1
|
Strojny-Cieślak B, Pruchniewski M, Sosnowska M, Szczepaniak J, Wierzbicki M. Toxicological insights into graphene family materials: Cytochrome P450 modulation and cellular stress in liver cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179211. [PMID: 40138895 DOI: 10.1016/j.scitotenv.2025.179211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Graphene family materials (GFM), including pristine graphene (GN), graphene oxide (GO), and nano-sized graphene oxide (nGO), are increasingly utilized across industrial, environmental, and biomedical domains. Despite their potential benefits, the hazardous effects of GFM, particularly on liver xenobiotic-metabolizing enzymes and cellular functions, are not fully understood. Cytochrome P450 (CYP) are enzymes conserved across species, which play a crucial role in the metabolism of xenobiotics, drugs, environmental pollutants, and endogenous compounds, are key to understanding the biotransformation and detoxification processes impacted by GFM. This study investigates the effects of GFMs on CYP enzymes (CYP1A2, CYP2D6, CYP3A4) in a recombinant CYP system and HepG2 liver cells, alongside an assessment of cellular stress responses. In HepG2 cells, GFMs induced oxidative stress, mitochondrial depolarization, and cytotoxicity, with GN causing the most pronounced effects. GO exhibited the strongest inhibition of CYP enzymatic activity, particularly CYP1A2, in a dose-dependent manner in a recombinant CYP system. None of the tested nanomaterials significantly altered CYP expression, except for nGO, where a slight increase in CYP3A4 protein expression was observed. These findings highlight the significant influence of GFM physicochemical properties on their hazardous potential, especially their ability to disrupt metabolic processes and induce cellular stress. This study emphasizes the critical need for evaluating the safety of GFM in light of their widespread application and potential environmental and human health implications.
Collapse
Affiliation(s)
- Barbara Strojny-Cieślak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8 str, 02-786 Warsaw, Poland.
| | - Michał Pruchniewski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8 str, 02-786 Warsaw, Poland
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8 str, 02-786 Warsaw, Poland
| | - Jarosław Szczepaniak
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159C str, 02-776 Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8 str, 02-786 Warsaw, Poland
| |
Collapse
|
2
|
Makaro A, Kasprzak Z, Jaczynska M, Swierczynski M, Salaga M. Role of Cytochromes P450 in Intestinal Barrier Function: Possible Involvement in the Pathogenesis of Leaky Gut Syndrome. Dig Dis Sci 2025; 70:1293-1304. [PMID: 39971825 DOI: 10.1007/s10620-025-08873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/14/2025] [Indexed: 02/21/2025]
Abstract
The intestinal barrier constitutes the largest surface of the human body communicating with the external environment. Alterations affecting elements of intestinal wall may lead to increased intestinal permeability and resulting translocation of bacteria or its components to the bloodstream in the form of the "leaky gut syndrome" (LGS). One of the most common causes of LGS is the disruption of tight junctions (TJ) maintained by tight junction proteins (TJP). LGS and associated alterations in TJP are observed in numerous gastrointestinal (GI) diseases, including inflammatory bowel diseases (IBD) such as Crohn's disease (CD) and ulcerative colitis (UC). Current literature indicates the key role of LGS in many pathological processes, further emphasizing the need for effective pharmacological approaches to treat this syndrome. One of the potential pharmacological targets in LGS treatment are members of the cytochrome P450 (CYP450) superfamily. By affecting intestinal permeability, they may lead to LGS development. It was found that the expression of CYP8B1 synthesizing cholic acid and CYP26 degrading all-trans retinoic acid indirectly influence TJs. CYP2E1 responsible for the metabolism of a wide variety of chemicals, including ethanol, plays a crucial role in the impairment of the intestinal wall. Contrarily, the overexpression of CYP27B1 has a protective effect on the intestinal integrity. CYP1A1, CYP2A6, CYP2J2 and CYP3A were also suggested to influence the GI tract, through their capability to metabolize serotonin, nicotine, endocannabinoids and gemcitabine, respectively. This review summarizes the findings on the role of CYP450 isoforms in intestinal hyperpermeability and their potential involvement in the pathophysiology of LGS.
Collapse
Affiliation(s)
- Adam Makaro
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Zuzanna Kasprzak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Maria Jaczynska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Mikolaj Swierczynski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland.
| |
Collapse
|
3
|
Muñoz-Carrillo LS, Madrigal-Bujaidar E, Hernández-Ojeda SL, Morales-González JA, Madrigal-Santillán EO, Álvarez-González I, Espinosa-Aguirre JJ. Studies of Piper auritum Kuntz's Mutagenic and Antimutagenic Properties Using the Ames Test. Metabolites 2025; 15:164. [PMID: 40137130 PMCID: PMC11943675 DOI: 10.3390/metabo15030164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Piper auritum Kuntz is an endemic plant from Mexico and Central America, where it is called "hoja santa", and it is widely used in both local cuisine and traditional medicine. By using the Ames test (strain TA98), we recently demonstrated that ethanol extract from the plant has no mutagenic potential and that it has a significant antimutagenic effect. OBJECTIVES/METHODS In the present report, we extended this evaluation by using five strains of the Salmonella/microsome mutagenicity assay. Moreover, we evaluated the mutagenic/antimutagenic potential of the major component of the ethanol extract, safrole, with the TA98 strain and employed docking studies to examine the molecular relationship of safrole with the CYP1A1 isoform. RESULTS Our results confirmed the absence of mutagenicity in the ethanol plant extract, as well as a concentration-dependent inhibitory effect on the damage induced by benzo[a]pyrene (BaP). With respect to safrole, we also determined that the compound has no mutagenic potential and has a strong inhibitory effect on the damage induced by BaP. Docking and kinetic analysis confirmed the coupling of safrole with the active site of the CYP1A1 enzyme, leading to competitive inhibition. CONCLUSIONS These results suggest that the inhibitory effect on the enzyme activity is one of the possible antimutagenic mechanisms.
Collapse
Affiliation(s)
- Luis S. Muñoz-Carrillo
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu s/n, Gustavo A. Madero, Ciudad de Mexico 07738, Mexico; (L.S.M.-C.); (E.M.-B.)
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu s/n, Gustavo A. Madero, Ciudad de Mexico 07738, Mexico; (L.S.M.-C.); (E.M.-B.)
| | - Sandra L. Hernández-Ojeda
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior s/n, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico;
| | - José A. Morales-González
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (J.A.M.-G.); (E.O.M.-S.)
| | - Eduardo O. Madrigal-Santillán
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (J.A.M.-G.); (E.O.M.-S.)
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu s/n, Gustavo A. Madero, Ciudad de Mexico 07738, Mexico; (L.S.M.-C.); (E.M.-B.)
| | - J. Javier Espinosa-Aguirre
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior s/n, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico;
| |
Collapse
|
4
|
Rosales-Pérez KE, SanJuan-Reyes N, Gómez-Oliván LM, Orozco-Hernández JM, Elizalde-Velázquez GA, García-Medina S, Galar-Martínez M, Santillán-Benítez JG. Molecular insights: zebrafish embryo damage linked to hospital effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64913-64930. [PMID: 39557764 DOI: 10.1007/s11356-024-35533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
This study addresses the pressing issue of pollutants, particularly heavy metals and pharmaceuticals, infiltrating aquatic ecosystems due to untreated hospital effluents. These contaminants, known for their toxicity and bioaccumulative potential, adversely affect water quality and ecosystem health. The research focuses on the intricate relationship between oxidative stress and embryonic damage in Danio rerio exposed to hospital effluent, offering a detailed understanding of the underlying mechanisms. Concentrations of pharmaceutical residues (ng L-1) such as NSAIDs, corticosteroids, proton pump inhibitors, H2-receptor antagonists, and heavy metals (mg L-1) like Cd, As, Cu, Cr, Hg, Ni, Pb, and Zn were meticulously quantified. The effluent exhibited a significant embryolethal potential with an LC50 of 2.328% and an EC50 for malformation at 2.607%. Notable embryonic malformations included yolk sac edema, tail abnormalities, pericardial edema, scoliosis, craniofacial deformities, eye hypopigmentation, developmental delays, and body malformations. Zebrafish embryos were exposed to varying concentrations of the effluent (0.5% to 4.0%) and assessed for lethality and malformations at specific intervals (12, 24, 48, 72, and 96 h post-fertilization). The study also scrutinized oxidative damage and monitored the expression of genes central to antioxidant processes, detoxification, and apoptosis (sod, cat, nrf2, cyp1a1, bax, casp3, casp6, casp7, and casp9) at 48-, 72-, and 96-h post-fertilization across all concentrations. Findings consistently revealed lipid and protein damage, heightened antioxidant activity, and altered gene expression at all time points and effluent concentrations. These results highlight the environmental threat posed by untreated hospital effluent, emphasizing the need for comprehensive effluent treatment measures to protect aquatic ecosystems from the detrimental impacts of pharmaceuticals and heavy metals. The study underscores the critical role of oxidative stress in embryonic damage and advocates for improved environmental stewardship and regulatory measures.
