1
|
Adhikari P, Li G, Go M, Mandikian D, Rafidi H, Ng C, Anifa S, Johnson K, Bao L, Hernandez Barry H, Rowntree R, Agard N, Wu C, Chou KJ, Zhang D, Kozak KR, Pillow TH, Lewis GD, Yu SF, Boswell CA, Sadowsky JD. On Demand Bioorthogonal Switching of an Antibody-Conjugated SPECT Probe to a Cytotoxic Payload: from Imaging to Therapy. J Am Chem Soc 2024; 146:19088-19100. [PMID: 38946086 DOI: 10.1021/jacs.4c03529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Antibody-drug conjugates (ADCs) for the treatment of cancer aim to achieve selective delivery of a cytotoxic payload to tumor cells while sparing normal tissue. In vivo, multiple tumor-dependent and -independent processes act on ADCs and their released payloads to impact tumor-versus-normal delivery, often resulting in a poor therapeutic window. An ADC with a labeled payload would make synchronous correlations between distribution and tissue-specific pharmacological effects possible, empowering preclinical and clinical efforts to improve tumor-selective delivery; however, few methods to label small molecules without destroying their pharmacological activity exist. Herein, we present a bioorthogonal switch approach that allows a radiolabel attached to an ADC payload to be removed tracelessly at will. We exemplify this approach with a potent DNA-damaging agent, the pyrrolobenzodiazepine (PBD) dimer, delivered as an antibody conjugate targeted to lung tumor cells. The radiometal chelating group, DOTA, was attached via a novel trans-cyclooctene (TCO)-caged self-immolative para-aminobenzyl (PAB) linker to the PBD, stably attenuating payload activity and allowing tracking of biodistribution in tumor-bearing mice via SPECT-CT imaging (live) or gamma counting (post-mortem). Following TCO-PAB-DOTA reaction with tetrazines optimized for extra- and intracellular reactivity, the label was removed to reveal the unmodified PBD dimer capable of inducing potent tumor cell killing in vitro and in mouse xenografts. The switchable antibody radio-drug conjugate (ArDC) we describe integrates, but decouples, the two functions of a theranostic given that it can serve as a diagnostic for payload delivery in the labeled state, but can be switched on demand to a therapeutic agent (an ADC).
Collapse
Affiliation(s)
- Pragya Adhikari
- Genentech Inc., South San Francisco, California 94080, United States
| | - Guangmin Li
- Genentech Inc., South San Francisco, California 94080, United States
| | - MaryAnn Go
- Genentech Inc., South San Francisco, California 94080, United States
| | | | - Hanine Rafidi
- Genentech Inc., South San Francisco, California 94080, United States
| | - Carl Ng
- Genentech Inc., South San Francisco, California 94080, United States
| | - Sagana Anifa
- Genentech Inc., South San Francisco, California 94080, United States
| | - Kevin Johnson
- Genentech Inc., South San Francisco, California 94080, United States
| | - Linda Bao
- Genentech Inc., South San Francisco, California 94080, United States
| | | | - Rebecca Rowntree
- Genentech Inc., South San Francisco, California 94080, United States
| | - Nicholas Agard
- Genentech Inc., South San Francisco, California 94080, United States
| | - Cong Wu
- Genentech Inc., South San Francisco, California 94080, United States
| | - Kang-Jye Chou
- Genentech Inc., South San Francisco, California 94080, United States
| | - Donglu Zhang
- Genentech Inc., South San Francisco, California 94080, United States
| | - Katherine R Kozak
- Genentech Inc., South San Francisco, California 94080, United States
| | - Thomas H Pillow
- Genentech Inc., South San Francisco, California 94080, United States
| | - Gail D Lewis
- Genentech Inc., South San Francisco, California 94080, United States
| | - Shang-Fan Yu
- Genentech Inc., South San Francisco, California 94080, United States
| | - C Andrew Boswell
- Genentech Inc., South San Francisco, California 94080, United States
| | - Jack D Sadowsky
- Genentech Inc., South San Francisco, California 94080, United States
| |
Collapse
|
2
|
Calopiz MC, Linderman JJ, Thurber GM. Optimizing Solid Tumor Treatment with Antibody-drug Conjugates Using Agent-Based Modeling: Considering the Role of a Carrier Dose and Payload Class. Pharm Res 2024; 41:1109-1120. [PMID: 38806889 DOI: 10.1007/s11095-024-03715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
INTRODUCTION Antibody-drug conjugates (ADCs) show significant clinical efficacy in the treatment of solid tumors, but a major limitation to their success is poor intratumoral distribution. Adding a carrier dose improves both distribution and overall drug efficacy of ADCs, but the optimal carrier dose has not been outlined for different payload classes. OBJECTIVE In this work, we study two carrier dose regimens: 1) matching payload potency to cellular delivery but potentially not reaching cells farther away from blood vessels, or 2) dosing to tumor saturation but risking a reduction in cell killing from a lower amount of payload delivered per cell. METHODS We use a validated computational model to test four different payloads conjugated to trastuzumab to determine the optimal carrier dose as a function of target expression, ADC dose, and payload potency. RESULTS We find that dosing to tumor saturation is more efficacious than matching payload potency to cellular delivery for all payloads because the increase in the number of cells targeted by the ADC outweighs the loss in cell killing on targeted cells. An important exception exists if the carrier dose reduces the payload uptake per cell to the point where all cell killing is lost. Likewise, receptor downregulation can mitigate the benefits of a carrier dose. CONCLUSIONS Because tumor saturation and in vitro potency can be measured early in ADC design, these results provide insight into maximizing ADC efficacy and demonstrate the benefits of using simulation to guide ADC design.
