1
|
Ding X, Han J, Van Winkle LS, Zhang QY. Detection of Transgene Location in the CYP2A13/2B6/2F1-transgenic Mouse Model using Optical Genome Mapping Technology. Drug Metab Dispos 2023; 51:46-53. [PMID: 36273825 PMCID: PMC9832375 DOI: 10.1124/dmd.122.001090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 01/14/2023] Open
Abstract
Most transgenic mouse models are generated through random integration of the transgene. The location of the transgene provides valuable information for assessing potential effects of the transgenesis on the host and for designing genotyping protocols that can amplify across the integration site, but it is challenging to identify. Here, we report the successful utility of optical genome mapping technology to identify the transgene insertion site in a CYP2A13/2B6/2F1-transgenic mouse model, which produces three human cytochrome P450 (P450) enzymes (CYP2A13, CYP2B6, and CYP2F1) that are encoded by neighboring genes on human chromosome 19. These enzymes metabolize many drugs, respiratory toxicants, and chemical carcinogens. Initial efforts to identify candidate insertion sites by whole genome sequencing was unsuccessful, apparently because the transgene is located in a region of the mouse genome that contains highly repetitive sequences. Subsequent utility of the optical genome mapping approach, which compares genome-wide marker distribution between the transgenic mouse genome and a reference mouse (GRCm38) or human (GRCh38) genome, localized the insertion site to mouse chromosome 14, between two marker positions at 4451324 base pair and 4485032 base pair. A transgene-mouse genome junction sequence was further identified through long-polymerase chain reaction amplification and DNA sequencing at GRCm38 Chr.14:4484726. The transgene insertion (∼2.4 megabase pair) contained 5-7 copies of the human transgenes, which replaced a 26.9-33.4 kilobase pair mouse genomic region, including exons 1-4 of Gm3182, a predicted and highly redundant gene. Finally, the sequencing results enabled the design of a new genotyping protocol that can distinguish between hemizygous and homozygous CYP2A13/2B6/2F1-transgenic mice. SIGNIFICANCE STATEMENT: This study characterizes the genomic structure of, and provides a new genotyping method for, a transgenic mouse model that expresses three human P450 enzymes, CYP2A13, CYP2B6, and CYP2F1, that are important in xenobiotic metabolism and toxicity. The demonstrated success in applying the optical genome mapping technology for identification of transgene insertion sites should encourage others to do the same for other transgenic models generated through random integration, including most of the currently available human P450 transgenic mouse models.
Collapse
Affiliation(s)
- Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.D., J.H., Q.-Y.Z.) and Center for Health and the Environment and Department of Anatomy Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, California (L.S.V.W.)
| | - John Han
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.D., J.H., Q.-Y.Z.) and Center for Health and the Environment and Department of Anatomy Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, California (L.S.V.W.)
| | - Laura S Van Winkle
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.D., J.H., Q.-Y.Z.) and Center for Health and the Environment and Department of Anatomy Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, California (L.S.V.W.)
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (X.D., J.H., Q.-Y.Z.) and Center for Health and the Environment and Department of Anatomy Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, California (L.S.V.W.)