Collapse
Affiliation(s)
- Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México.
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu S/N y Cerrada Manuel Stampa, Col. Industrial Vallejo, CP 07700, Ciudad de Mexico, México
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu S/N y Cerrada Manuel Stampa, Col. Industrial Vallejo, CP 07700, Ciudad de Mexico, México
| | - Jonnathan Guadalupe Santillán-Benítez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México
| |
Collapse
|
5
|
Zhang M, Qiu Z. The impact of freeze-dried Baiyedancong-Oolong tea aqueous extract containing bioactive compounds on the activities of CYP450 enzymes, the transport capabilities of P-gp and OATs, and transcription levels in mice. Food Nutr Res 2024; 68:10605. [PMID: 39376904 PMCID: PMC11457910 DOI: 10.29219/fnr.v68.10605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/14/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024] Open
Abstract
In this study, (-)-epigallocatechin gallate (EGCG) and caffeine extracted from freeze-dried autumn Baiyedancong Oolong tea (FBOT) were orally administered to mice for 7 consecutive days to explore the effects of BOT and its bioactive compounds on the activities and transcription levels of CYP450 enzymes, intestinal effluence transporter P-gp, and renal ingestion Organic Anion Transporters (OATs). Concurrently, EGCG and caffeine enhanced the activities of CYP3A, CYP2E1, and CYP2C37 in the liver of mice, while impairing the transport capabilities of P-gp and OATs. Reduced levels of MDR1 encoding P-gp transcription in the small intestine and renal OAT1 and OAT3 revealed that transcription was involved in the regulation of CYP450, P-gp, and OATs. The reduced transcription level of liver CYP2E1 suggested that CYP2E1 activity may have been elevated due to alternative mechanisms, but not through transcription. The absorption, metabolism, and excretion of drugs may be influenced by the daily consumption or high-dose administration of BOT and its related products, in which EGCG and caffeine may make great contributions.
Collapse
Affiliation(s)
- Miaogao Zhang
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhenguo Qiu
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
6
|
Jiang T, Hou L, Rahman SM, Gong Z, Bai X, Vulpe C, Fasullo M, Gu AZ. Amplified and distinctive genotoxicity of titanium dioxide nanoparticles in transformed yeast reporters with human cytochrome P450 (CYP) genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134850. [PMID: 38850947 PMCID: PMC11948300 DOI: 10.1016/j.jhazmat.2024.134850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
Titanium dioxide nanoparticles (nTiO2) have been considered a possible carcinogen to humans, but most existing studies have overlooked the role of human enzymes in assessing the genotoxicity of nTiO2. Here, a toxicogenomics-based in vitro genotoxicity assay using a GFP-fused yeast reporter library was employed to elucidate the genotoxic potential and mechanisms of nTiO2. Moreover, two new GFP-fused yeast reporter libraries containing either human CYP1A1 or CYP1A2 genes were constructed by transformation to investigate the potential modulation of nTiO2 genotoxicity in the presence of human CYP enzymes. This study found a lack of appreciable nTiO2 genotoxicity as indicated by the yeast reporter library in the absence of CYP expression but a significantly elevated indication of genotoxicity in either CYP1A1- or CYP1A2-expressing yeast. The intracellular reactive oxygen species (ROS) measurement indicated significantly higher ROS in yeast expressing either enzyme. The detected mitochondrial DNA damage suggested mitochondria as one of the target sites for oxidative damage by nTiO2 in the presence of either one of the CYP enzymes. The results thus indicated that the genotoxicity of nTiO2 was enhanced by human CYP1A1 or CYP1A2 enzyme and was associated with elevated oxidative stress, which suggested that the similar mechanisms could occur in human cells.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, USA; Utah Water Research Laboratory, Utah State University, Logan, UT 84322, USA
| | - Sheikh Mokhlesur Rahman
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; Department of Civil Engineering, Bangladesh University of Engineering and Technology, BUET Central Road, Dhaka 1000, Bangladesh
| | - Zixuan Gong
- Department of Materials, Imperial College London, London LND SW7 2AZ, UK
| | - Xueke Bai
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK
| | - Christopher Vulpe
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Michael Fasullo
- Department of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, NY 12222, USA
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
7
|
Chawla S, Choudhury S, Das A. Bioengineered MSC GFPCxcr2-Mmp13 Transplantation Alleviates Hepatic Fibrosis by Regulating Mammalian Target of Rapamycin Signaling. Antioxid Redox Signal 2024; 41:110-137. [PMID: 38183635 DOI: 10.1089/ars.2023.0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Aims: Hepatic fibrosis is the pathological change during chronic liver diseases (CLD) that turns into cirrhosis if not reversed timely. Allogenic mesenchymal stem cell (MSC) therapy is an alternative to liver transplantation for CLD. However, poor engraftment of the transplanted MSCs limits their therapeutic efficacy. MSCs express chemokine receptors that regulate their physiology. We observed several-fold increased expressions of Cxcl3 and decreased expression of Mmp13 in the fibrotic liver. Therefore, we bioengineered MSCs with stable overexpression of Cxcr2 (CXCL3-cognate receptor) and Mmp13, collagenase (MSCGFPCxcr2-Mmp13). Results: The CXCL3/CXCR2 axis significantly increased migration through the activation of AKT/ERK/mTOR signaling. These bioengineered MSCs transdifferentiated into hepatocyte-like cells (MSCGFPCxcr2-Mmp13-HLCs) that endured the drug-/hepatotoxicant-induced toxicity by significantly increasing the antioxidants-Nrf2 and Sod2, while decreasing the apoptosis-Cyt C, Casp3, Casp9, and drug-metabolizing enzyme-Cyp1A1, Cyp1A2, Cyp2E1 markers. Therapeutic transplantation of MSCGFPCxcr2-Mmp13 abrogated AAP-/CCl4-induced hepatic fibrosis in mice by CXCR2-mediated targeted engraftment and MMP-13-mediated reduction in collagen. Mechanistically, induction of CXCL3/CXCR2 axis-activated mTOR-p70S6K signaling led to increased targeted engraftment and modulation of the oxidative stress by increasing the expression and activity of nuclear Nrf2 and SOD2 expression in the regenerated hepatic tissues. A marked change in the fate of transplanted MSCGFPCxcr2-Mmp13 toward hepatocyte lineage demonstrated by co-immunostaining of GFP/HNF4α along with reduced COL1α1 facilitated the regeneration of the fibrotic liver. Innovation and Conclusions: Our study suggests the therapeutic role of allogenic Cxcr2/Mmp13-bioengineered MSC transplantation decreases the hepatic oxidative stress as an effective translational therapy for hepatic fibrosis mitigation-mediated liver regeneration.
Collapse
Affiliation(s)
- Shilpa Chawla
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subholakshmi Choudhury
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Vonada A, Wakefield L, Martinez M, Harding CO, Grompe M, Tiyaboonchai A. Complete correction of murine phenylketonuria by selection-enhanced hepatocyte transplantation. Hepatology 2024; 79:1088-1097. [PMID: 37824086 PMCID: PMC11559556 DOI: 10.1097/hep.0000000000000631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND AIMS Hepatocyte transplantation for genetic liver diseases has several potential advantages over gene therapy. However, the low efficiency of cell engraftment has limited its clinical implementation. This problem could be overcome by selectively expanding transplanted donor cells until they replace enough of the liver mass to achieve therapeutic benefit. We previously described a gene therapy method to selectively expand hepatocytes deficient in cytochrome p450 reductase (Cypor) using acetaminophen (APAP). Because Cypor is required for the transformation of APAP to a hepatotoxic metabolite, Cypor-deficient cells are protected from toxicity and are able to expand following APAP-induced liver injury. Here, we apply this selection system to correct a mouse model of phenylketonuria by cell transplantation. APPROACH AND RESULTS Hepatocytes from a wild-type donor animal were edited in vitro to create Cypor deficiency and then transplanted into phenylketonuric animals. Following selection with APAP, blood phenylalanine concentrations were fully normalized and remained stable following APAP withdrawal. Cypor-deficient hepatocytes expanded from < 1% to ~14% in corrected animals, and they showed no abnormalities in blood chemistries, liver histology, or drug metabolism. CONCLUSIONS We conclude that APAP-mediated selection of transplanted hepatocytes is a potential therapeutic for phenylketonuria with long-term efficacy and a favorable safety profile.
