1
|
He C, Mao Y, Wan H. In-depth understanding of the structure-based reactive metabolite formation of organic functional groups. Drug Metab Rev 2025; 57:147-189. [PMID: 40008940 DOI: 10.1080/03602532.2025.2472076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a leading cause of drug attrition and/or withdrawal. The formation of reactive metabolites is widely accepted as a key factor contributing to idiosyncratic DILI. Therefore, identifying reactive metabolites has become a critical focus during lead optimization, and a combination of GSH-/cyano-trapping and cytochrome P450 inactivation studies is recommended to identify compounds with the potential to generate reactive metabolites. Daily dose, clinical indication, detoxication pathways, administration route, and treatment duration are the most considerations when deprioritizing candidates that generate reactive metabolites. Removing the structural alerts is considered a pragmatic strategy for mitigating the risk associated with reactive metabolites, although this approach may sometimes exclude otherwise potent molecules. In this context, an in-depth insight into the structure-based reactive metabolite formation of organic functional groups can significantly aid in the rational design of drug candidates with improved safety profiles. The primary goal of this review is to delve into an analysis of the bioactivation mechanisms of organic functional groups and their potential detrimental effects with recent examples to assist medicinal chemists and metabolism scientists in designing safer drug candidates with a higher likelihood of success.
Collapse
Affiliation(s)
- Chunyong He
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Yuchang Mao
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical Co. Ltd., Shanghai, China
| | - Hong Wan
- WHDex Consulting AB, Mölndal, Sweden
| |
Collapse
|
2
|
Zhu L, Yang X, Wu S, Dong R, Yan Y, Lin N, Zhang B, Tan B. Hepatotoxicity of epidermal growth factor receptor - tyrosine kinase inhibitors (EGFR-TKIs). Drug Metab Rev 2024; 56:302-317. [PMID: 39120430 DOI: 10.1080/03602532.2024.2388203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Drug-induced liver injury (DILI) is one of the most frequently adverse reactions in clinical drug use, usually caused by drugs or herbal compounds. Compared with other populations, cancer patients are more prone to abnormal liver function due to primary or secondary liver malignant tumor, radiation-induced liver injury and other reasons, making potential adverse reactions from liver damage caused by anticancer drugs of particular concernduring clinical treatment process. In recent years, the application of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has changed the treatment status of a series of solid malignant tumors. Unfortunately, the increasing incidence of hepatotoxicitylimits the clinical application of EGFR-TKIs. The mechanisms of liver injury caused by EGFR-TKIs were complex. Despite more than a decade of research, other than direct damage to hepatocytes caused by inhibition of cellular DNA synthesis and resulting in hepatocyte necrosis, the rest of the specific mechanisms remain unclear, and few effective solutions are available. This review focuses on the clinical feature, incidence rates and the recent advances on the discovery of mechanism of hepatotoxicity in EGFR-TKIs, as well as rechallenge and therapeutic strategies underlying hepatotoxicity of EGFR-TKIs.
Collapse
Affiliation(s)
- Lulin Zhu
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xinxin Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanshan Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Dong
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Youyou Yan
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Nengming Lin
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Biqin Tan
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Ren K, Zhang C, Liu M, Gao H, Ren S, Wang D, Yuan Z, Pan Y, Liu X. The attenuation effect of licorice on the hepatotoxicity of Euodiae Fructus by inhibiting the formation of protein conjugates and GSH depletion. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116307. [PMID: 36842722 DOI: 10.1016/j.jep.2023.116307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese medicine and food, Euodiae Fructus (EF) is widely used in clinics to relieve pain and prevent vomiting and for making tea for more than a thousand years. In recent years, hepatotoxic reactions to EF have been reported. The intermediates produced by evodiamine and rutaecarpine metabolism in vitro were captured by glutathione (GSH), suggesting that the toxicity of EF may be related to metabolic activation. Whether licorice can inhibit the metabolic activation of EF has not been reported, which needed an effective strategy to clarify the correlation between protein conjugates and hepatotoxicity and the attenuation mechanism of licorice processing. AIM OF THE STUDY This study aimed to explore the toxic components and mechanisms of EF based on metabolic activation and the detoxification of licorice. MATERIALS AND METHODS The content and toxicity index of protein conjugates in the liver were determined by orally administering mice and rats with EF. The attenuation mechanism of licorice was examined in cell and enzymology experiments. RESULTS The change in evodiamine-cysteinylglycine (EVO-Cys-Gly) and evodiamine-cysteine (EVO-Cys) levels was consistent with the change in hepatotoxicity. Licorice inhibited the formation of the protein conjugates of EF and increased the content of GSH in L02 cells. CONCLUSION EF mediated by P450 enzymes produced toxic intermediates, which combined with cysteine residues in animal liver and inactivate them, leading to hepatotoxicity. Interestingly, licorice can alleviate the GSH depletion caused by EF and inhibit the production of protein conjugates by inhibiting P450 enzymes.