| |
Collapse
|
2
|
Drug Interactions. Forensic Toxicol 2022. [DOI: 10.1016/b978-0-12-819286-3.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Lkhagvadorj K, Meyer KF, Verweij LP, Kooistra W, Reinders-Luinge M, Dijkhuizen HW, de Graaf IAM, Plösch T, Hylkema MN. Prenatal smoke exposure induces persistent Cyp2a5 methylation and increases nicotine metabolism in the liver of neonatal and adult male offspring. Epigenetics 2020; 15:1370-1385. [PMID: 32573327 PMCID: PMC7678918 DOI: 10.1080/15592294.2020.1782655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023] Open
Abstract
Prenatal smoke exposure (PSE) is a risk factor for nicotine dependence. One susceptibility gene for nicotine dependence is Cytochrome P450 (CYP) 2A6, an enzyme responsible for the conversion of nicotine to cotinine and nicotine clearance in the liver. Higher activity of the CYP2A6 enzyme is associated with nicotine dependence, but no research has addressed the PSE effects on the CYP2A6 gene or its mouse homologue Cyp2a5. We hypothesized that PSE affects Cyp2a5 promoter methylation, Cyp2a5 mRNA levels, and nicotine metabolism in offspring. We used a smoke-exposed pregnant mouse model. RNA, DNA, and microsomal protein were isolated from liver tissue of foetal, neonatal, and adult offspring. Enzyme activity, Cyp2a5 mRNA levels, and Cyp2a5 methylation status of six CpG sites within the promoter region were analysed via HPLC, RT-PCR, and bisulphite pyrosequencing. Our data show that PSE induced higher cotinine levels in livers of male neonatal and adult offspring compared to controls. PSE-induced cotinine levels in neonates correlated with Cyp2a5 mRNA expression and promoter methylation at CpG-7 and CpG+45. PSE increased methylation in almost all CpG sites in foetal offspring, and this effect persisted at CpG-74 in male neonatal and adult offspring. Our results indicate that male offspring of mothers which were exposed to cigarette smoke during pregnancy have a higher hepatic nicotine metabolism, which could be regulated by DNA methylation. Given the detected persistence into adulthood, extrapolation to the human situation suggests that sons born from smoking mothers could be more susceptible to nicotine dependence later in life.
Collapse
Affiliation(s)
- Khosbayar Lkhagvadorj
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pulmonology and Allergology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Karolin F. Meyer
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura P. Verweij
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wierd Kooistra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjan Reinders-Luinge
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Henk W. Dijkhuizen
- Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Inge A. M. de Graaf
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Machteld N. Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Polychlorinated Biphenyls (PCBs): Risk Factors for Autism Spectrum Disorder? TOXICS 2020; 8:toxics8030070. [PMID: 32957475 PMCID: PMC7560399 DOI: 10.3390/toxics8030070] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) includes a group of multifactorial neurodevelopmental disorders defined clinically by core deficits in social reciprocity and communication, restrictive interests and repetitive behaviors. ASD affects one in 54 children in the United States, one in 89 children in Europe, and one in 277 children in Asia, with an estimated worldwide prevalence of 1-2%. While there is increasing consensus that ASD results from complex gene x environment interactions, the identity of specific environmental risk factors and the mechanisms by which environmental and genetic factors interact to determine individual risk remain critical gaps in our understanding of ASD etiology. Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants that have been linked to altered neurodevelopment in humans. Preclinical studies demonstrate that PCBs modulate signaling pathways implicated in ASD and phenocopy the effects of ASD risk genes on critical morphometric determinants of neuronal connectivity, such as dendritic arborization. Here, we review human and experimental evidence identifying PCBs as potential risk factors for ASD and discuss the potential for PCBs to influence not only core symptoms of ASD, but also comorbidities commonly associated with ASD, via effects on the central and peripheral nervous systems, and/or peripheral target tissues, using bladder dysfunction as an example. We also discuss critical data gaps in the literature implicating PCBs as ASD risk factors. Unlike genetic factors, which are currently irreversible, environmental factors are modifiable risks. Therefore, data confirming PCBs as risk factors for ASD may suggest rational approaches for the primary prevention of ASD in genetically susceptible individuals.