Collapse
Affiliation(s)
- Anne Vonada
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Leslie Wakefield
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael Martinez
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Cary O. Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amita Tiyaboonchai
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
9
|
Iori S, D'Onofrio C, Laham-Karam N, Mushimiyimana I, Lucatello L, Lopparelli RM, Gelain ME, Capolongo F, Pauletto M, Dacasto M, Giantin M. Establishment and characterization of cytochrome P450 1A1 CRISPR/Cas9 Knockout Bovine Foetal Hepatocyte Cell Line (BFH12). Cell Biol Toxicol 2024; 40:18. [PMID: 38528259 PMCID: PMC10963470 DOI: 10.1007/s10565-024-09856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
The cytochrome P450 1A (CYP1A) subfamily of xenobiotic metabolizing enzymes (XMEs) consists of two different isoforms, namely CYP1A1 and CYP1A2, which are highly conserved among species. These two isoenzymes are involved in the biotransformation of many endogenous compounds as well as in the bioactivation of several xenobiotics into carcinogenic derivatives, thereby increasing the risk of tumour development. Cattle (Bos taurus) are one of the most important food-producing animal species, being a significant source of nutrition worldwide. Despite daily exposure to xenobiotics, data on the contribution of CYP1A to bovine hepatic metabolism are still scarce. The CRISPR/Cas9-mediated knockout (KO) is a useful method for generating in vivo and in vitro models for studying xenobiotic biotransformations. In this study, we applied the ribonucleoprotein (RNP)-complex approach to successfully obtain the KO of CYP1A1 in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP1A1 excision was confirmed at the DNA, mRNA and protein level. Therefore, RNA-seq analysis revealed significant transcriptomic changes associated with cell cycle regulation, proliferation, and detoxification processes as well as on iron, lipid and mitochondrial homeostasis. Altogether, this study successfully generates a new bovine CYP1A1 KO in vitro model, representing a valuable resource for xenobiotic metabolism studies in this important farm animal species.
Collapse
Affiliation(s)
- Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Caterina D'Onofrio
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Nihay Laham-Karam
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211, Kuopio, Finland
| | - Isidore Mushimiyimana
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211, Kuopio, Finland
| | - Lorena Lucatello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Rosa Maria Lopparelli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy.
| |
Collapse
|
10
|
MacLeod AK, Coquelin KS, Huertas L, Simeons FRC, Riley J, Casado P, Guijarro L, Casanueva R, Frame L, Pinto EG, Ferguson L, Duncan C, Mutter N, Shishikura Y, Henderson CJ, Cebrian D, Wolf CR, Read KD. Acceleration of infectious disease drug discovery and development using a humanized model of drug metabolism. Proc Natl Acad Sci U S A 2024; 121:e2315069121. [PMID: 38315851 PMCID: PMC10873626 DOI: 10.1073/pnas.2315069121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
A key step in drug discovery, common to many disease areas, is preclinical demonstration of efficacy in a mouse model of disease. However, this demonstration and its translation to the clinic can be impeded by mouse-specific pathways of drug metabolism. Here, we show that a mouse line extensively humanized for the cytochrome P450 gene superfamily ("8HUM") can circumvent these problems. The pharmacokinetics, metabolite profiles, and magnitude of drug-drug interactions of a test set of approved medicines were in much closer alignment with clinical observations than in wild-type mice. Infection with Mycobacterium tuberculosis, Leishmania donovani, and Trypanosoma cruzi was well tolerated in 8HUM, permitting efficacy assessment. During such assessments, mouse-specific metabolic liabilities were bypassed while the impact of clinically relevant active metabolites and DDI on efficacy were well captured. Removal of species differences in metabolism by replacement of wild-type mice with 8HUM therefore reduces compound attrition while improving clinical translation, accelerating drug discovery.
Collapse
Affiliation(s)
- A. Kenneth MacLeod
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Kevin-Sebastien Coquelin
- Division of Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Ninewells Hospital, DundeeDD2 4GD, United Kingdom
| | - Leticia Huertas
- Global Health Research & Development, GlaxoSmithKline, Tres Cantos, Madrid28760, Spain
| | - Frederick R. C. Simeons
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Jennifer Riley
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Patricia Casado
- Global Health Research & Development, GlaxoSmithKline, Tres Cantos, Madrid28760, Spain
| | - Laura Guijarro
- Global Health Research & Development, GlaxoSmithKline, Tres Cantos, Madrid28760, Spain
| | - Ruth Casanueva
- Global Health Research & Development, GlaxoSmithKline, Tres Cantos, Madrid28760, Spain
| | - Laura Frame
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Erika G. Pinto
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Liam Ferguson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Christina Duncan
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Nicole Mutter
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Yoko Shishikura
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Colin J. Henderson
- Division of Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Ninewells Hospital, DundeeDD2 4GD, United Kingdom
| | - David Cebrian
- Global Health Research & Development, GlaxoSmithKline, Tres Cantos, Madrid28760, Spain
| | - C. Roland Wolf
- Division of Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Ninewells Hospital, DundeeDD2 4GD, United Kingdom
| | - Kevin D. Read
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| |
Collapse
|
11
|
Brand M, Ritzmann F, Kattler K, Milasius D, Yao Y, Herr C, Kirsch SH, Müller R, Yildiz D, Bals R, Beisswenger C. Biochemical and transcriptomic evaluation of a 3D lung organoid platform for pre-clinical testing of active substances targeting senescence. Respir Res 2024; 25:3. [PMID: 38172839 PMCID: PMC10765931 DOI: 10.1186/s12931-023-02636-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Chronic lung diseases such as chronic obstructive pulmonary disease and cystic fibrosis are incurable. Epithelial senescence, a state of dysfunctional cell cycle arrest, contributes to the progression of such diseases. Therefore, lung epithelial cells are a valuable target for therapeutic intervention. Here, we present a 3D airway lung organoid platform for the preclinical testing of active substances with regard to senescence, toxicity, and inflammation under standardized conditions in a 96 well format. Senescence was induced with doxorubicin and measured by activity of senescence associated galactosidase. Pharmaceutical compounds such as quercetin antagonized doxorubicin-induced senescence without compromising organoid integrity. Using single cell sequencing, we identified a subset of cells expressing senescence markers which was decreased by quercetin. Doxorubicin induced the expression of detoxification factors specifically in goblet cells independent of quercetin. In conclusion, our platform enables for the analysis of senescence-related processes and will allow the pre-selection of a wide range of compounds (e.g. natural products) in preclinical studies, thus reducing the need for animal testing.
Collapse
Affiliation(s)
- Michelle Brand
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Felix Ritzmann
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123, Saarbrücken, Germany
| | - Kathrin Kattler
- Department of Genetics/Epigenetics, Saarland University, 66123, Saarbrücken, Germany
| | - Deivydas Milasius
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Yiwen Yao
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Christian Herr
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
| | - Susanne H Kirsch
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123, Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Daniela Yildiz
- Experimental and Clinical Pharmacology and Toxicology, PZMS, and Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123, Saarbrücken, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
12
|
Sousa B, Domingues I, Nunes B. A fish perspective on SARS-CoV-2: Toxicity of benzalkonium chloride on Danio rerio. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104200. [PMID: 37394081 DOI: 10.1016/j.etap.2023.104200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
SARS-CoV-2 outbreak led to an increased marketing of disinfectants, creating a potential environmental problem. For instance, pre-pandemic environmental levels of the disinfectant benzalkonium chloride (BAC) ranging from 0.5 to 5 mgL-1 in effluents were expected to further increase threatening aquatic life. Our aim was to characterize potential adverse effects after an acute exposure of zebrafish to different concentrations of BAC. An increase in the overall swimming activity, thigmotaxis behavior, and erratic movements were observed. An increase in CYP1A1 and catalase activities, but inhibitions of CY1A2, GSTs and GPx activities were also noticed. BAC is metabolized by CYP1A1, increasing the production of H2O2, thereby activating the antioxidant enzyme CAT. Data also showed an increase of AChE activity. Our study highlights adverse embryonic, behavioral, and metabolic effects of noteworthy environmental significance, especially considering that the use and release of BAC is most likely to increase in a near future.
Collapse
Affiliation(s)
- Beatriz Sousa
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento De Biologia, Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Inês Domingues
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento De Biologia, Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento De Biologia, Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
13
|
Vonada A, Wakefield L, Martinez M, Harding CO, Grompe M, Tiyaboonchai A. Complete correction of murine phenylketonuria by selection-enhanced hepatocyte transplantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.27.554228. [PMID: 37693457 PMCID: PMC10491101 DOI: 10.1101/2023.08.27.554228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Hepatocyte transplantation for genetic liver diseases has several potential advantages over gene therapy. However, low efficiency of cell engraftment has limited its clinical implementation. This problem could be overcome by selectively expanding transplanted donor cells until they replace enough of the liver mass to achieve therapeutic benefit. We previously described a gene therapy method to selectively expand hepatocytes deficient in cytochrome p450 reductase (Cypor) using acetaminophen (APAP). Because Cypor is required for the transformation of APAP to a hepatotoxic metabolite, Cypor deficient cells are protected from toxicity and are able to expand following APAP-induced liver injury. Here, we apply this selection system to correct a mouse model of phenylketonuria (PKU) by cell transplantation. Hepatocytes from a wildtype donor animal were edited in vitro to create Cypor deficiency and then transplanted into PKU animals. Following selection with APAP, blood phenylalanine concentrations were fully normalized and remained stable following APAP withdrawal. Cypor-deficient hepatocytes expanded from <1% to ~14% in corrected animals, and they showed no abnormalities in blood chemistries, liver histology, or drug metabolism. We conclude that APAP-mediated selection of transplanted hepatocytes is a potential therapeutic for PKU with long-term efficacy and a favorable safety profile.