Collapse
Affiliation(s)
- Melissa C Calopiz
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Wang S, Ballard TE, Christopher LJ, Foti RS, Gu C, Khojasteh SC, Liu J, Ma S, Ma B, Obach RS, Schadt S, Zhang Z, Zhang D. The Importance of Tracking "Missing" Metabolites: How and Why? J Med Chem 2023; 66:15586-15612. [PMID: 37769129 DOI: 10.1021/acs.jmedchem.3c01293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Technologies currently employed to find and identify drug metabolites in complex biological matrices generally yield results that offer a comprehensive picture of the drug metabolite profile. However, drug metabolites can be missed or are captured only late in the drug development process. This could be due to a variety of factors, such as metabolism that results in partial loss of the molecule, covalent bonding to macromolecules, the drug being metabolized in specific human tissues, or poor ionization in a mass spectrometer. These scenarios often draw a great deal of attention from chemistry, safety assessment, and pharmacology. This review will summarize scenarios of missing metabolites, why they are missing, and associated uncovering strategies from deeper investigations. Uncovering previously missed metabolites can have ramifications in drug development with toxicological and pharmacological consequences, and knowledge of these can help in the design of new drugs.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - T Eric Ballard
- Takeda Development Center Americas, Inc., 35 Landsdowne St, Cambridge, Massachusetts 02139, United States
| | - Lisa J Christopher
- Department of Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Robert S Foti
- Preclinical Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Chungang Gu
- Drug Metabolism and Pharmacokinetics, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joyce Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shuguang Ma
- Drug Metabolism and Pharmacokinetics, Pliant Therapeutics, 260 Littlefield Avenue, South San Francisco, California 94080, United States
| | - Bin Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - R Scott Obach
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Simone Schadt
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacher Strasse 124, 4070 Basel, Switzerland
| | - Zhoupeng Zhang
- DMPK Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
4
|
Kramlinger VM, Dalvie D, Heck CJS, Kalgutkar AS, O'Neill J, Su D, Teitelbaum AM, Totah RA. Future of Biotransformation Science in the Pharmaceutical Industry. Drug Metab Dispos 2022; 50:258-267. [PMID: 34921097 DOI: 10.1124/dmd.121.000658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/23/2021] [Indexed: 11/22/2022] Open
Abstract
Over the past decades, the number of scientists trained in departments dedicated to traditional medicinal chemistry, biotransformation and/or chemical toxicology have seemingly declined. Yet, there remains a strong demand for such specialized skills in the pharmaceutical industry, particularly within drug metabolism/pharmacokinetics (DMPK) departments. In this position paper, the members of the Biotransformation, Mechanisms, and Pathways Focus Group (BMPFG) steering committee reflect on the diverse roles and responsibilities of scientists trained in the biotransformation field in pharmaceutical companies and contract research organizations. The BMPFG is affiliated with the International Society for the Study of Xenobiotics (ISSX) and was specifically created to promote the exchange of ideas pertaining to topics of current and future interest involving the metabolism of xenobiotics (including drugs). The authors also delve into the relevant education and diverse training skills required to successfully nurture the future cohort of industry biotransformation scientists and guide them toward a rewarding career path. The ability of scientists with a background in biotransformation and organic chemistry to creatively solve complex drug metabolism problems encountered during research and development efforts on both small and large molecular modalities is exemplified in five relevant case studies. Finally, the authors stress the importance and continued commitment to training the next generation of biotransformation scientists who are not only experienced in the metabolism of conventional small molecule therapeutics, but are also equipped to tackle emerging challenges associated with new drug discovery modalities including peptides, protein degraders, and antibodies. SIGNIFICANCE STATEMENT: Biotransformation and mechanistic drug metabolism scientists are critical to advancing chemical entities through discovery and development, yet the number of scientists academically trained for this role is on the decline. This position paper highlights the continuing demand for biotransformation scientists and the necessity of nurturing creative ways to train them and guarantee the future growth of this field.
Collapse
Affiliation(s)
- Valerie M Kramlinger
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts (V.M.K.)
- Bristol Myers Squibb, San Diego, California (D.D.)
- Medicine Design, Pfizer Worldwide Research, Groton, Connecticut (C.J.S.H.); Medicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts (A.S.K.); Charles River Laboratories Edinburgh Ltd, Tranent, Scotland (J.O.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (D.S.)
- Drug Metabolism and Pharmacokinetics Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.M.T.); and Medicinal Chemistry, University of Washington, Seattle, Washington (R.A.T.)
| | - Deepak Dalvie
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts (V.M.K.)
- Bristol Myers Squibb, San Diego, California (D.D.)
- Medicine Design, Pfizer Worldwide Research, Groton, Connecticut (C.J.S.H.); Medicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts (A.S.K.); Charles River Laboratories Edinburgh Ltd, Tranent, Scotland (J.O.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (D.S.)
- Drug Metabolism and Pharmacokinetics Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.M.T.); and Medicinal Chemistry, University of Washington, Seattle, Washington (R.A.T.)
| | - Carley J S Heck
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts (V.M.K.)
- Bristol Myers Squibb, San Diego, California (D.D.)
- Medicine Design, Pfizer Worldwide Research, Groton, Connecticut (C.J.S.H.); Medicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts (A.S.K.); Charles River Laboratories Edinburgh Ltd, Tranent, Scotland (J.O.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (D.S.)
- Drug Metabolism and Pharmacokinetics Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.M.T.); and Medicinal Chemistry, University of Washington, Seattle, Washington (R.A.T.)
| | - Amit S Kalgutkar
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts (V.M.K.)
- Bristol Myers Squibb, San Diego, California (D.D.)
- Medicine Design, Pfizer Worldwide Research, Groton, Connecticut (C.J.S.H.); Medicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts (A.S.K.); Charles River Laboratories Edinburgh Ltd, Tranent, Scotland (J.O.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (D.S.)
- Drug Metabolism and Pharmacokinetics Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.M.T.); and Medicinal Chemistry, University of Washington, Seattle, Washington (R.A.T.)
| | - James O'Neill
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts (V.M.K.)
- Bristol Myers Squibb, San Diego, California (D.D.)
- Medicine Design, Pfizer Worldwide Research, Groton, Connecticut (C.J.S.H.); Medicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts (A.S.K.); Charles River Laboratories Edinburgh Ltd, Tranent, Scotland (J.O.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (D.S.)
- Drug Metabolism and Pharmacokinetics Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.M.T.); and Medicinal Chemistry, University of Washington, Seattle, Washington (R.A.T.)
| | - Dian Su
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts (V.M.K.)
- Bristol Myers Squibb, San Diego, California (D.D.)
- Medicine Design, Pfizer Worldwide Research, Groton, Connecticut (C.J.S.H.); Medicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts (A.S.K.); Charles River Laboratories Edinburgh Ltd, Tranent, Scotland (J.O.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (D.S.)
- Drug Metabolism and Pharmacokinetics Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.M.T.); and Medicinal Chemistry, University of Washington, Seattle, Washington (R.A.T.)
| | - Aaron M Teitelbaum
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts (V.M.K.)
- Bristol Myers Squibb, San Diego, California (D.D.)
- Medicine Design, Pfizer Worldwide Research, Groton, Connecticut (C.J.S.H.); Medicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts (A.S.K.); Charles River Laboratories Edinburgh Ltd, Tranent, Scotland (J.O.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (D.S.)