Collapse
Affiliation(s)
- Kun Ren
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Chuhao Zhang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Meihan Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Huiyuan Gao
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Shumeng Ren
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Dongmei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zhong Yuan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Yingni Pan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Xiaoqiu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
4
|
Yan M, Li W, Li WB, Huang Q, Li J, Cai HL, Gong H, Zhang BK, Wang YK. Metabolic activation of tyrosine kinase inhibitors: recent advance and further clinical practice. Drug Metab Rev 2023; 55:94-106. [PMID: 36453523 DOI: 10.1080/03602532.2022.2149775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
At present, receptor tyrosine kinase signaling-related pathways have been successfully mediated to inhibit tumor proliferation and promote anti-angiogenesis effects for cancer therapy. Tyrosine kinase inhibitors (TKIs), a group of novel chemotherapeutic agents, have been applied to treat diverse malignant tumors effectively. However, the latent toxic and side effects of TKIs, such as hepatotoxicity and cardiotoxicity, limit their use in clinical practice. Metabolic activation has the potential to lead to toxic effects. Numerous TKIs have been demonstrated to be transformed into chemically reactive/potentially toxic metabolites following cytochrome P450-catalyzed activation, which causes severe adverse reactions, including hepatotoxicity, cardiotoxicity, skin toxicity, immune injury, mitochondria injury, and cytochrome P450 inactivation. However, the precise mechanisms of how these chemically reactive/potentially toxic species induce toxicity remain poorly understood. In addition, we present our viewpoints that regulating the production of reactive metabolites may decrease the toxicity of TKIs. Exploring this topic will improve understanding of metabolic activation and its underlying mechanisms, promoting the rational use of TKIs. This review summarizes the updated evidence concerning the reactive metabolites of TKIs and the associated toxicities. This paper provides novel insight into the safe use of TKIs and the prevention and treatment of multiple TKIs adverse effects in clinical practice.
Collapse
Affiliation(s)
- Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Wen-Bo Li
- Department of Plastic and Aesthetic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hua-Lin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Yi-Kun Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| |
Collapse
|
5
|
Zhao Q, Wu ZE, Li B, Li F. Recent advances in metabolism and toxicity of tyrosine kinase inhibitors. Pharmacol Ther 2022; 237:108256. [DOI: 10.1016/j.pharmthera.2022.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022]
|
6
|
Zhou S, Zhang N, Hu Z, Lin D, Li W, Peng Y, Zheng J. Immunochemical Detection of Protein Modification Derived from Metabolic Activation of 8-Epidiosbulbin E Acetate. Chem Res Toxicol 2020; 33:1752-1760. [PMID: 32347100 DOI: 10.1021/acs.chemrestox.0c00016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Furanoid 8-epidiosbulbin E acetate (EEA) is one of the most abundant diterpenoid lactones in herbal medicine Dioscorea bulbifera L. (DB). Our early work proved that EEA could be metabolized to EEA-derived cis-enedial (EDE), a reactive intermediate, which is required for the hepatotoxicity observed in experimental animals exposed to EEA. Also, we found that EDE could modify hepatic protein by reaction with thiol groups and/or primary amines of protein. The present study was inclined to develop polyclonal antibodies to detect protein modified by EDE. An immunogen was prepared by reaction of EDE with keyhole limpet hemocyanin (KLH), and polyclonal antibodies were raised in rabbits immunized with the immunogen. Antisera collected from the immunized rabbits demonstrated high titers evaluated by enzyme-linked immunosorbent assays (ELISAs). Immunoblot analysis showed that the polyclonal antibodies recognized EDE-modified bovine serum albumin (BSA) in a hapten load-dependent manner but did not cross-react with native BSA. Competitive inhibition experiments elicited high selectivity of the antibodies toward EDE-modified BSA. The antibodies allowed us to detect and enrich EDE-modified protein in liver homogenates obtained from EEA-treated mice. The developed immunoprecipitation technique, along with mass spectrometry, enabled us to succeed in identifying multiple hepatic proteins of animals given EEA. We have successfully developed polyclonal antibodies with the ability to recognize EDE-derived protein adducts, which is a unique tool for us to define the mechanisms of toxic action of EEA.