Collapse
Affiliation(s)
- Anne Vonada
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Leslie Wakefield
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael Martinez
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Cary O. Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amita Tiyaboonchai
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
14
|
Meadows JRS, Kidd JM, Wang GD, Parker HG, Schall PZ, Bianchi M, Christmas MJ, Bougiouri K, Buckley RM, Hitte C, Nguyen AK, Wang C, Jagannathan V, Niskanen JE, Frantz LAF, Arumilli M, Hundi S, Lindblad-Toh K, Ginja C, Agustina KK, André C, Boyko AR, Davis BW, Drögemüller M, Feng XY, Gkagkavouzis K, Iliopoulos G, Harris AC, Hytönen MK, Kalthoff DC, Liu YH, Lymberakis P, Poulakakis N, Pires AE, Racimo F, Ramos-Almodovar F, Savolainen P, Venetsani S, Tammen I, Triantafyllidis A, vonHoldt B, Wayne RK, Larson G, Nicholas FW, Lohi H, Leeb T, Zhang YP, Ostrander EA. Genome sequencing of 2000 canids by the Dog10K consortium advances the understanding of demography, genome function and architecture. Genome Biol 2023; 24:187. [PMID: 37582787 PMCID: PMC10426128 DOI: 10.1186/s13059-023-03023-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/25/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 × data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function. RESULTS We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection. CONCLUSIONS We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.
Collapse
Affiliation(s)
- Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden.
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA.
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Heidi G Parker
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Peter Z Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Matthew J Christmas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Katia Bougiouri
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Reuben M Buckley
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Christophe Hitte
- University of Rennes, CNRS, Institute Genetics and Development Rennes - UMR6290, 35000, Rennes, France
| | - Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA
| | - Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Julia E Niskanen
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Laurent A F Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E14NS, UK and Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, D-80539, Munich, Germany
| | - Meharji Arumilli
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Sruthi Hundi
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Catarina Ginja
- BIOPOLIS-CIBIO-InBIO-Centro de Investigação Em Biodiversidade E Recursos Genéticos - ArchGen Group, Universidade Do Porto, 4485-661, Vairão, Portugal
| | | | - Catherine André
- University of Rennes, CNRS, Institute Genetics and Development Rennes - UMR6290, 35000, Rennes, France
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Michaela Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Xin-Yao Feng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Konstantinos Gkagkavouzis
- Department of Genetics, School of Biology, ), Aristotle University of Thessaloniki, Thessaloniki, Macedonia 54124, Greece and Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH, Balkan Center, Thessaloniki, Greece
| | - Giorgos Iliopoulos
- NGO "Callisto", Wildlife and Nature Conservation Society, 54621, Thessaloniki, Greece
| | - Alexander C Harris
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Daniela C Kalthoff
- NGO "Callisto", Wildlife and Nature Conservation Society, 54621, Thessaloniki, Greece
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Petros Lymberakis
- Natural History Museum of Crete & Department of Biology, University of Crete, 71202, Irakleio, Greece
- Biology Department, School of Sciences and Engineering, University of Crete, Heraklion, Greece
- Palaeogenomics and Evolutionary Genetics Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Nikolaos Poulakakis
- Natural History Museum of Crete & Department of Biology, University of Crete, 71202, Irakleio, Greece
- Biology Department, School of Sciences and Engineering, University of Crete, Heraklion, Greece
- Palaeogenomics and Evolutionary Genetics Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Ana Elisabete Pires
- BIOPOLIS-CIBIO-InBIO-Centro de Investigação Em Biodiversidade E Recursos Genéticos - ArchGen Group, Universidade Do Porto, 4485-661, Vairão, Portugal
| | - Fernando Racimo
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | | | - Peter Savolainen
- Department of Gene Technology, Science for Life Laboratory, KTH - Royal Institute of Technology, 17121, Solna, Sweden
| | - Semina Venetsani
- Department of Genetics, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece
| | - Imke Tammen
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2570, Australia
| | - Alexandros Triantafyllidis
- Department of Genetics, School of Biology, ), Aristotle University of Thessaloniki, Thessaloniki, Macedonia 54124, Greece and Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH, Balkan Center, Thessaloniki, Greece
| | - Bridgett vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-7246, USA
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, OX1 3TG, UK
| | - Frank W Nicholas
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2570, Australia
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Yamazoe Y, Murayama N, Kawamura T, Yamada T. Application of fused-grid-based CYP-Template systems for genotoxic substances to understand the metabolisms. Genes Environ 2023; 45:22. [PMID: 37544994 PMCID: PMC10405451 DOI: 10.1186/s41021-023-00275-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/22/2023] [Indexed: 08/08/2023] Open
Abstract
Understanding of metabolic processes is a key factor to evaluate biological effects of carcinogen and mutagens. Applicability of fused-grid Template* systems of CYP enzymes (Drug Metab Pharmacokinet 2019, 2020, 2021, and 2022) was tested for three phenomena. (1) Possible causal relationships between CYP-mediated metabolisms of β-naphthoflavone and 3-methylcholanthrene and the high inducibility of CYP enzymes were examined. Selective involvement of non-constitutive CYP1A1, but not constitutive CYP1A2, was suggested on the oxidative metabolisms of efficient inducers, β-naphthoflavone and 3-methylcholanthrene. These results supported the view of the causal link of their high inducibility with their inefficient metabolisms due to the lack of CYP1A1 in livers at early periods after the administration of both inducers. (2) Clear differences exist between human and rodent CYP1A1 enzymes on their catalyses with heterocyclic amines, dioxins and polyaromatic hydrocarbons (PAHs). Reciprocal comparison of simulation results with experimental data suggested the rodent specific site and distinct sitting-preferences of ligands on Template for human and rodent CYP1A1 enzymes. (3) Enhancement of metabolic activation and co-mutagenicity have been known as phenomena associated with Salmonella mutagenesis assay. Both the phenomena were examined on CYP-Templates in ways of simultaneous bi-molecule bindings of distinct ligands as trigger and pro-metabolized molecules. α-Naphthoflavone and norharman served consistently as trigger-molecules to support the oxidations of PAHs and arylamines sitting simultaneously as pro-metabolized molecules on Templates of CYP1A1, CYP1A2 and CYP3A4. These CYP-Template simulation systems with deciphering capabilities are promising tools to understand the mechanism basis of metabolic activations and to support confident judgements in safety assessments.
Collapse
Affiliation(s)
- Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan.
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan.
| | - Norie Murayama
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Tomoko Kawamura
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Takashi Yamada
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| |
Collapse
|
16
|
Riddick DS. Fifty Years of Aryl Hydrocarbon Receptor Research as Reflected in the Pages of Drug Metabolism and Disposition. Drug Metab Dispos 2023; 51:657-671. [PMID: 36653119 DOI: 10.1124/dmd.122.001009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The induction of multiple drug-metabolizing enzymes by halogenated and polycyclic aromatic hydrocarbon toxicants is mediated by the aryl hydrocarbon receptor (AHR). This fascinating receptor also has natural dietary and endogenous ligands, and much is now appreciated about the AHR's developmental and physiologic roles, as well as its importance in cancer and other diseases. The past several years has witnessed increasing emphasis on understanding the multifaceted roles of the AHR in the immune system. Most would agree that the "discovery" of the AHR occurred in 1976, with the report of specific binding of a high affinity radioligand in mouse liver, just three years after the launch of the journal Drug Metabolism and Disposition (DMD) in 1973. Over the ensuing 50 years, the AHR and DMD have led parallel and often intersecting lives. The overall goal of this mini-review is to provide a decade-by-decade overview of major historical landmark discoveries in the AHR field and to highlight the numerous contributions made by publications appearing in the pages of DMD. It is hoped that this historical tour might inspire current and future research in the AHR field. SIGNIFICANCE STATEMENT: With the launch of Drug Metabolism and Disposition (DMD) in 1973 and the discovery of the aryl hydrocarbon receptor (AHR) in 1976, the journal and the receptor have led parallel and often intersecting lives over the past 50 years. Tracing the history of the AHR can reveal how knowledge in the field has evolved to the present and highlight the important contributions made by discoveries reported in DMD. This may inspire additional DMD papers reporting future AHR landmark discoveries.