- Drug Metabolism and Pharmacokinetics Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.M.T.); and Medicinal Chemistry, University of Washington, Seattle, Washington (R.A.T.)
| | - Rheem A Totah
- Translational Medicine, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts (V.M.K.)
- Bristol Myers Squibb, San Diego, California (D.D.)
- Medicine Design, Pfizer Worldwide Research, Groton, Connecticut (C.J.S.H.); Medicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts (A.S.K.); Charles River Laboratories Edinburgh Ltd, Tranent, Scotland (J.O.); Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (D.S.)
- Drug Metabolism and Pharmacokinetics Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.M.T.); and Medicinal Chemistry, University of Washington, Seattle, Washington (R.A.T.)
| |
Collapse
|
5
|
Khera E, Dong S, Huang H, de Bever L, Delft FLV, Thurber GM. Cellular-Resolution Imaging of Bystander Payload Tissue Penetration from Antibody-Drug Conjugates. Mol Cancer Ther 2021; 21:310-321. [PMID: 34911819 DOI: 10.1158/1535-7163.mct-21-0580] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022]
Abstract
After several notable clinical failures in early generations, antibody-drug conjugates (ADCs) have made significant gains with seven new FDA-approvals within the last 3 years. These successes have been driven by a shift towards mechanistically informed ADC design, where the payload, linker, drug-to-antibody ratio, and conjugation are increasingly tailored to a specific target and clinical indication. However, fundamental aspects needed for design, such as payload distribution, remain incompletely understood. Payloads are often classified as 'bystander' or 'non-bystander' depending on their ability to diffuse out of targeted cells into adjacent cells that may be antigen negative or more distant from tumor vessels, helping to overcome heterogeneous distribution. Seven of the eleven FDA-approved ADCs employ these bystander payloads, but the depth of penetration and cytotoxic effects as a function of physicochemical properties and mechanism of action have not been fully characterized. Here, we utilized tumor spheroids and pharmacodynamic marker staining to quantify tissue penetration of the three major classes of agents: microtubule inhibitors, DNA-damaging agents, and topoisomerase inhibitors. PAMPA data and co-culture assays were performed to compare to the 3D tissue culture data. The results demonstrate a spectrum in bystander potential and tissue penetration depending on the physicochemical properties and potency of the payload. Generally, directly targeted cells show a greater response even with bystander payloads, consistent with the benefit of deeper ADC penetration. These results are compared to computational simulations to help scale the data from in vitro and preclinical animal models to the clinic.
Collapse
Affiliation(s)
- Eshita Khera
- Chemical Engineering, University of Michigan–Ann Arbor
| | - Shujun Dong
- Chemical Engineering, University of Michigan–Ann Arbor
| | - Haolong Huang
- Chemical Engineering, University of Michigan–Ann Arbor
| | | | | | - Greg M Thurber
- Chemical Engineering, Biomedical Engineering, University of Michigan–Ann Arbor
| |
Collapse
|
6
|
Theocharopoulos C, Lialios PP, Samarkos M, Gogas H, Ziogas DC. Antibody-Drug Conjugates: Functional Principles and Applications in Oncology and Beyond. Vaccines (Basel) 2021; 9:1111. [PMID: 34696218 PMCID: PMC8538104 DOI: 10.3390/vaccines9101111] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/28/2022] Open
Abstract
In the era of precision medicine, antibody-based therapeutics are rapidly enriched with emerging advances and new proof-of-concept formats. In this context, antibody-drug conjugates (ADCs) have evolved to merge the high selectivity and specificity of monoclonal antibodies (mAbs) with the cytotoxic potency of attached payloads. So far, ten ADCs have been approved by FDA for oncological indications and many others are currently being tested in clinical and preclinical level. This paper summarizes the essential components of ADCs, from their functional principles and structure up to their limitations and resistance mechanisms, focusing on all latest bioengineering breakthroughs such as bispecific mAbs, dual-drug platforms as well as novel linkers and conjugation chemistries. In continuation of our recent review on anticancer implication of ADC's technology, further insights regarding their potential usage outside of the oncological spectrum are also presented. Better understanding of immunoconjugates could maximize their efficacy and optimize their safety, extending their use in everyday clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Dimitrios C. Ziogas
- First Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, 115 27 Athens, Greece; (C.T.); (P.-P.L.); (M.S.); (H.G.)
| |
Collapse
|
7
|
Su D, Zhang D. Linker Design Impacts Antibody-Drug Conjugate Pharmacokinetics and Efficacy via Modulating the Stability and Payload Release Efficiency. Front Pharmacol 2021; 12:687926. [PMID: 34248637 PMCID: PMC8262647 DOI: 10.3389/fphar.2021.687926] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 01/03/2023] Open
Abstract
The development of antibody-drug conjugates (ADCs) has significantly been advanced in the past decade given the improvement of payloads, linkers and conjugation methods. In particular, linker design plays a critical role in modulating ADC stability in the systemic circulation and payload release efficiency in the tumors, which thus affects ADC pharmacokinetic (PK), efficacy and toxicity profiles. Previously, we have investigated key linker parameters such as conjugation chemistry (e.g., maleimide vs. disulfide), linker length and linker steric hindrance and their impacts on PK and efficacy profiles. Herein, we discuss our perspectives on development of integrated strategies for linker design to achieve a balance between ADC stability and payload release efficiency for desired efficacy in antigen-expressing xenograft models. The strategies have been successfully applied to the design of site-specific THIOMABTM antibody-drug conjugates (TDCs) with different payloads. We also propose to conduct dose fractionation studies to gain guidance for optimal dosing regimens of ADCs in pre-clinical models.