Collapse
|
5
|
Zhao MM, Liu TJ, Wang Q, Zhang R, Liu L, Gong DQ, Geng TY. Fatty acids modulate the expression of pyruvate kinase and arachidonate-lipoxygenase through PPARγ/CYP2C45 pathway: a link to goose fatty liver. Poult Sci 2019; 98:4346-4358. [PMID: 31287882 DOI: 10.3382/ps/pez395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/24/2019] [Indexed: 12/30/2022] Open
Abstract
Cytochrome P-450 2C45 (CYP2C45) is the most highly expressed cytochrome P-450 isoform in chicken liver, and may play an important role in avian liver biology. However, information regarding the function of CYP2C45 in fatty liver is generally limited. The aim of this study was to investigate the role of CYP2C45 during the development of goose fatty liver. Our result indicated that the transcription of CYP2C45, together with PK and ALOX5, was increased in goose liver upon overfeeding for 19 D (P < 0.05). In goose primary hepatocytes, CYP2C45 RNA expression was also upgraded by the treatment with various chemicals like insulin, the fatty acids, and PPAR agonists (P < 0.05). We also found that both CYP2C45 overexpression and troglitazone treatment could increase the expression of pyruvate kinase (PK) and arachidonate 5-lipoxygenase (ALOX5), and furthermore, showed that the up-regulation of PK and ALOX5 induced by troglitazone could be suppressed by small interfering RNAs targeting CYP2C45 (P < 0.05). These findings suggest that fatty acids treatment and the overfeeding can induce the up-regulation of CYP2C45 expression possibly via PPARγ and that the induction of PK and ALOX5 in goose fatty liver is at least partially attributed to fatty acid-induced expression of CYP2C45. Thus, our data provides an insight into the mechanism by which glycolysis and arachidonic acid metabolism are modulated in goose fatty liver.
Collapse
Affiliation(s)
- M M Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - T J Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Q Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - R Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - L Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - D Q Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - T Y Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Li Y, Meng Q, Yang M, Liu D, Hou X, Tang L, Wang X, Lyu Y, Chen X, Liu K, Yu AM, Zuo Z, Bi H. Current trends in drug metabolism and pharmacokinetics. Acta Pharm Sin B 2019; 9:1113-1144. [PMID: 31867160 PMCID: PMC6900561 DOI: 10.1016/j.apsb.2019.10.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Pharmacokinetics (PK) is the study of the absorption, distribution, metabolism, and excretion (ADME) processes of a drug. Understanding PK properties is essential for drug development and precision medication. In this review we provided an overview of recent research on PK with focus on the following aspects: (1) an update on drug-metabolizing enzymes and transporters in the determination of PK, as well as advances in xenobiotic receptors and noncoding RNAs (ncRNAs) in the modulation of PK, providing new understanding of the transcriptional and posttranscriptional regulatory mechanisms that result in inter-individual variations in pharmacotherapy; (2) current status and trends in assessing drug-drug interactions, especially interactions between drugs and herbs, between drugs and therapeutic biologics, and microbiota-mediated interactions; (3) advances in understanding the effects of diseases on PK, particularly changes in metabolizing enzymes and transporters with disease progression; (4) trends in mathematical modeling including physiologically-based PK modeling and novel animal models such as CRISPR/Cas9-based animal models for DMPK studies; (5) emerging non-classical xenobiotic metabolic pathways and the involvement of novel metabolic enzymes, especially non-P450s. Existing challenges and perspectives on future directions are discussed, and may stimulate the development of new research models, technologies, and strategies towards the development of better drugs and improved clinical practice.