Collapse
Affiliation(s)
- David S Riddick
- Department of Pharmacology and Toxicology, Medical Sciences Building, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Xie S, Feng Y, Zhou A, Lu Z, JixingZou. Comparative analysis of two new zebrafish models: The cyp1a low-expression line and cyp1a knockout line under PAHs exposure. Gene 2023; 869:147391. [PMID: 36966979 DOI: 10.1016/j.gene.2023.147391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Cytochrome P450 1 (CYP1) is an important enzyme family involved in the metabolism of pollutants, and used as a biomarker to monitor environmental pollution. In this study, a fluorescence-labeled cyp1a zebrafish line, named as KI (cyp1a+/+-T2A-mCherry) (KICM), was originally constructed to monitor dioxin-like compounds in the environment. However, the cyp1a gene expression in the KICM line was inhibited by the fluorescence labeling, thus leading to a significantly increased sensitivity of KICM zebrafish line to PAHs. Then, a cyp1a knockout zebrafish line, named KOC, were constructed for comparative analysis with the cyp1a low-expression line. Interestingly, knockout of the cyp1a gene did not increase the sensitivity of zebrafish to PAHs as significantly as the cyp1a low-expression line. So, the expression levels of related genes in the aryl hydrocarbon receptor pathway were analyzed and the results showed that the expression level of cyp1b in KOC group was significantly higher than that of wild type and KICM under the same PAH exposure. This indicated that the effect of losing cyp1a was compensated by inducing expression of cyp1b. In conclusion, two new zebrafish models including cyp1a low-expression line and cyp1a knockout line were constructed in this study, which may provide a convenient model for subsequent studies on the toxicity mechanism of PAHs and the role of cyp1a in detoxification.
Collapse
|
18
|
Kukal S, Thakran S, Kanojia N, Yadav S, Mishra MK, Guin D, Singh P, Kukreti R. Genic-intergenic polymorphisms of CYP1A genes and their clinical impact. Gene 2023; 857:147171. [PMID: 36623673 DOI: 10.1016/j.gene.2023.147171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
The humancytochrome P450 1A (CYP1A) subfamily genes, CYP1A1 and CYP1A2, encoding monooxygenases are critically involved in biotransformation of key endogenous substrates (estradiol, arachidonic acid, cholesterol) and exogenous compounds (smoke constituents, carcinogens, caffeine, therapeutic drugs). This suggests their significant involvement in multiple biological pathways with a primary role of maintaining endogenous homeostasis and xenobiotic detoxification. Large interindividual variability exist in CYP1A gene expression and/or catalytic activity of the enzyme, which is primarily due to the existence of polymorphic alleles which encode them. These polymorphisms (mainly single nucleotide polymorphisms, SNPs) have been extensively studied as susceptibility factors in a spectrum of clinical phenotypes. An in-depth understanding of the effects of polymorphic CYP1A genes on the differential metabolic activity and the resulting biological pathways is needed to explain the clinical implications of CYP1A polymorphisms. The present review is intended to provide an integrated understanding of CYP1A metabolic activity with unique substrate specificity and their involvement in physiological and pathophysiological roles. The article further emphasizes on the impact of widely studied CYP1A1 and CYP1A2 SNPs and their complex interaction with non-genetic factors like smoking and caffeine intake on multiple clinical phenotypes. Finally, we attempted to discuss the alterations in metabolism/physiology concerning the polymorphic CYP1A genes, which may underlie the reported clinical associations. This knowledge may provide insights into the disease pathogenesis, risk stratification, response to therapy and potential drug targets for individuals with certain CYP1A genotypes.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarita Thakran
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saroj Yadav
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Pooja Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
19
|
Chavez Alvarez AC, Bouzriba C, Moreau E, Auzeloux P, Besse S, Ouellette V, Zarifi Khosroshahi M, Côté MF, Pilote S, Miot-Noirault E, Chezal JM, Simard C, C-Gaudreault R, Fortin S. Homologation of the Alkyl Side Chain of Antimitotic Phenyl 4-(2-Oxo-3-alkylimidazolidin-1-yl)benzenesulfonate Prodrugs Selectively Targeting CYP1A1-Expressing Breast Cancers Improves Their Stability in Rodent Liver Microsomes. J Med Chem 2023; 66:2477-2497. [PMID: 36780426 DOI: 10.1021/acs.jmedchem.2c01268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) are a new family of antimitotic prodrugs bioactivated in breast cancer cells expressing CYP1A1. In this study, we report that the 14C-labeled prototypical PAIB-SO [14C]CEU-818 and its antimitotic counterpart [14C]CEU-602 are distributed in whole mouse body and they show a short half-life in mice. To circumvent this limitation, we evaluated the effect of the homologation of the alkyl side chain of the imidazolidin-2-one moiety of PAIB-SOs. Our studies evidence that PAIB-SOs bearing an n-pentyl side chain exhibit antiproliferative activity in the nanomolar-to-low-micromolar range and a high selectivity toward CYP1A1-positive breast cancer cells. Moreover, the most potent n-pentyl PAIB-SOs were significantly more stable toward rodent liver microsomes. In addition, PAIB-SOs 10 and 14 show significant antitumor activity and low toxicity in chorioallantoic membrane (CAM) assay. Our study confirms that homologation is a suitable approach to improve the rodent hepatic stability of PAIB-SOs.
Collapse
Affiliation(s)
- Atziri Corin Chavez Alvarez
- Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada.,Axe oncologie, Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec-Université Laval, 10, Rue de l'Espinay, Québec, Québec G1L 3L5, Canada.,Axe cardiologie, Centre de Recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, 2725 chemin Sainte-Foy, Québec, Québec G1V 4G5, Canada
| | - Chahrazed Bouzriba
- Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada.,Axe oncologie, Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec-Université Laval, 10, Rue de l'Espinay, Québec, Québec G1L 3L5, Canada
| | - Emmanuel Moreau
- Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont-Auvergne, BP 184, F-63005 Clermont-Ferrand, France.,INSERM U1240 IMoST, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Philippe Auzeloux
- Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont-Auvergne, BP 184, F-63005 Clermont-Ferrand, France.,INSERM U1240 IMoST, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Sophie Besse
- Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont-Auvergne, BP 184, F-63005 Clermont-Ferrand, France.,INSERM U1240 IMoST, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Vincent Ouellette
- Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada.,Axe oncologie, Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec-Université Laval, 10, Rue de l'Espinay, Québec, Québec G1L 3L5, Canada
| | - Mitra Zarifi Khosroshahi
- Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada.,Axe oncologie, Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec-Université Laval, 10, Rue de l'Espinay, Québec, Québec G1L 3L5, Canada
| | - Marie-France Côté
- Axe oncologie, Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec-Université Laval, 10, Rue de l'Espinay, Québec, Québec G1L 3L5, Canada
| | - Sylvie Pilote
- Axe cardiologie, Centre de Recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, 2725 chemin Sainte-Foy, Québec, Québec G1V 4G5, Canada
| | - Elisabeth Miot-Noirault
- Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont-Auvergne, BP 184, F-63005 Clermont-Ferrand, France.,INSERM U1240 IMoST, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Jean-Michel Chezal
- Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont-Auvergne, BP 184, F-63005 Clermont-Ferrand, France.,INSERM U1240 IMoST, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Chantale Simard
- Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada.,Axe cardiologie, Centre de Recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, 2725 chemin Sainte-Foy, Québec, Québec G1V 4G5, Canada
| | - René C-Gaudreault
- Axe oncologie, Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec-Université Laval, 10, Rue de l'Espinay, Québec, Québec G1L 3L5, Canada.,Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sébastien Fortin
- Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada.,Axe oncologie, Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec-Université Laval, 10, Rue de l'Espinay, Québec, Québec G1L 3L5, Canada
| |
Collapse
|
20
|
Mokkawes T, de Visser SP. Melatonin Activation by Cytochrome P450 Isozymes: How Does CYP1A2 Compare to CYP1A1? Int J Mol Sci 2023; 24:3651. [PMID: 36835057 PMCID: PMC9959256 DOI: 10.3390/ijms24043651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cytochrome P450 enzymes are versatile enzymes found in most biosystems that catalyze mono-oxygenation reactions as a means of biosynthesis and biodegradation steps. In the liver, they metabolize xenobiotics, but there are a range of isozymes with differences in three-dimensional structure and protein chain. Consequently, the various P450 isozymes react with substrates differently and give varying product distributions. To understand how melatonin is activated by the P450s in the liver, we did a thorough molecular dynamics and quantum mechanics study on cytochrome P450 1A2 activation of melatonin forming 6-hydroxymelatonin and N-acetylserotonin products through aromatic hydroxylation and O-demethylation pathways, respectively. We started from crystal structure coordinates and docked substrate into the model, and obtained ten strong binding conformations with the substrate in the active site. Subsequently, for each of the ten substrate orientations, long (up to 1 μs) molecular dynamics simulations were run. We then analyzed the orientations of the substrate with respect to the heme for all snapshots. Interestingly, the shortest distance does not correspond to the group that is expected to be activated. However, the substrate positioning gives insight into the protein residues it interacts with. Thereafter, quantum chemical cluster models were created and the substrate hydroxylation pathways calculated with density functional theory. These relative barrier heights confirm the experimental product distributions and highlight why certain products are obtained. We make a detailed comparison with previous results on CYP1A1 and identify their reactivity differences with melatonin.