Collapse
Affiliation(s)
- Dian Su
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, United States
| | - Donglu Zhang
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
8
|
Bolleddula J, Shah A, Shadid M, Kamali A, Smith MD, Chowdhury SK. Pharmacokinetics and Catabolism of [ 3H]TAK-164, a Guanylyl Cyclase C Targeted Antibody-Drug Conjugate. Drug Metab Dispos 2020; 48:1239-1245. [PMID: 32843329 DOI: 10.1124/dmd.120.000194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
TAK-164 is an antibody-drug conjugate (ADC) comprising human anti-guanylyl cyclase C (GCC) monoclonal antibody conjugated to indolinobenzodiazepine DNA alkylator IGN-P1 through a cleavable alanine-alanine dipeptide linker. TAK-164 is currently being evaluated for the treatment of gastrointestinal cancers expressing GCC. The catabolism of TAK-164 was studied using 3H-labeled ADC using GCC-expressing HEK-293 (GCC-HEK-293) cells, rat tritosomes, cathepsin B, and tumor-bearing mice. Time- and target-dependent uptake of [3H]TAK-164 was observed in GCC-HEK-293 cells with approximately 12% of radioactivity associated with DNA after 24 hours of incubation. Rat liver tritosomes and cathepsin B yielded IGN-P1 aniline, sulfonated IGN-P1 (s-IGN-P1) aniline, and a lysine conjugate of IGN-P1 (IGN-P1-Lys) aniline as catabolites. In tumor-bearing mice, [3H]TAK-164 exhibited a terminal half-life of approximately 41 and 51 hours in plasma and blood, respectively, with low plasma clearance (0.75 ml/h per kilogram). The extractable radioactivity in plasma and tumor samples revealed the presence of s-IGN-P1 aniline and IGN-P1 aniline as payload-related components. The use of a radiolabeled payload in the ADC in tumor uptake investigations provided direct and quantitative evidence for tumor uptake, DNA binding, and proof of mechanism of action of the payload. SIGNIFICANCE STATEMENT: Since payload-related species are potent cytotoxins, a thorough characterization of released products of ADCs, metabolites, and their drug interaction potential is necessary prior to clinical investigations. This study characterized in vitro and in vivo DNA binding mechanisms and released products of TAK-164. The methodologies described here will be highly useful for characterization of payload-related products of ADCs in general.
Collapse
Affiliation(s)
- Jayaprakasam Bolleddula
- Drug Metabolism and Pharmacokinetics Department (J.B., A.S., M.S., A.K., S.K.C.) and Oncology Drug Discovery Unit (M.D.S.), Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts
| | - Abhi Shah
- Drug Metabolism and Pharmacokinetics Department (J.B., A.S., M.S., A.K., S.K.C.) and Oncology Drug Discovery Unit (M.D.S.), Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts
| | - Mohammad Shadid
- Drug Metabolism and Pharmacokinetics Department (J.B., A.S., M.S., A.K., S.K.C.) and Oncology Drug Discovery Unit (M.D.S.), Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts
| | - Afrand Kamali
- Drug Metabolism and Pharmacokinetics Department (J.B., A.S., M.S., A.K., S.K.C.) and Oncology Drug Discovery Unit (M.D.S.), Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts
| | - Michael D Smith
- Drug Metabolism and Pharmacokinetics Department (J.B., A.S., M.S., A.K., S.K.C.) and Oncology Drug Discovery Unit (M.D.S.), Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts
| | - Swapan K Chowdhury
- Drug Metabolism and Pharmacokinetics Department (J.B., A.S., M.S., A.K., S.K.C.) and Oncology Drug Discovery Unit (M.D.S.), Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts
| |
Collapse
|
9
|
Pre-clinical studies of EC2629, a highly potent folate- receptor-targeted DNA crosslinking agent. Sci Rep 2020; 10:12772. [PMID: 32728172 PMCID: PMC7391724 DOI: 10.1038/s41598-020-69682-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
Folate receptor (FR)-targeted small molecule drug conjugates (SMDCs) have shown promising results in early stage clinical trials with microtubule destabilizing agents, such as vintafolide and EC1456. In our effort to develop FR-targeted SMDCs with varying mechanisms of action, we synthesized EC2629, a folate conjugate of a DNA crosslinking agent based on a novel DNA-alkylating moiety. This agent was found to be extremely potent with an in vitro IC50 ~ 100× lower than folate SMDCs constructed with various microtubule inhibitors. EC2629 treatment of nude mice bearing FR-positive KB human xenografts led to cures in 100% of the test animals with very low dose levels (300 nmol/kg) following a convenient once a week schedule. The observed activity was not accompanied by any noticeable weight loss (up to 20 weeks post end of dosing). Complete responses were also observed against FR-positive paclitaxel (KB-PR) and cisplatin (KB-CR) resistant models. When evaluated against FR-positive patient derived xenograft (PDX) models of ovarian (ST070), endometrial (ST040) and triple negative breast cancers (ST502, ST738), EC2629 showed significantly greater anti-tumor activity compared to their corresponding standard of care treatments. Taken together, these studies thus demonstrated that EC2629, with its distinct DNA reacting mechanism, may be useful in treating FR-positive tumors, including those that are classified as drug resistant.
Collapse
|
10
|
Alexander EM, Kreitler DF, Guidolin V, Hurben AK, Drake E, Villalta PW, Balbo S, Gulick AM, Aldrich CC. Biosynthesis, Mechanism of Action, and Inhibition of the Enterotoxin Tilimycin Produced by the Opportunistic Pathogen Klebsiella oxytoca. ACS Infect Dis 2020; 6:1976-1997. [PMID: 32485104 PMCID: PMC7354218 DOI: 10.1021/acsinfecdis.0c00326] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tilimycin is an enterotoxin produced by the opportunistic pathogen Klebsiella oxytoca that causes antibiotic-associated hemorrhagic colitis (AAHC). This pyrrolobenzodiazepine (PBD) natural product is synthesized by a bimodular nonribosomal peptide synthetase (NRPS) pathway composed of three proteins: NpsA, ThdA, and NpsB. We describe the functional and structural characterization of the fully reconstituted NRPS system and report the steady-state kinetic analysis of all natural substrates and cofactors as well as the structural characterization of both NpsA and ThdA. The mechanism of action of tilimycin was confirmed using DNA adductomics techniques through the detection of putative N-2 guanine alkylation after tilimycin exposure to eukaryotic cells, providing the first structural characterization of a PBD-DNA adduct formed in cells. Finally, we report the rational design of small-molecule inhibitors that block tilimycin biosynthesis in whole cell K. oxytoca (IC50 = 29 ± 4 μM) through the inhibition of NpsA (KD = 29 ± 4 nM).