Collapse
Affiliation(s)
- Yuhua Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qiang Meng
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Mengbi Yang
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China
| | - Xiangyu Hou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Tang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanfeng Lyu
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ai-Ming Yu
- UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Zhong Zuo
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Henderson CJ, Kapelyukh Y, Scheer N, Rode A, McLaren AW, MacLeod AK, Lin D, Wright J, Stanley LA, Wolf CR. An Extensively Humanized Mouse Model to Predict Pathways of Drug Disposition and Drug/Drug Interactions, and to Facilitate Design of Clinical Trials. Drug Metab Dispos 2019; 47:601-615. [PMID: 30910785 PMCID: PMC6505380 DOI: 10.1124/dmd.119.086397] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Species differences in drug metabolism and disposition can confound the extrapolation of in vivo PK data to man and also profoundly compromise drug efficacy studies owing to differences in pharmacokinetics, in metabolites produced (which are often pharmacologically active), and in differential activation of the transcription factors constitutive androstane receptor (CAR) and pregnane X receptor (PXR), which regulate the expression of such enzymes as P450s and drug transporters. These differences have gained additional importance as a consequence of the use of genetically modified mouse models for drug-efficacy testing and also patient-derived xenografts to predict individual patient responses to anticancer drugs. A number of humanized mouse models for cytochrome P450s, CAR, and PXR have been reported. However, the utility of these models has been compromised by the redundancy in P450 reactions across gene families, whereby the remaining murine P450s can metabolize the compounds being tested. To remove this confounding factor and create a mouse model that more closely reflects human pathways of drug disposition, we substituted 33 murine P450s from the major gene families involved in drug disposition, together with Car and Pxr, for human CAR, PXR, CYP1A1, CYP1A2, CYP2C9, CYP2D6, CYP3A4, and CYP3A7. We also created a mouse line in which 34 P450s were deleted from the mouse genome. Using model compounds and anticancer drugs, we demonstrated how these mouse lines can be applied to predict drug-drug interactions in patients and discuss here their potential application in the more informed design of clinical trials and the personalized treatment of cancer.
Collapse
Affiliation(s)
- C J Henderson
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| | - Y Kapelyukh
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| | - N Scheer
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| | - A Rode
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| | - A W McLaren
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| | - A K MacLeod
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| | - D Lin
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| | - J Wright
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| | - L A Stanley
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| | - C R Wolf
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (C.J.H., Y.K., C.R.W., A.M., K.M., D.L.); Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.); Independent Consultant, Putley, Ledbury, Herts, United Kingdom (J.W.); and Independent Consultant, Linlithgow, West Lothian, United Kingdom (L.A.S.)
| |
Collapse
|
8
|
Interaction between 3,4‑dichlorophenyl‑propenoyl‑sec.‑butylamine (3,4‑DCPB), an antiepileptic drug, and cytochrome P450 in rat liver microsomes and recombinant human enzymes in vitro. Eur J Pharm Sci 2018; 123:241-248. [DOI: 10.1016/j.ejps.2018.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
|
9
|
Li L, Zhang QY, Ding X. A CYP2B6-humanized mouse model and its potential applications. Drug Metab Pharmacokinet 2018; 33:2-8. [PMID: 29402634 DOI: 10.1016/j.dmpk.2018.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/21/2017] [Accepted: 12/12/2017] [Indexed: 01/03/2023]
Abstract
CYP2B6 is a human microsomal cytochrome P450 enzyme with broad substrate selectivity. CYP2B6 is the only functional member of the human CYP2B gene subfamily, which differs from the situation in rodents, such as mouse, where multiple functional Cyp2b genes are expressed. Recent studies with Cyp2b knockout or knockdown mouse models have yielded insights into the in vivo roles of mouse CYP2B enzymes in drug disposition and xenobiotic toxicity. A CYP2B6-humanized mouse model (CYP2A13/2B6/2F1-transgenic/Cyp2abfgs-null), which expresses human CYP2B6 in the liver, and human CYP2A13 and CYP2F1 in the respiratory tract, but not any of the mouse Cyp2b genes, has also been established. In the CYP2B6-humanized mouse, the CYP2B6 transgene is expressed primarily in the liver, where it was found to be active toward prototype CYP2B6 substrate drugs. The regulatory elements of the CYP2B6 transgene appear to be compatible with mouse nuclear receptors that mediate CYP2B induction. Therefore, the CYP2B6-humanized mouse is a valuable animal model for studying the impact of CYP2B6 expression or induction on drug metabolism, drug efficacy, drug-drug interaction, and drug/xenobiotic toxicity. In this mini-review, we provide a brief background on CYP2B6 and the Cyp2b-knockout and CYP2B6-humanized mice, and discuss the potential applications and limitations of the current models.