Collapse
Affiliation(s)
- Thirakorn Mokkawes
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
21
|
Alzain AA. Insights from computational studies on the potential of natural compounds as inhibitors against SARS-CoV-2 spike omicron variant. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:953-968. [PMID: 36469669 DOI: 10.1080/1062936x.2022.2152486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a major global health emergency, with more than six million deaths worldwide. It is becoming increasingly challenging to treat COVID-19 due to the emergence of novel variants. The omicron variant is capable to evade defences and spread quickly. Among many validated COVID-19 targets, the spike (S) protein plays an important role in receptor recognition (via the S1 subunit) and membrane fusion (via the S2 subunit). The S protein is one of the vital targets for the development of drugs to combat this illness. In this research, we applied various computational methods such as molecular docking, molecular dynamics, MM-GBSA calculations, and ADMET prediction to identify potential natural products from Saudi medicinal plants against the spike omicron variant. As a result, three compounds (LTS0002490, LTS0117007, and LTS0217912) were identified with better binding affinity to the spike omicron variant compared to the reference compound (VE607). In addition, these compounds showed stable interactions with the target during molecular dynamics simulations for 140 ns. Last, these compounds have optimal ADMET properties. We suggest that these compounds may be considered promising hits to treat COVID-19 if experimentally validated.
Collapse
Affiliation(s)
- A A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
22
|
Mokkawes T, Lim ZQ, de Visser SP. Mechanism of Melatonin Metabolism by CYP1A1: What Determines the Bifurcation Pathways of Hydroxylation versus Deformylation? J Phys Chem B 2022; 126:9591-9606. [PMID: 36380557 PMCID: PMC9706573 DOI: 10.1021/acs.jpcb.2c07200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Melatonin, a widely applied cosmetic active ingredient, has a variety of uses as a skin protector through antioxidant and anti-inflammatory functions as well as giving the body UV-induced defenses and immune system support. In the body, melatonin is synthesized from a tryptophan amino acid in a cascade of reactions, but as melatonin is toxic at high concentrations, it is metabolized in the human skin by the cytochrome P450 enzymes. The P450s are diverse heme-based mono-oxygenases that catalyze oxygen atom-transfer processes that trigger metabolism and detoxification reactions in the body. In the catalytic cycle of the P450s, a short-lived high-valent iron(IV)-oxo heme cation radical is formed that has been proposed to be the active oxidant. How and why it activates melatonin in the human body and what the origin of the product distributions is, are unknown. This encouraged us to do a detailed computational study on a typical human P450 isozyme, namely CYP1A1. We initially did a series of molecular dynamics simulations with substrate docked into several orientations. These simulations reveal a number of stable substrate-bound positions in the active site, which may lead to differences in substrate activation channels. Using tunneling analysis on the full protein structures, we show that two of the four binding conformations lead to open substrate-binding pockets. As a result, in these open pockets, the substrate is not tightly bound and can escape back into the solution. In the closed conformations, in contrast, the substrate is mainly oriented with the methoxy group pointing toward the heme, although under a different angle. We then created large quantum cluster models of the enzyme and focused on the chemical reaction mechanisms for melatonin activation, leading to competitive O-demethylation and C6-aromatic hydroxylation pathways. The calculations show that active site positioning determines the product distributions, but the bond that is activated is not necessarily closest to the heme in the enzyme-substrate complex. As such, the docking and molecular dynamics positioning of the substrate versus oxidant can give misleading predictions on product distributions. In particular, in quantum mechanics cluster model I, we observe that through a tight hydrogen bonding network, a preferential 6-hydroxylation of melatonin is obtained. However, O-demethylation becomes possible in alternative substrate-binding orientations that have the C6-aromatic ring position shielded. Finally, we investigated enzymatic and non-enzymatic O-demethylation processes and show that the hydrogen bonding network in the substrate-binding pocket can assist and perform this step prior to product release from the enzyme.
Collapse
Affiliation(s)
- Thirakorn Mokkawes
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess
Street, Manchester M1 7DN, U.K.,Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
| | - Ze Qing Lim
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess
Street, Manchester M1 7DN, U.K.,Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
| | - Sam P. de Visser
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess
Street, Manchester M1 7DN, U.K.,Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.,
| |
Collapse
|
23
|
Husain I, Dale OR, Manda V, Ali Z, Gurley BJ, Chittiboyina AG, Khan IA, Khan SI. Bulbine natalensis (currently Bulbine latifolia) and select bulbine knipholones modulate the activity of AhR, CYP1A2, CYP2B6, and P-gp. PLANTA MEDICA 2022; 88:975-984. [PMID: 34359083 DOI: 10.1055/a-1557-2113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bulbine natalensis, an emerging medicinal herb on the global market with androgenic properties, is often formulated in dietary supplements that promote perceived sexual enhancement. However, to date, comprehensive safety studies of B. natalensis are lacking, particularly those related to its herb-drug interaction potential. The purpose of this study was to assess the inductive and inhibitory effects of extracts and pure compounds of B. natalensis on human cytochrome P-450 isozymes in vitro. Our findings demonstrated that both water and methanolic extracts of B. natalensis as well as knipholone, bulbine-knipholone, and 6'-O-methylknipholone dose-dependently increased mRNA expression encoded by CYP2B6, CYP1A2, and ABCB1 genes. Functional analyses showed that water (60 to 2.20 µg/mL) and methanolic (30 to 3.75 µg/mL) extracts and knipholones (10 to 0.33 µM) increased CYP2B6 and CYP1A2 activity in a dose-dependent manner. Additionally, water extract (60 µg/mL), methanolic extract (30 µg/mL), and knipholone (10 µM) caused activation of the aryl hydrocarbon receptor up to 11.1 ± 0.7, 8.9 ± 0.6, and 7.1 ± 2.0-fold, respectively. Furthermore, inhibition studies revealed that methanolic extract attenuated the activity of metabolically active CYP1A2 (IC50, 22.6 ± 0.4 µg/mL) and CYP2B6 (IC50, 34.2 ± 6.6 µg/mL) proteins, whereas water extracts had no inhibitory effect on either isoform. These findings suggest that chronic consumption of B. natalensis may affect normal homeostasis of select CYPs with subsequent risks for HDIs when concomitantly ingested with conventional medications that are substrates of CYP2B6 and CYP1A2. However, more in-depth translational studies are required to validate our current findings and their clinical relevance.
Collapse
Affiliation(s)
- Islam Husain
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
| | - Olivia R Dale
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
| | - Vamshi Manda
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
| | - Bill J Gurley
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
| |
Collapse
|
24
|
Rusni S, Sassa M, Takagi T, Kinoshita M, Takehana Y, Inoue K. Establishment of cytochrome P450 1a gene-knockout Javanese medaka, Oryzias javanicus, which distinguishes toxicity modes of the polycyclic aromatic hydrocarbons, pyrene and phenanthrene. MARINE POLLUTION BULLETIN 2022; 178:113578. [PMID: 35344733 DOI: 10.1016/j.marpolbul.2022.113578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Cytochrome P450 1a (Cyp1a) is an important enzyme for metabolism of organic pollutants. To understand its reaction to polycyclic aromatic hydrocarbons (PAHs), we knocked out this gene in a marine model fish, Javanese medaka, Oryzias javanicus, using the CRISPR/Cas 9 system. A homozygous mutant (KO) strain with a four-base deletion was established using an environmental DNA (eDNA)-based genotyping technique. Subsequently, KO, heterozygous mutant (HT), and wild-type (WT) fish were exposed to model pollutants, pyrene and phenanthrene, and survivorship and swimming behavior were analyzed. Compared to WT, KO fish were more sensitive to pyrene, suggesting that Cyp1a transforms pyrene into less toxic metabolites. Conversely, WT fish were sensitive to phenanthrene, suggesting that metabolites transformed by Cyp1a are more toxic than the original compound. HT fish showed intermediate results. Thus, comparative use of KO and WT fish can distinguish modes of pollutant toxicity, providing a deeper understanding of fish catabolism of environmental pollutants.