Collapse
Affiliation(s)
- Evan M. Alexander
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Dale F. Kreitler
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, New York 14203, USA
| | - Valeria Guidolin
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alexander K. Hurben
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Eric Drake
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, New York 14203, USA
| | - Peter W. Villalta
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrew M. Gulick
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, New York 14203, USA
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
11
|
Ma Y, Chen B, Zhang D. Quantitation of DNA by nuclease P1 digestion and UPLC-MS/MS to assess binding efficiency of pyrrolobenzodiazepine. J Pharm Anal 2020; 10:247-252. [PMID: 32612871 PMCID: PMC7322756 DOI: 10.1016/j.jpha.2020.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 11/17/2022] Open
Abstract
Accurate DNA quantitation is a prerequisite in many biomedical and pharmaceutical studies. Here we established a new DNA quantitation method by nuclease P1 digestion and UPLC-MS/MS analysis. DNA fragments can be efficiently hydrolyzed to single deoxyribonucleotides by nuclease P1 in a short time. The decent stabilities of all the four deoxyribonucleotides were confirmed under different conditions. Deoxyadenosine monophosphate (dAMP) was selected as the surrogate for DNA quantitation because dAMP showed the highest sensitivity among the four deoxyribonucleotides in the UPLC-MS/MS analysis. The linear range in DNA quantitation by this method is 1.2–5000 ng/mL. In the validation, the inter-day and intra-day accuracies were within 90%–110%, and the inter-day and intra-day precision were acceptable (RSD < 10%). The validated method was successfully applied to quantitate DNA isolated from tumors and organs of a mouse xenograft model. Compared to the quantitation methods using UV absorbance, the reported method provides an enhanced sensitivity, and it allows for the accurate quantitation of isolated DNA with contamination of RNA and ribonucleotide. A novel method to evaluate DNA binding efficiency of the DNA alkylator PBD in tumors of mouse models is reported. The DNA isolation, DNA digestion and the LC/MS quantitation of both DNA and PBD are involved. The method with an enhanced sensitivity allows for the accurate quantitation of isolated DNA from various tissues.
Collapse
Affiliation(s)
- Yong Ma
- Drug Metabolism and Disposition, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Buyun Chen
- Drug Metabolism and Disposition, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Donglu Zhang
- Drug Metabolism and Disposition, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| |
Collapse
|
12
|
Interpretation of Drug Interaction Using Systemic and Local Tissue Exposure Changes. Pharmaceutics 2020; 12:pharmaceutics12050417. [PMID: 32370191 PMCID: PMC7284846 DOI: 10.3390/pharmaceutics12050417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Systemic exposure of a drug is generally associated with its pharmacodynamic (PD) effect (e.g., efficacy and toxicity). In this regard, the change in area under the plasma concentration-time curve (AUC) of a drug, representing its systemic exposure, has been mainly considered in evaluation of drug-drug interactions (DDIs). Besides the systemic exposure, the drug concentration in the tissues has emerged as a factor to alter the PD effects. In this review, the status of systemic exposure, and/or tissue exposure changes in DDIs, were discussed based on the recent reports dealing with transporters and/or metabolic enzymes mediating DDIs. Particularly, the tissue concentration in the intestine, liver and kidney were referred to as important factors of PK-based DDIs.
Collapse
|
13
|
Singh R, Reid EE, Harris L, Salomon PL, Miller ML, Chari RVJ, Keating TA. Antibody-Drug Conjugates with Indolinobenzodiazepine Dimer Payloads: DNA-Binding Mechanism of Indolinobenzodiazepine Dimer Catabolites in Target Cancer Cells. Mol Pharm 2019; 17:50-58. [PMID: 31742408 DOI: 10.1021/acs.molpharmaceut.9b00675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA-targeting indolinobenzodiazepine dimer (IGN) payloads are used in several clinical-stage antibody-drug conjugates. IGN drugs alkylate DNA through the single imine moiety present in the dimer in contrast to the pyrrolobenzodiazepine dimer drugs, such as talirine and tesirine, which contain two imine moieties per dimer and cross-link DNA. This study explored the mechanism of binding of IGN to DNA in cells and to synthetic duplex and hairpin oligonucleotides. New, highly sensitive IGN-DNA binding enzyme-linked immunosorbent assay methods were developed using biotinylated IGN analogues (monoimine, diimine, and diamine IGNs) and digoxigenin-labeled duplex oligonucleotides, which allowed the measurement of drug-DNA adducts in viable cells at concentrations below IC50. Furthermore, the release of free drug from the IGN-DNA adduct upon treatment with nuclease ex vivo was tested under physiological conditions. The monoimine IGN drug formed a highly stable adduct with DNA in cells, with stability similar to that of the diimine drug analogue. Both monoimine and diimine IGN-DNA adducts released free drugs upon DNA cleavage by nuclease at 37 °C, although more free drug was released from the monoimine compared to the diimine adduct, which presumably was partly cross-linked. The strong binding of the monoimine IGN drug to duplex DNA results from both the noncovalent IGN-DNA interaction and the covalent bond formation between the 2-amino group of a guanine residue and the imine moiety in IGN.
Collapse
Affiliation(s)
- Rajeeva Singh
- ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Emily E Reid
- ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Luke Harris
- ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Paulin L Salomon
- ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Michael L Miller
- ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Ravi V J Chari
- ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Thomas A Keating
- ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| |
Collapse
|
14
|
Zhang D, Dragovich PS, Yu SF, Ma Y, Pillow TH, Sadowsky JD, Su D, Wang W, Polson A, Khojasteh SC, Hop CECA. Exposure-Efficacy Analysis of Antibody-Drug Conjugates Delivering an Excessive Level of Payload to Tissues. Drug Metab Dispos 2019; 47:1146-1155. [PMID: 31358513 DOI: 10.1124/dmd.119.087023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/26/2019] [Indexed: 02/13/2025] Open
Abstract
Antibody-drug conjugates (ADCs) contain a disease-receptor antibody and a payload drug connected via a linker. The payload delivery depends on both tumor properties and ADC characteristics. In this study, we used different linkers, attachment sites, and doses to modulate payload delivery of several ADCs bearing maytansinoids (e.g., DM1), auristatins (e.g., MMAE), and DNA alkylating agents [e.g., pyrrolo[2,1-c][1,4]benzodiazepine-dimer (PBD)] as payloads in HER2- or CD22-expressing xenograft models. The tumor growth inhibition and ADC stability and exposure data were collected and analyzed from these dosed animals. The trend analysis suggests that intratumoral payload exposures that directly related the combination of conjugate linker and dose correlate with the corresponding efficacies of three payload types in two antigen-expressing xenograft models. These preliminary correlations also suggest that a minimal threshold concentration of intratumoral payload is required to support sustained efficacy. In addition, an ADC can deliver an excessive level of payload to tumors that does not enhance efficacy ("Plateau" effect). In contrast to tumor payload concentrations, the assessments of systemic exposures of total antibody (Tab) as well as the linker, dose, site of attachment, plasma stability, and drug-to-antibody ratio changes of these ADCs did not consistently rationalize the observed ADC efficacies. The requirement of a threshold payload concentration for efficacy is further supported by dose fractionation studies with DM1-, MMAE-, and PBD-containing ADCs, which demonstrated that single-dose regimens showed better efficacies than fractionated dosing. Overall, this study demonstrates that 1) the linker and dose together determine the tissue payload concentration that correlates with the antitumor efficacy of ADCs and 2) an ADC can deliver an unnecessary level of payload to tumors in xenograft models.
