
| | | | - Jeffrey A. Moscow
- Department of Pediatrics, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|