Collapse
Affiliation(s)
- Suhaila Rusni
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
| | - Mieko Sassa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan.
| | - Toshiyuki Takagi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan.
| | | | - Yusuke Takehana
- Nagahama Institute of Bio-Science and Technology, Nagahama, Japan.
| | - Koji Inoue
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
| |
Collapse
|
25
|
Aguiar T, Teixeira A, Scliar MO, Sobral de Barros J, Lemes RB, Souza S, Tolezano G, Santos F, Tojal I, Cypriano M, Caminada de Toledo SR, Valadares E, Borges Pinto R, Pinto Artigalas OA, Caetano de Aguirre Neto J, Novak E, Cristofani LM, Miura Sugayama SM, Odone V, Cunha IW, Lima da Costa CM, Rosenberg C, Krepischi A. Unraveling the Genetic Architecture of Hepatoblastoma Risk: Birth Defects and Increased Burden of Germline Damaging Variants in Gastrointestinal/Renal Cancer Predisposition and DNA Repair Genes. Front Genet 2022; 13:858396. [PMID: 35495172 PMCID: PMC9039399 DOI: 10.3389/fgene.2022.858396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/08/2022] [Indexed: 12/21/2022] Open
Abstract
The ultrarare hepatoblastoma (HB) is the most common pediatric liver cancer. HB risk is related to a few rare syndromes, and the molecular bases remain elusive for most cases. We investigated the burden of rare damaging germline variants in 30 Brazilian patients with HB and the presence of additional clinical signs. A high frequency of prematurity (20%) and birth defects (37%), especially craniofacial (17%, including craniosynostosis) and kidney (7%) anomalies, was observed. Putative pathogenic or likely pathogenic monoallelic germline variants mapped to 10 cancer predisposition genes (CPGs: APC, CHEK2, DROSHA, ERCC5, FAH, MSH2, MUTYH, RPS19, TGFBR2 and VHL) were detected in 33% of the patients, only 40% of them with a family history of cancer. These findings showed a predominance of CPGs with a known link to gastrointestinal/colorectal and renal cancer risk. A remarkable feature was an enrichment of rare damaging variants affecting different classes of DNA repair genes, particularly those known as Fanconi anemia genes. Moreover, several potentially deleterious variants mapped to genes impacting liver functions were disclosed. To our knowledge, this is the largest assessment of rare germline variants in HB patients to date, contributing to elucidate the genetic architecture of HB risk.
Collapse
Affiliation(s)
- Talita Aguiar
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Columbia University Irving Medical Center, New York, NY, United States
| | - Anne Teixeira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Marília O. Scliar
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Sobral de Barros
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Renan B. Lemes
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Silvia Souza
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Giovanna Tolezano
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda Santos
- Department of Pediatric Oncology, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Israel Tojal
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Monica Cypriano
- GRAACC—Grupo de Apoio Ao Adolescente e Criança Com Câncer, Federal University of São Paulo, São Paulo, Brazil
| | | | - Eugênia Valadares
- Benjamim Guimarães Foundation - Department of Pediatrics Hospital da Baleia, Belo Horizonte, Brazil
| | - Raquel Borges Pinto
- Department of Genetics, Hospital da Criança Conceição, Hospitalar Conceição Group, Porto Alegre, Brazil
| | | | | | - Estela Novak
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
- Molecular Genetics—Foundation Pro Sangue Blood Center of São Paulo, São Paulo, Brazil
| | - Lilian Maria Cristofani
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | - Sofia M. Miura Sugayama
- Department of Pediatric, Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | - Vicente Odone
- Pediatric Cancer Institute (ITACI) at the Pediatric Department, São Paulo University Medical School, São Paulo, Brazil
| | | | | | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Ana Krepischi,
| |
Collapse
|
26
|
Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev 2022; 182:114115. [PMID: 35077821 DOI: 10.1016/j.addr.2022.114115] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
CNS tumors remain among the deadliest forms of cancer, resisting conventional and new treatment approaches, with mortality rates staying practically unchanged over the past 30 years. One of the primary hurdles for treating these cancers is delivering drugs to the brain tumor site in therapeutic concentration, evading the blood-brain (tumor) barrier (BBB/BBTB). Supramolecular nanomedicines (NMs) are increasingly demonstrating noteworthy prospects for addressing these challenges utilizing their unique characteristics, such as improving the bioavailability of the payloadsviacontrolled pharmacokinetics and pharmacodynamics, BBB/BBTB crossing functions, superior distribution in the brain tumor site, and tumor-specific drug activation profiles. Here, we review NM-based brain tumor targeting approaches to demonstrate their applicability and translation potential from different perspectives. To this end, we provide a general overview of brain tumor and their treatments, the incidence of the BBB and BBTB, and their role on NM targeting, as well as the potential of NMs for promoting superior therapeutic effects. Additionally, we discuss critical issues of NMs and their clinical trials, aiming to bolster the potential clinical applications of NMs in treating these life-threatening diseases.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan.
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
27
|
Wu Y, Qiao A, Lin S, Chen L. In vitro evaluation of the inhibition potential of echinacoside on human cytochrome P450 isozymes. BMC Complement Med Ther 2022; 22:46. [PMID: 35180866 PMCID: PMC8857812 DOI: 10.1186/s12906-022-03517-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
Background Echinacoside (ECH) possesses a wide range of biological activity. This present study analyzes the effect of ECH on cytochrome P450 isozymes (CYPs) activities of human liver microsomes. Methods The effect of ECH on CYPs enzyme activities were studied using the enzyme-selective substrates phenacetin (1A2), chlorzoxazone (2E1), S-mephenytoin (2C19), testosterone (3A4), coumarin (2A6), diclofenac (2C9), paclitaxel (2C8), and dextromethorphan (2D6). The IC50 values for CYP1A2, CYP2E1, CYP2C19, and CYP3A4 isoforms were examined to express the strength of inhibition. Further, the inhibition of CYPs was checked for time-dependent or not, and then fitted with competitive or non-competitive inhibition models. The corresponding parameters were also obtained. Results ECH caused inhibitions on CYP1A2, CYP2E1, CYP2C19 and CYP3A4 enzyme activities in HLMs with IC50 of 21.23, 19.15, 8.70 and 55.42 μM, respectively. The obtained results showed that the inhibition of ECH on CYP3A4 was time-dependent with the KI/Kinact value of 6.63/0.066 min− 1·μM− 1. Moreover, ECH inhibited the activity of CYP1A2 and CYP2E1 via non-competitive manners (Ki = 10.90 μM and Ki = 14.40 μM, respectively), while ECH attenuated the CYP2C19 activity via a competitive manner (Ki = 4.41 μM). Conclusions The results of this study indicate that ECH inhibits CYP1A2, CYP2E1, CYP2C19 and CYP3A4 activities in vitro. In vivo and clinical studies are warranted to verify the relevance of these interactions.
Collapse
Affiliation(s)
- Yujie Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, No. 109, West Xueyuan Road, Wenzhou, 325027, China
| | - Aiqing Qiao
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, No. 109, West Xueyuan Road, Wenzhou, 325027, China
| | - Shu Lin
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, No. 109, West Xueyuan Road, Wenzhou, 325027, China
| | - Lijia Chen
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, No. 109, West Xueyuan Road, Wenzhou, 325027, China.
| |
Collapse
|
28
|
Cho H, Choi I, Kim SK, Baik S, Ryu CS. LC-MS-based assay of granisetron 7-hydroxylation activity for the evaluation of CYP1A1 induction from diesel particulate matter-exposed hepatic and respiratory cell lines. Food Chem Toxicol 2022; 161:112829. [PMID: 35093429 DOI: 10.1016/j.fct.2022.112829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
Abstract
Particulate matter (PM) generally consists of aggregated particles containing trace metals and polycyclic aromatic hydrocarbons (PAHs). Cytochrome P450 (CYP) 1A1, one of the extensively investigated biomarkers, is highly inducible when PAHs activate the aryl hydrocarbon receptor (AhR). The present study focused on developing a LC-MS/MS-based assay to evaluate CYP1A1 induction potential following PM exposure. This assay adapted a CYP1A1 selective reaction of granisetron 7-hydroxylation in response to an AhR inducer, 6-formylindolo[3,2-b]carbazole (FICZ), in HepaRG and A549 cell lines. Exposure to FICZ (10 nM) increased the levels of granisetron 7-hydroxylation significantly, whereas no elevation of ethoxyresorufin-O-deethylation (EROD) activity was found in HepaRG cells. In A549 cells, granisetron 7-hydroxylation showed a better dose-response from 0 to 10000 nM FICZ treatment than EROD. EROD Additionally, the application of the assay with diesel PM exposure showed a concentration-dependent induction of CYP1A1 in HepaRG, A549, and human nasal epithelial cells. The granisetron assay has better selectivity for CYP1A1 than the conventional EROD assay, which is overlapped reaction with CYP1A2 and CYP1B1, with high correlations between AhR activation and CYP1A1 mRNA levels. Accompanying the great application potential to different organs and cell culture systems, future studies will implement the granisetron assay for the respiratory toxicity evaluation.