Collapse
Affiliation(s)
- Donglu Zhang
- Drug Metabolism & Pharmacokinetics (D.Z., Y.M., D.S., W.W., S.C.K., C.E.C.A.H.), Discovery Chemistry (P.S.D., T.H.P.), Translational Oncology (S.-F.Y., A.P.), and Protein Chemistry (J.D.S.), Genentech, South San Francisco, California
| | - Peter S Dragovich
- Drug Metabolism & Pharmacokinetics (D.Z., Y.M., D.S., W.W., S.C.K., C.E.C.A.H.), Discovery Chemistry (P.S.D., T.H.P.), Translational Oncology (S.-F.Y., A.P.), and Protein Chemistry (J.D.S.), Genentech, South San Francisco, California
| | - Shang-Fan Yu
- Drug Metabolism & Pharmacokinetics (D.Z., Y.M., D.S., W.W., S.C.K., C.E.C.A.H.), Discovery Chemistry (P.S.D., T.H.P.), Translational Oncology (S.-F.Y., A.P.), and Protein Chemistry (J.D.S.), Genentech, South San Francisco, California
| | - Yong Ma
- Drug Metabolism & Pharmacokinetics (D.Z., Y.M., D.S., W.W., S.C.K., C.E.C.A.H.), Discovery Chemistry (P.S.D., T.H.P.), Translational Oncology (S.-F.Y., A.P.), and Protein Chemistry (J.D.S.), Genentech, South San Francisco, California
| | - Thomas H Pillow
- Drug Metabolism & Pharmacokinetics (D.Z., Y.M., D.S., W.W., S.C.K., C.E.C.A.H.), Discovery Chemistry (P.S.D., T.H.P.), Translational Oncology (S.-F.Y., A.P.), and Protein Chemistry (J.D.S.), Genentech, South San Francisco, California
| | - Jack D Sadowsky
- Drug Metabolism & Pharmacokinetics (D.Z., Y.M., D.S., W.W., S.C.K., C.E.C.A.H.), Discovery Chemistry (P.S.D., T.H.P.), Translational Oncology (S.-F.Y., A.P.), and Protein Chemistry (J.D.S.), Genentech, South San Francisco, California
| | - Dian Su
- Drug Metabolism & Pharmacokinetics (D.Z., Y.M., D.S., W.W., S.C.K., C.E.C.A.H.), Discovery Chemistry (P.S.D., T.H.P.), Translational Oncology (S.-F.Y., A.P.), and Protein Chemistry (J.D.S.), Genentech, South San Francisco, California
| | - Wei Wang
- Drug Metabolism & Pharmacokinetics (D.Z., Y.M., D.S., W.W., S.C.K., C.E.C.A.H.), Discovery Chemistry (P.S.D., T.H.P.), Translational Oncology (S.-F.Y., A.P.), and Protein Chemistry (J.D.S.), Genentech, South San Francisco, California
| | - Andrew Polson
- Drug Metabolism & Pharmacokinetics (D.Z., Y.M., D.S., W.W., S.C.K., C.E.C.A.H.), Discovery Chemistry (P.S.D., T.H.P.), Translational Oncology (S.-F.Y., A.P.), and Protein Chemistry (J.D.S.), Genentech, South San Francisco, California
| | - S Cyrus Khojasteh
- Drug Metabolism & Pharmacokinetics (D.Z., Y.M., D.S., W.W., S.C.K., C.E.C.A.H.), Discovery Chemistry (P.S.D., T.H.P.), Translational Oncology (S.-F.Y., A.P.), and Protein Chemistry (J.D.S.), Genentech, South San Francisco, California
| | - Cornelis E C A Hop
- Drug Metabolism & Pharmacokinetics (D.Z., Y.M., D.S., W.W., S.C.K., C.E.C.A.H.), Discovery Chemistry (P.S.D., T.H.P.), Translational Oncology (S.-F.Y., A.P.), and Protein Chemistry (J.D.S.), Genentech, South San Francisco, California
| |
Collapse
|
15
|
Zhang D, Hop CECA, Patilea-Vrana G, Gampa G, Seneviratne HK, Unadkat JD, Kenny JR, Nagapudi K, Di L, Zhou L, Zak M, Wright MR, Bumpus NN, Zang R, Liu X, Lai Y, Khojasteh SC. Drug Concentration Asymmetry in Tissues and Plasma for Small Molecule-Related Therapeutic Modalities. Drug Metab Dispos 2019; 47:1122-1135. [PMID: 31266753 PMCID: PMC6756291 DOI: 10.1124/dmd.119.086744] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
The well accepted "free drug hypothesis" for small-molecule drugs assumes that only the free (unbound) drug concentration at the therapeutic target can elicit a pharmacologic effect. Unbound (free) drug concentrations in plasma are readily measurable and are often used as surrogates for the drug concentrations at the site of pharmacologic action in pharmacokinetic-pharmacodynamic analysis and clinical dose projection in drug discovery. Furthermore, for permeable compounds at pharmacokinetic steady state, the free drug concentration in tissue is likely a close approximation of that in plasma; however, several factors can create and maintain disequilibrium between the free drug concentration in plasma and tissue, leading to free drug concentration asymmetry. These factors include drug uptake and extrusion mechanisms involving the uptake and efflux drug transporters, intracellular biotransformation of prodrugs, membrane receptor-mediated uptake of antibody-drug conjugates, pH gradients, unique distribution properties (covalent binders, nanoparticles), and local drug delivery (e.g., inhalation). The impact of these factors on the free drug concentrations in tissues can be represented by K p,uu, the ratio of free drug concentration between tissue and plasma at steady state. This review focuses on situations in which free drug concentrations in tissues may differ from those in plasma (e.g., K p,uu > or <1) and discusses the limitations of the surrogate approach of using plasma-free drug concentration to predict free drug concentrations in tissue. This is an important consideration for novel therapeutic modalities since systemic exposure as a driver of pharmacologic effects may provide limited value in guiding compound optimization, selection, and advancement. Ultimately, a deeper understanding of the relationship between free drug concentrations in plasma and tissues is needed.