Collapse
Affiliation(s)
- Shenzhi Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Na Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Zixia Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Dongju Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.,Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, P. R. China
| |
Collapse
|
7
|
Norman BH. Drug Induced Liver Injury (DILI). Mechanisms and Medicinal Chemistry Avoidance/Mitigation Strategies. J Med Chem 2020; 63:11397-11419. [PMID: 32511920 DOI: 10.1021/acs.jmedchem.0c00524] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adverse drug reactions (ADRs) are a common cause of attrition in drug discovery and development and drug-induced liver injury (DILI) is a leading cause of preclinical and clinical drug terminations. This perspective outlines many of the known DILI mechanisms and assessment methods used to evaluate and mitigate DILI risk. Literature assessments and retrospective analyses using verified DILI-associated drugs from the Liver Tox Knowledge Base (LTKB) have been used to derive the predictive value of each end point, along with combination approaches of multiple methods. In vitro assays to assess inhibition of the bile salt export pump (BSEP), mitotoxicity, reactive metabolite (RM) formation, and hepatocyte cytolethality, along with physicochemical properties and clinical dose provide useful DILI predictivity. This Perspective also highlights some of the strategies used by medicinal chemists to reduce DILI risk during the optimization of drug candidates.
Collapse
Affiliation(s)
- Bryan H Norman
- Norman Drug Discovery Training and Consulting, LLC, 8540 Bluefin Circle, Indianapolis, Indiana 46236, United States
| |
Collapse
|
8
|
Russell LE, Schleiff MA, Gonzalez E, Bart AG, Broccatelli F, Hartman JH, Humphreys WG, Lauschke VM, Martin I, Nwabufo C, Prasad B, Scott EE, Segall M, Takahashi R, Taub ME, Sodhi JK. Advances in the study of drug metabolism - symposium report of the 12th Meeting of the International Society for the Study of Xenobiotics (ISSX). Drug Metab Rev 2020; 52:395-407. [PMID: 32456484 DOI: 10.1080/03602532.2020.1765793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The 12th International Society for the Study of Xenobiotics (ISSX) meeting, held in Portland, OR, USA from July 28 to 31, 2019, was attended by diverse members of the pharmaceutical sciences community. The ISSX New Investigators Group provides learning and professional growth opportunities for student and early career members of ISSX. To share meeting content with those who were unable to attend, the ISSX New Investigators herein elected to highlight the "Advances in the Study of Drug Metabolism" symposium, as it engaged attendees with diverse backgrounds. This session covered a wide range of current topics in drug metabolism research including predicting sites and routes of metabolism, metabolite identification, ligand docking, and medicinal and natural products chemistry, and highlighted approaches complemented by computational modeling. In silico tools have been increasingly applied in both academic and industrial settings, alongside traditional and evolving in vitro techniques, to strengthen and streamline pharmaceutical research. Approaches such as quantum mechanics simulations facilitate understanding of reaction energetics toward prediction of routes and sites of drug metabolism. Furthermore, in tandem with crystallographic and orthogonal wet lab techniques for structural validation of drug metabolizing enzymes, in silico models can aid understanding of substrate recognition by particular enzymes, identify metabolic soft spots and predict toxic metabolites for improved molecular design. Of note, integration of chemical synthesis and biosynthesis using natural products remains an important approach for identifying new chemical scaffolds in drug discovery. These subjects, compiled by the symposium organizers, presenters, and the ISSX New Investigators Group, are discussed in this review.