Collapse
Affiliation(s)
- Lei Li
- Wadsworth Center, New York State Department of Health, School of Public Health, State University of New York at Albany, NY, 12201, USA
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
10
|
Nie Y, Luo F, Wang L, Yang T, Shi L, Li X, Shen J, Xu W, Guo T, Lin Q. Anti-hyperlipidemic effect of rice bran polysaccharide and its potential mechanism in high-fat diet mice. Food Funct 2017; 8:4028-4041. [PMID: 28869259 DOI: 10.1039/c7fo00654c] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Hyperlipidemia occurs very often in modern society along with a high calorie intake and is regarded as one of the greatest risk factors for the prevalence of cardiac vascular disease (CVD). In this study, we investigated the anti-hyperlipidemic effect of the rice bran polysaccharides (RBP) and its mechanism in a high fat diet animal model. 60 ICR mice were randomly divided into 3 groups, which included Control, HFD (high fat diet) and HFD + RBP, and each group included 20 mice. The control group was fed with a standard diet while the other two groups were fed with HFD. In addition, the HFD + RBP group was fed with 500 mg kg-1 of rice bran polysaccharides by intragastric administration while the other two groups were intragastrically administered with water. The results showed that RBP treatment for 10 weeks obviously decreased the body weight, liver weight and adipose tissues of mice; and it decreased the levels of total cholesterol (TC), triglycerides (TG) and low density lipoprotein-cholesterol (LDL-c) in the plasma. H&E staining of the liver tissues showed that RBP treatment decreased the size of fat droplets compared with the HFD group. Microarray analysis revealed that RBP treatment results in 80 genes being up-regulated while 72 genes were down-regulated in the tissues of liver. IPA software analysis suggested that NF-κB may play a vital role in the lipid-lowering effect of RBP. Real-time quantitative PCR confirmed that the mRNA levels of PPAR-α, PPAR-γ, PPAR-δ, SREBP-1C, FASN, ACC, SIRT and CD36, which are related to lipid metabolism, were significantly regulated by RBP supplementation compared to HFD. The western blot analysis further confirmed these altered expressions after RBP treatment. Taken together, these results suggest that the oral administration of RBP exerts lipid-lowering in high fat diet mice via regulating the lipid metabolism-related gene expression.
Collapse
Affiliation(s)
- Ying Nie
- Laboratory of Molecular Nutrition, College of Food Science and Engineering, National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li L, Carratt S, Hartog M, Kovalchik N, Jia K, Wang Y, Zhang QY, Edwards P, Winkle LV, Ding X. Human CYP2A13 and CYP2F1 Mediate Naphthalene Toxicity in the Lung and Nasal Mucosa of CYP2A13/2F1-Humanized Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:067004. [PMID: 28599267 PMCID: PMC5743450 DOI: 10.1289/ehp844] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/22/2016] [Accepted: 11/07/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND The potential carcinogenicity of naphthalene (NA), a ubiquitous environmental pollutant, in human respiratory tract is a subject of intense debate. Chief among the uncertainties in risk assessment for NA is whether human lung CYP2A13 and CYP2F1 can mediate NA's respiratory tract toxicity. OBJECTIVES We aimed to assess the in vivo function of CYP2A13 and CYP2F1 in NA bioactivation and NA-induced respiratory tract toxicity in mouse models. METHODS Rates of microsomal NA bioactivation and the effects of an anti-CYP2A antibody were determined for lung and nasal olfactory mucosa (OM) from Cyp2abfgs-null, CYP2A13-humanized, and CYP2A13/2F1-humanized mice. The extent of NA respiratory toxicity was compared among wild-type, Cyp2abfgs-null, and CYP2A13/2F1-humanized mice following inhalation exposure at an occupationally relevant dose (10 ppm for 4 hr). RESULTS In vitro studies indicated that the NA bioactivation activities in OM and lung of the CYP2A13/2F1-humanized mice were primarily contributed by, respectively, CYP2A13 and CYP2F1. CYP2A13/2F1-humanized mice showed greater sensitivity to NA than Cyp2abfgs-null mice, with greater depletion of nonprotein sulfhydryl and occurrence of cytotoxicity (observable by routine histology) in the OM, at 2 or 20 hr after termination of NA exposure, in humanized mice. Focal, rather than gross, lung toxicity was observed in Cyp2abfgs-null and CYP2A13/2F1-humanized mice; however, the extent of NA-induced lung injury (shown as volume fraction of damaged cells) was significantly greater in the terminal bronchioles of CYP2A13/2F1-humanized mice than in Cyp2abfgs-null mice. CONCLUSION CYP2F1 is an active enzyme. Both CYP2A13 and CYP2F1 are active toward NA in the CYP2A13/2F1-humanized mice, where they play significant roles in NA-induced respiratory tract toxicity. https://doi.org/10.1289/EHP844.