Collapse
Affiliation(s)
- Donglu Zhang
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Cornelis E C A Hop
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Gabriela Patilea-Vrana
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Gautham Gampa
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Herana Kamal Seneviratne
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Jashvant D Unadkat
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Jane R Kenny
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Karthik Nagapudi
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Li Di
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Lian Zhou
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Mark Zak
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Matthew R Wright
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Namandjé N Bumpus
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Richard Zang
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Xingrong Liu
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Yurong Lai
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - S Cyrus Khojasteh
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| |
Collapse
|
16
|
Wang S, Chen B, Dragovich P, Pillow T, Staben L, Guo J, Su D, Zhang C, Bobba S, Ma Y, Wang J, Sangaraju D, Wei B, Phillips GL, Khojasteh C, Zhang D. A Novel Depurination Methodology to Assess DNA Alkylation of Chloro-Bis-Seco-Cyclopropylbenzoindoles Allowed for Comparison of Minor-Groove Reactivity. Drug Metab Dispos 2019; 47:547-555. [PMID: 30858239 DOI: 10.1124/dmd.118.085209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/25/2019] [Indexed: 02/13/2025] Open
Abstract
Duocarmycins [including cyclopropyl pyrroloindole (CPI) or cyclopropyl benzoindole (CBI)] are a class of DNA minor-groove alkylators and seco-CPI/CBIs are synthetic pro-forms that can spirocyclize to CPI/CBI. Bis-CPI/CBIs are potential drug candidates because of their enhanced cytotoxicity from DNA crosslinking, but it is difficult to analyze them for structure-activity correlation because of their DNA reactivity. To study their DNA alkylation, neutral thermal hydrolysis has been frequently applied to process depurination. However, unwanted side reactions under this condition have been reported, which could lead to poor correlation of DNA alkylation data with efficacy results, especially for bis-CPI/CBIs. In this study, an acidic depurination method was developed and applied for analysis of DNA alkylation and shown to be an easier and milder method than the traditional neutral thermal hydrolysis. DNA alkylation and stability of three bis-seco-CBIs were characterized in comparison with two mono-seco-CPIs. The results suggested that: 1) The acidic depurination method was capable of capturing a more representative population, sometimes a different population, of DNA adducts as they existed on DNA compared with the heat depurination method. 2) Di-adenine adducts were captured as expected for the CBI dimers, although the major type of adduct was still mono-adenine adducts. 3) The rate of DNA alkylation, DNA adduct profile, and relative amounts of di-adduct versus mono-adduct were significantly affected by the size, and possibly lipophilicity, of the nonalkylating part of the molecules. 4) Spirocyclization and amide hydrolysis represented two major pathways of degradation. Overall, by applying acidic depurination analyses, this study has illustrated DNA adduct characteristics of novel bis-seco-CBIs with dominating mono-alkylation and provides an alternative method for evaluating DNA minor-groove alkylators. These findings provide an effective analytical tool to evaluate DNA alkylators and to study the DNA alkylation that is a disposition mechanism of these compounds.
Collapse
Affiliation(s)
- Shuai Wang
- Drug Metabolism and Pharmacokinetics (S.W., B.C., D.Su., C.Z., S.B., Y.M., J.W., D.Sa., C.K., D.Z.), Discovery Chemistry (P.D., T.P., L.S., B.W.), and Discovery Biology (J.G., G.L.P.), Genentech, Inc., South San Francisco, California
| | - Buyun Chen
- Drug Metabolism and Pharmacokinetics (S.W., B.C., D.Su., C.Z., S.B., Y.M., J.W., D.Sa., C.K., D.Z.), Discovery Chemistry (P.D., T.P., L.S., B.W.), and Discovery Biology (J.G., G.L.P.), Genentech, Inc., South San Francisco, California
| | - Peter Dragovich
- Drug Metabolism and Pharmacokinetics (S.W., B.C., D.Su., C.Z., S.B., Y.M., J.W., D.Sa., C.K., D.Z.), Discovery Chemistry (P.D., T.P., L.S., B.W.), and Discovery Biology (J.G., G.L.P.), Genentech, Inc., South San Francisco, California
| | - Thomas Pillow
- Drug Metabolism and Pharmacokinetics (S.W., B.C., D.Su., C.Z., S.B., Y.M., J.W., D.Sa., C.K., D.Z.), Discovery Chemistry (P.D., T.P., L.S., B.W.), and Discovery Biology (J.G., G.L.P.), Genentech, Inc., South San Francisco, California
| | - Leanna Staben
- Drug Metabolism and Pharmacokinetics (S.W., B.C., D.Su., C.Z., S.B., Y.M., J.W., D.Sa., C.K., D.Z.), Discovery Chemistry (P.D., T.P., L.S., B.W.), and Discovery Biology (J.G., G.L.P.), Genentech, Inc., South San Francisco, California
| | - Jun Guo
- Drug Metabolism and Pharmacokinetics (S.W., B.C., D.Su., C.Z., S.B., Y.M., J.W., D.Sa., C.K., D.Z.), Discovery Chemistry (P.D., T.P., L.S., B.W.), and Discovery Biology (J.G., G.L.P.), Genentech, Inc., South San Francisco, California
| | - Dian Su
- Drug Metabolism and Pharmacokinetics (S.W., B.C., D.Su., C.Z., S.B., Y.M., J.W., D.Sa., C.K., D.Z.), Discovery Chemistry (P.D., T.P., L.S., B.W.), and Discovery Biology (J.G., G.L.P.), Genentech, Inc., South San Francisco, California
| | - Chenghong Zhang
- Drug Metabolism and Pharmacokinetics (S.W., B.C., D.Su., C.Z., S.B., Y.M., J.W., D.Sa., C.K., D.Z.), Discovery Chemistry (P.D., T.P., L.S., B.W.), and Discovery Biology (J.G., G.L.P.), Genentech, Inc., South San Francisco, California
| | - Sudheer Bobba
- Drug Metabolism and Pharmacokinetics (S.W., B.C., D.Su., C.Z., S.B., Y.M., J.W., D.Sa., C.K., D.Z.), Discovery Chemistry (P.D., T.P., L.S., B.W.), and Discovery Biology (J.G., G.L.P.), Genentech, Inc., South San Francisco, California
| | - Yong Ma
- Drug Metabolism and Pharmacokinetics (S.W., B.C., D.Su., C.Z., S.B., Y.M., J.W., D.Sa., C.K., D.Z.), Discovery Chemistry (P.D., T.P., L.S., B.W.), and Discovery Biology (J.G., G.L.P.), Genentech, Inc., South San Francisco, California