Collapse
Affiliation(s)
- Laura E Russell
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Mary Alexandra Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eric Gonzalez
- Division of Pre-Clinical Innovation, Therapeutic Development Branch, National Center for Advancing Translational Sciences, Bethesda, MD, USA.,Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Aaron G Bart
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Fabio Broccatelli
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Bhagwat Prasad
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Emily E Scott
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA.,Department of Medicinal Chemistry and Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Mitchell E Taub
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Jasleen K Sodhi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
9
|
Abstract
The use of an acetylene (ethynyl) group in medicinal chemistry coincides with the launch of the Journal of Medicinal Chemistry in 1959. Since then, the acetylene group has been broadly exploited in drug discovery and development. As a result, it has become recognized as a privileged structural feature for targeting a wide range of therapeutic target proteins, including MAO, tyrosine kinases, BACE1, steroid receptors, mGlu5 receptors, FFA1/GPR40, and HIV-1 RT. Furthermore, a terminal alkyne functionality is frequently introduced in chemical biology probes as a click handle to identify molecular targets and to assess target engagement. This Perspective is divided into three parts encompassing: (1) the physicochemical properties of the ethynyl group, (2) the advantages and disadvantages of the ethynyl group in medicinal chemistry, and (3) the impact of the ethynyl group on chemical biology approaches.
Collapse
Affiliation(s)
- Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| |
Collapse
|
10
|
Yadav J, Paragas E, Korzekwa K, Nagar S. Time-dependent enzyme inactivation: Numerical analyses of in vitro data and prediction of drug-drug interactions. Pharmacol Ther 2020; 206:107449. [PMID: 31836452 PMCID: PMC6995442 DOI: 10.1016/j.pharmthera.2019.107449] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytochrome P450 (CYP) enzyme kinetics often do not conform to Michaelis-Menten assumptions, and time-dependent inactivation (TDI) of CYPs displays complexities such as multiple substrate binding, partial inactivation, quasi-irreversible inactivation, and sequential metabolism. Additionally, in vitro experimental issues such as lipid partitioning, enzyme concentrations, and inactivator depletion can further complicate the parameterization of in vitro TDI. The traditional replot method used to analyze in vitro TDI datasets is unable to handle complexities in CYP kinetics, and numerical approaches using ordinary differential equations of the kinetic schemes offer several advantages. Improvement in the parameterization of CYP in vitro kinetics has the potential to improve prediction of clinical drug-drug interactions (DDIs). This manuscript discusses various complexities in TDI kinetics of CYPs, and numerical approaches to model these complexities. The extrapolation of CYP in vitro TDI parameters to predict in vivo DDIs with static and dynamic modeling is discussed, along with a discussion on current gaps in knowledge and future directions to improve the prediction of DDI with in vitro data for CYP catalyzed drug metabolism.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Amgen Inc., 360 Binney Street, Cambridge, MA 02142, United States; Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Erickson Paragas
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States.
| |
Collapse
|
11
|
Li Y, Meng Q, Yang M, Liu D, Hou X, Tang L, Wang X, Lyu Y, Chen X, Liu K, Yu AM, Zuo Z, Bi H. Current trends in drug metabolism and pharmacokinetics. Acta Pharm Sin B 2019; 9:1113-1144. [PMID: 31867160 PMCID: PMC6900561 DOI: 10.1016/j.apsb.2019.10.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Pharmacokinetics (PK) is the study of the absorption, distribution, metabolism, and excretion (ADME) processes of a drug. Understanding PK properties is essential for drug development and precision medication. In this review we provided an overview of recent research on PK with focus on the following aspects: (1) an update on drug-metabolizing enzymes and transporters in the determination of PK, as well as advances in xenobiotic receptors and noncoding RNAs (ncRNAs) in the modulation of PK, providing new understanding of the transcriptional and posttranscriptional regulatory mechanisms that result in inter-individual variations in pharmacotherapy; (2) current status and trends in assessing drug-drug interactions, especially interactions between drugs and herbs, between drugs and therapeutic biologics, and microbiota-mediated interactions; (3) advances in understanding the effects of diseases on PK, particularly changes in metabolizing enzymes and transporters with disease progression; (4) trends in mathematical modeling including physiologically-based PK modeling and novel animal models such as CRISPR/Cas9-based animal models for DMPK studies; (5) emerging non-classical xenobiotic metabolic pathways and the involvement of novel metabolic enzymes, especially non-P450s. Existing challenges and perspectives on future directions are discussed, and may stimulate the development of new research models, technologies, and strategies towards the development of better drugs and improved clinical practice.