Collapse
Affiliation(s)
- Lei Li
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Sarah Carratt
- Center for Health and the Environment, University of California, Davis (UC Davis), Davis, California, USA
| | - Matthew Hartog
- College of Nanoscale Science and Engineering, State University of New York (SUNY) Polytechnic Institute, Albany, New York, USA
| | - Nataliia Kovalchik
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Kunzhi Jia
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Yanan Wang
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Qing-Yu Zhang
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Patricia Edwards
- Center for Health and the Environment, University of California, Davis (UC Davis), Davis, California, USA
| | - Laura Van Winkle
- Center for Health and the Environment, University of California, Davis (UC Davis), Davis, California, USA
| | - Xinxin Ding
- College of Nanoscale Science and Engineering, State University of New York (SUNY) Polytechnic Institute, Albany, New York, USA
| |
Collapse
|
12
|
Dunnick JK, Morgan DL, Elmore SA, Gerrish K, Pandiri A, Ton TV, Shockley KR, Merrick BA. Tetrabromobisphenol A activates the hepatic interferon pathway in rats. Toxicol Lett 2017; 266:32-41. [PMID: 27914987 PMCID: PMC5791538 DOI: 10.1016/j.toxlet.2016.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/11/2016] [Accepted: 11/25/2016] [Indexed: 11/25/2022]
Abstract
Tetrabromobisphenol A (TBBPA) is a widely used flame retardant in printed circuit boards, paper, and textiles. In a two-year study, TBBPA showed evidence of uterine tumors in female Wistar-Han rats and liver and colon tumors in B6C3F1 mice. In order to gain further insight into early gene and pathway changes leading to cancer, we exposed female Wistar Han rats to TBBPA at 0, 25, 250, or 1000mg/kg (oral gavage in corn oil, 5×/week) for 13 weeks. Because at the end of the TBBPA exposure period, there were no treatment-related effects on body weights, liver or uterus lesions, and liver and uterine organ weights were within 10% of controls, only the high dose animals were analyzed. Analysis of the hepatic and uterine transcriptomes showed TBBPA-induced changes primarily in the liver (1000mg/kg), with 159 transcripts corresponding to 132 genes differentially expressed compared to controls (FDR=0.05). Pathway analysis showed activation of interferon (IFN) and metabolic networks. TBBPA induced few molecular changes in the uterus. Activation of the interferon pathway in the liver occurred after 13-weeks of TBBPA exposure, and with longer term TBBPA exposure this may lead to immunomodulatory changes that contribute to carcinogenic processes.
Collapse
Affiliation(s)
- J K Dunnick
- Toxicology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | - D L Morgan
- NTP Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - S A Elmore
- Cellular and Molecular Pathology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - K Gerrish
- Molecular Genomics Core, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - A Pandiri
- Cellular and Molecular Pathology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - T V Ton
- Cellular and Molecular Pathology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - K R Shockley
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - B A Merrick
- Biomolecular Screening Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|