| | - Jianshuang Wang
- Drug Metabolism and Pharmacokinetics (S.W., B.C., D.Su., C.Z., S.B., Y.M., J.W., D.Sa., C.K., D.Z.), Discovery Chemistry (P.D., T.P., L.S., B.W.), and Discovery Biology (J.G., G.L.P.), Genentech, Inc., South San Francisco, California
| | - Dewakar Sangaraju
- Drug Metabolism and Pharmacokinetics (S.W., B.C., D.Su., C.Z., S.B., Y.M., J.W., D.Sa., C.K., D.Z.), Discovery Chemistry (P.D., T.P., L.S., B.W.), and Discovery Biology (J.G., G.L.P.), Genentech, Inc., South San Francisco, California
| | - BinQing Wei
- Drug Metabolism and Pharmacokinetics (S.W., B.C., D.Su., C.Z., S.B., Y.M., J.W., D.Sa., C.K., D.Z.), Discovery Chemistry (P.D., T.P., L.S., B.W.), and Discovery Biology (J.G., G.L.P.), Genentech, Inc., South San Francisco, California
| | - Gail Lewis Phillips
- Drug Metabolism and Pharmacokinetics (S.W., B.C., D.Su., C.Z., S.B., Y.M., J.W., D.Sa., C.K., D.Z.), Discovery Chemistry (P.D., T.P., L.S., B.W.), and Discovery Biology (J.G., G.L.P.), Genentech, Inc., South San Francisco, California
| | - Cyrus Khojasteh
- Drug Metabolism and Pharmacokinetics (S.W., B.C., D.Su., C.Z., S.B., Y.M., J.W., D.Sa., C.K., D.Z.), Discovery Chemistry (P.D., T.P., L.S., B.W.), and Discovery Biology (J.G., G.L.P.), Genentech, Inc., South San Francisco, California
| | - Donglu Zhang
- Drug Metabolism and Pharmacokinetics (S.W., B.C., D.Su., C.Z., S.B., Y.M., J.W., D.Sa., C.K., D.Z.), Discovery Chemistry (P.D., T.P., L.S., B.W.), and Discovery Biology (J.G., G.L.P.), Genentech, Inc., South San Francisco, California
| |
Collapse
|
17
|
Li C, Dong L, Kamali A, Sugimoto H, Abdul-Hadi K, Chen S, Abu-Yousif A, Qian MG. An LC/MS based method to quantify DNA adduct in tumor and organ tissues. Anal Biochem 2019; 568:1-6. [DOI: 10.1016/j.ab.2018.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023]
|
18
|
Jackson PJM, Kay S, Pysz I, Thurston DE. Use of pyrrolobenzodiazepines and related covalent-binding DNA-interactive molecules as ADC payloads: Is mechanism related to systemic toxicity? DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 30:71-83. [PMID: 30553523 DOI: 10.1016/j.ddtec.2018.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
Antibody-drug conjugates (ADCs) consist of monoclonal antibodies (mAbs) or antibody fragments conjugated to biologically active molecules (usually highly cytotoxic small molecules) through chemical linkers. Although no ADCs containing covalent-binding DNA-interactive payloads have yet been approved (although two containing the DNA-cleaving payload calicheamicin have), of those in clinical trials systemic toxicities are beginning to emerge. This article discusses the observed toxicities in relation to the structures and mechanisms of action of payload type.
Collapse
Affiliation(s)
- Paul J M Jackson
- Femtogenix Ltd., Biopark, Broadwater Road, Welwyn Garden City AL7 3AX, United Kingdom
| | - Syafiq Kay
- Femtogenix Ltd., Biopark, Broadwater Road, Welwyn Garden City AL7 3AX, United Kingdom; Institute for Pharmaceutical Science, King's College London, Faculty of Life Sciences and Medicine, Franklin Wilkins Building, London SE1 9NH, United Kingdom
| | - Ilona Pysz
- Femtogenix Ltd., Biopark, Broadwater Road, Welwyn Garden City AL7 3AX, United Kingdom; Institute for Pharmaceutical Science, King's College London, Faculty of Life Sciences and Medicine, Franklin Wilkins Building, London SE1 9NH, United Kingdom
| | - David E Thurston
- Femtogenix Ltd., Biopark, Broadwater Road, Welwyn Garden City AL7 3AX, United Kingdom; Institute for Pharmaceutical Science, King's College London, Faculty of Life Sciences and Medicine, Franklin Wilkins Building, London SE1 9NH, United Kingdom.
| |
Collapse
|
19
|
Miller ML, Shizuka M, Wilhelm A, Salomon P, Reid EE, Lanieri L, Sikka S, Maloney EK, Harvey L, Qiu Q, Archer KE, Bai C, Vitharana D, Harris L, Singh R, Ponte JF, Yoder NC, Kovtun Y, Lai KC, Ab O, Pinkas J, Keating TA, Chari RV. A DNA-Interacting Payload Designed to Eliminate Cross-Linking Improves the Therapeutic Index of Antibody–Drug Conjugates (ADCs). Mol Cancer Ther 2018; 17:650-660. [DOI: 10.1158/1535-7163.mct-17-0940] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/15/2017] [Accepted: 12/28/2017] [Indexed: 11/16/2022]
|
20
|
Zhang D, Yu SF, Khojasteh SC, Ma Y, Pillow TH, Sadowsky JD, Su D, Kozak KR, Xu K, Polson AG, Dragovich PS, Hop CE. Intratumoral Payload Concentration Correlates with the Activity of Antibody–Drug Conjugates. Mol Cancer Ther 2018; 17:677-685. [DOI: 10.1158/1535-7163.mct-17-0697] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/14/2017] [Accepted: 12/08/2017] [Indexed: 11/16/2022]
|
21
|
Abstract
The antibody-drug conjugate (ADC) field is in a transitional period. Older approaches to conjugate composition and dosing regimens still dominate the ADC clinical pipeline, but preclinical work is driving a rapid evolution in how we strategize to improve efficacy and reduce toxicity towards better therapeutic outcomes. These advances are largely based upon a body of investigational studies that together offer a deeper understanding of the absorption, distribution, metabolism, and excretion (ADME) and drug metabolism and pharmacokinetics (DMPK) fates of both the intact conjugate and its small-molecule component. Knowing where the drug goes and how it is processed allows mechanistic connections to be drawn with commonly observed clinical toxicities. The field is also starting to consider ADC interactions with the immune system and potential synergistic therapeutic opportunities therein. In an indication of future directions for the field, antibody conjugates bearing non-cytotoxic small-molecule payloads are being developed to reduce side effects associated with treatment of chronic diseases. ADCs are not a magic bullet to cure disease. However, they will increasingly become valuable therapeutic tools to improve patient outcomes across a variety of indications.
Collapse
Affiliation(s)
- Penelope M Drake
- Catalent Biologics, 5703 Hollis Street, Emeryville, CA, 94608, USA
| | - David Rabuka
- Catalent Biologics, 5703 Hollis Street, Emeryville, CA, 94608, USA.
| |
Collapse
|