Collapse
Affiliation(s)
- Yuhua Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qiang Meng
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Mengbi Yang
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China
| | - Xiangyu Hou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Tang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanfeng Lyu
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ai-Ming Yu
- UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Zhong Zuo
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Ortiz de Montellano PR. Acetylenes: cytochrome P450 oxidation and mechanism-based enzyme inactivation. Drug Metab Rev 2019; 51:162-177. [PMID: 31203694 DOI: 10.1080/03602532.2019.1632891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The oxidation of carbon-carbon triple bonds by cytochrome P450 produces ketene metabolites that are hydrolyzed to acetic acid derivatives or are trapped by nucleophiles. In the special case of 17α-ethynyl sterols, D-ring expansion and de-ethynylation have been observed as competing pathways. The oxidation of acetylenic groups is also associated with mechanism-based inactivation of cytochrome P450 enzymes. One mechanism for this inactivation is reaction of the ketene metabolite with cytochrome P450 residues essential for substrate binding or catalysis. However, in the case of monosubstituted acetylenes, inactivation can also occur by addition of the oxidized acetylenic function to a nitrogen of the heme prosthetic group. This addition reaction is not mediated by the ketene metabolite, but rather occurs during oxygen transfer to the triple bond. In some instances, a detectable intermediate is formed that is most consistent with a ketocarbene-iron heme complex. This complex can progress to the N-alkylated heme or revert back to the unmodified enzyme. The ketocarbene complex may intervene in the formation of all the N-alkyl heme adducts, but is normally too unstable to be detected.
Collapse
|
13
|
Paludetto M, Puisset F, Chatelut E, Arellano C. Identifying the reactive metabolites of tyrosine kinase inhibitors in a comprehensive approach: Implications for drug‐drug interactions and hepatotoxicity. Med Res Rev 2019; 39:2105-2152. [DOI: 10.1002/med.21577] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/06/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Marie‐Noëlle Paludetto
- Centre de Recherches en Cancérologie de Toulouse, INSERMUMR1037Université de Toulouse Toulouse Cedex 1 France
- Faculté de PharmacieUniversité Paul Sabatier Toulouse France
- Département PharmacieInstitut Claudius Regaud, IUCT‐O Toulouse France
| | - Florent Puisset
- Centre de Recherches en Cancérologie de Toulouse, INSERMUMR1037Université de Toulouse Toulouse Cedex 1 France
- Faculté de PharmacieUniversité Paul Sabatier Toulouse France
- Département PharmacieInstitut Claudius Regaud, IUCT‐O Toulouse France
| | - Etienne Chatelut
- Centre de Recherches en Cancérologie de Toulouse, INSERMUMR1037Université de Toulouse Toulouse Cedex 1 France
- Faculté de PharmacieUniversité Paul Sabatier Toulouse France
| | - Cécile Arellano
- Centre de Recherches en Cancérologie de Toulouse, INSERMUMR1037Université de Toulouse Toulouse Cedex 1 France
- Faculté de PharmacieUniversité Paul Sabatier Toulouse France
| |
Collapse
|
14
|
Bart AG, Scott EE. Structures of human cytochrome P450 1A1 with bergamottin and erlotinib reveal active-site modifications for binding of diverse ligands. J Biol Chem 2018; 293:19201-19210. [PMID: 30254074 DOI: 10.1074/jbc.ra118.005588] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/19/2018] [Indexed: 11/06/2022] Open
Abstract
Human cytochrome P450 1A1 (CYP1A1) is an extrahepatic enzyme involved in the monooxygenation of structurally diverse compounds ranging from natural products to drugs and protoxins. Because CYP1A1 has a role in human carcinogenesis, inhibiting its activity may potentially aid in cancer chemoprevention, whereas utilizing CYP1A1's oxidative activity could help selectively activate anticancer prodrugs. Such potential therapeutic purposes require detailed knowledge of CYP1A1's interactions with potential ligands. Known CYP1A1 ligands also vary substantially in size, and it has not been apparent from a single existing CYP1A1 structure how larger, structurally diverse ligands are accommodated within the enclosed active site. Here, two new X-ray structures with the natural product furanocoumarin bergamottin (at 2.85 Å resolution) and the lung cancer drug erlotinib (3.0 Å) revealed binding orientations consistent with the formation of innocuous metabolites and of toxic metabolites, respectively. They also disclosed local changes in the roof of the active site that enlarge the active site and ultimately form a channel to the protein exterior. Although further structural modifications would be required to accommodate the largest CYP1A1 ligands, knowing which components of the active site are malleable provides powerful information for those attempting to use computational approaches to predict compound binding and substrate metabolism by this clinically relevant monooxygenase.
Collapse
Affiliation(s)
| | - Emily E Scott
- From the Program in Biophysics and .,Departments of Medicinal Chemistry and.,Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
15
|
Paludetto MN, Bijani C, Puisset F, Bernardes-Génisson V, Arellano C, Robert A. Metalloporphyrin-Catalyzed Oxidation of Sunitinib and Pazopanib, Two Anticancer Tyrosine Kinase Inhibitors: Evidence for New Potentially Toxic Metabolites. J Med Chem 2018; 61:7849-7860. [DOI: 10.1021/acs.jmedchem.8b00812] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marie-Noëlle Paludetto
- Laboratoire de Chimie de Coordination du CNRS (LCC−CNRS), Université de Toulouse, 205 route de Narbonne, BP 44099, 31077 Toulouse, Cedex 4, France
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, Université de Toulouse, 2 avenue Hubert Curien, CS53717, 31037 Toulouse, Cedex
1, France
- Université Paul Sabatier, 31400 Toulouse, France
- Pharmacie, Institut Claudius Regaud, IUCT-O, 31037 Toulouse, Cedex 1, France
| | - Christian Bijani
- Laboratoire de Chimie de Coordination du CNRS (LCC−CNRS), Université de Toulouse, 205 route de Narbonne, BP 44099, 31077 Toulouse, Cedex 4, France
| | - Florent Puisset
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, Université de Toulouse, 2 avenue Hubert Curien, CS53717, 31037 Toulouse, Cedex
1, France
- Université Paul Sabatier, 31400 Toulouse, France
- Pharmacie, Institut Claudius Regaud, IUCT-O, 31037 Toulouse, Cedex 1, France
| | - Vania Bernardes-Génisson
- Laboratoire de Chimie de Coordination du CNRS (LCC−CNRS), Université de Toulouse, 205 route de Narbonne, BP 44099, 31077 Toulouse, Cedex 4, France
- Université Paul Sabatier, 31400 Toulouse, France
| | - Cécile Arellano
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, Université de Toulouse, 2 avenue Hubert Curien, CS53717, 31037 Toulouse, Cedex
1, France
- Université Paul Sabatier, 31400 Toulouse, France
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS (LCC−CNRS), Université de Toulouse, 205 route de Narbonne, BP 44099, 31077 Toulouse, Cedex 4, France
| |
Collapse
|
16
|
Jackson KD, Durandis R, Vergne MJ. Role of Cytochrome P450 Enzymes in the Metabolic Activation of Tyrosine Kinase Inhibitors. Int J Mol Sci 2018; 19:E2367. [PMID: 30103502 PMCID: PMC6121577 DOI: 10.3390/ijms19082367] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022] Open
Abstract
Tyrosine kinase inhibitors are a rapidly expanding class of molecular targeted therapies for the treatment of various types of cancer and other diseases. An increasing number of clinically important small molecule tyrosine kinase inhibitors have been shown to undergo cytochrome P450-mediated bioactivation to form chemically reactive, potentially toxic products. Metabolic activation of tyrosine kinase inhibitors is proposed to contribute to the development of serious adverse reactions, including idiosyncratic hepatotoxicity. This article will review recent findings and ongoing studies to elucidate the link between drug metabolism and tyrosine kinase inhibitor-associated hepatotoxicity.
Collapse
Affiliation(s)
- Klarissa D Jackson
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN 37204, USA.
| | - Rebecca Durandis
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN 37204, USA.
| | - Matthew J Vergne
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN 37204, USA.
| |
Collapse
|