Collapse
Affiliation(s)
- Hyunki Cho
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 66123, Germany
| | - Ian Choi
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 66123, Germany
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, South Korea
| | - Seungyun Baik
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 66123, Germany.
| | - Chang Seon Ryu
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 66123, Germany.
| |
Collapse
|
29
|
Zhang Y, Liu X, Gao H, Cui W, Zhang B, Zhao Y. Molecular and phenotypic characteristics of 15q24 microdeletion in pediatric patients with developmental disorders. Mol Cytogenet 2021; 14:57. [PMID: 34922566 PMCID: PMC8684056 DOI: 10.1186/s13039-021-00574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Chromosome 15q24 microdeletion is a rare genetic disorder characterized by development delay, facial dysmorphism, congenital malformations, and occasional autism spectrum disorder (ASD). In this study, we identified five cases of 15q24 microdeletion using multiplex ligation-dependent probe amplification (MLPA) technology in a cohort of patients with developmental delay and/or intellectual disability. Two of these five cases had deletions that overlapped with the previously defined 1.1 Mb region observed in most reported cases. Two cases had smaller deletions (< 0.57 Mb) in the 15q24.1 low copy repeat (LCR) B-C region. They presented significant neurobehavioral features, suggesting that this smaller interval is critical for core phenotypes of 15q24 microdeletion syndrome. One case had minimal homozygous deletion of less than 0.11 Mb in the 15q24.1 LCR B-C region, which contained CYP1A1 (cytochrome P450 family 1 subfamily A member 1) and EDC3 (enhancer of mRNA decapping 3) genes, resulting in poor immunity, severe laryngeal stridor, and lower limbs swelling. This study provides additional evidence of 15q24 microdeletion syndrome with genetic and clinical findings. The results will be of significance to pediatricians in their daily practice.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Xiaoliang Liu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Haiming Gao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Wanting Cui
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Bijun Zhang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Yanyan Zhao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
30
|
Barowsky S, Jung JY, Nesbit N, Silberstein M, Fava M, Loggia ML, Smoller JW, Lee PH. Cross-Disorder Genomics Data Analysis Elucidates a Shared Genetic Basis Between Major Depression and Osteoarthritis Pain. Front Genet 2021; 12:687687. [PMID: 34603368 PMCID: PMC8481820 DOI: 10.3389/fgene.2021.687687] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022] Open
Abstract
Osteoarthritis (OA) and major depression (MD) are two debilitating disorders that frequently co-occur and affect millions of the elderly each year. Despite the greater symptom severity, poorer clinical outcomes, and increased mortality of the comorbid conditions, we have a limited understanding of their etiologic relationships. In this study, we conducted the first cross-disorder investigations of OA and MD, using genome-wide association data representing over 247K cases and 475K controls. Along with significant positive genome-wide genetic correlations (r g = 0.299 ± 0.026, p = 9.10 × 10-31), Mendelian randomization (MR) analysis identified a bidirectional causal effect between OA and MD (βOA → MD = 0.09, SE = 0.02, z-score p-value < 1.02 × 10-5; βMD → OA = 0.19, SE = 0.026, p < 2.67 × 10-13), indicating genetic variants affecting OA risk are, in part, shared with those influencing MD risk. Cross-disorder meta-analysis of OA and MD identified 56 genomic risk loci (P meta ≤ 5 × 10-8), which show heightened expression of the associated genes in the brain and pituitary. Gene-set enrichment analysis highlighted "mechanosensory behavior" genes (GO:0007638; P gene_set = 2.45 × 10-8) as potential biological mechanisms that simultaneously increase susceptibility to these mental and physical health conditions. Taken together, these findings show that OA and MD share common genetic risk mechanisms, one of which centers on the neural response to the sensation of mechanical stimulus. Further investigation is warranted to elaborate the etiologic mechanisms of the pleiotropic risk genes, as well as to develop early intervention and integrative clinical care of these serious conditions that disproportionally affect the aging population.
Collapse
Affiliation(s)
- Sophie Barowsky
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Jae-Yoon Jung
- Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Nicholas Nesbit
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Micah Silberstein
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Maurizio Fava
- Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Marco L. Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Phil H. Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
31
|
Sun D, Lu J, Zhang Y, Liu J, Liu Z, Yao B, Guo Y, Wang X. Characterization of a Novel CYP1A2 Knockout Rat Model Constructed by CRISPR/Cas9. Drug Metab Dispos 2021; 49:638-647. [PMID: 34074728 DOI: 10.1124/dmd.121.000403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
CYP1A2, as one of the most important cytochrome P450 isoforms, is involved in the biotransformation of many important endogenous and exogenous substances. CYP1A2 also plays an important role in the development of many diseases because it is involved in the biotransformation of precancerous substances and poisons. Although the generation of Cyp1a2 knockout (KO) mouse model has been reported, there are still no relevant rat models for the study of CYP1A2-mediated pharmacokinetics and diseases. In this report, CYP1A2 KO rat model was established successfully by CRISPR/Cas9 without any detectable off-target effect. Compared with wild-type rats, this model showed a loss of CYP1A2 protein expression in the liver. The results of pharmacokinetics in vivo and incubation in vitro of specific substrates of CYP1A2 confirmed the lack of function of CYP1A2 in KO rats. In further studies of potential compensatory effects, we found that CYP1A1 was significantly upregulated, and CYP2E1, CYP3A2, and liver X receptor β were downregulated in KO rats. In addition, CYP1A2 KO rats exhibited a significant increase in serum cholesterol and free testosterone accompanied by mild liver damage and lipid deposition, suggesting that CYP1A2 deficiency affects lipid metabolism and liver function to a certain extent. In summary, we successfully constructed the CYP1A2 KO rat model, which provides a useful tool for studying the metabolic function and physiologic function of CYP1A2. SIGNIFICANCE STATEMENT: Human CYP1A2 not only metabolizes clinical drugs and pollutants but also mediates the biotransformation of endogenous substances and plays an important role in the development of many diseases. However, there are no relevant CYP1A2 rat models for the research of pharmacokinetics and diseases. This study successfully established CYP1A2 knockout rat model by using CRISPR/Cas9. This rat model provides a powerful tool to study the function of CYP1A2 in drug metabolism and diseases.
Collapse
Affiliation(s)
- Dongyi Sun
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jian Lu
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zongjun Liu
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yuanqing Guo
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Novel Synthetic Analogues of 19(S/R)-Hydroxyeicosatetraenoic Acid Exhibit Noncompetitive Inhibitory Effect on the Activity of Cytochrome P450 1A1 and 1B1. Eur J Drug Metab Pharmacokinet 2021; 46:613-624. [PMID: 34235626 DOI: 10.1007/s13318-021-00699-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Cytochrome P450 (CYP) 1A1 and CYP1B1 enzymes play a significant role in the pathogenesis of cancer and cardiovascular diseases (CVD) such as cardiac hypertrophy and heart failure. Previously, we have demonstrated that R- and S-enantiomers of 19-hydroxyeicosatetraenoic acid (19-HETE), an arachidonic acid endogenous metabolite, enantioselectively inhibit CYP1B1. The current study was conducted to test the possible inhibitory effect of novel synthetic analogues of R- and S-enantiomers of 19-HETE on the activity of CYP1A1, CYP1A2, and CYP1B1. METHODS The O-dealkylation rate of 7-ethoxyresorufin (EROD) by recombinant human CYP1A1 and CYP1B1, in addition to the O-dealkylation rate of 7-methoxyresorufin (MROD) by recombinant human CYP1A2, were measured in the absence and presence of varying concentrations (0-40 nM) of the synthetic analogues of 19(R)- and 19(S)-HETE. Also, the possible inhibitory effect of both analogues on the catalytic activity of EROD and MROD, using RL-14 cells and human liver microsomes, was assessed. RESULTS The results showed that both synthetic analogues of 19(R)- and 19(S)-HETE exhibited direct inhibitory effects on the activity of CYP1A1 and CYP1B1, while they had no significant effect on CYP1A2 activity. Nonlinear regression analysis and comparisons showed that the mode of inhibition for both analogues is noncompetitive inhibition of CYP1A1 and CYP1B1 enzymes. Also, nonlinear regression analysis and Dixon plots showed that the R- and S-analogues have KI values of 15.7 ± 4.4 and 6.1 ± 1.5 nM for CYP1A1 and 26.1 ± 2.9 and 9.1 ± 1.8 nM for CYP1B1, respectively. Moreover, both analogues were able to inhibit EROD and MROD activities in a cell-based assay and human liver microsomes. CONCLUSIONS Therefore, the synthetic analogues of 19-HETE could be considered as a novel therapeutic approach in the treatment of cancer and CVD.
Collapse
|
33
|
Luptakova L, Dvorcakova S, Demcisakova Z, Belbahri L, Holovska K, Petrovova E. Dimethyl Sulfoxide: Morphological, Histological, and Molecular View on Developing Chicken Liver. TOXICS 2021; 9:toxics9030055. [PMID: 33809222 PMCID: PMC8001493 DOI: 10.3390/toxics9030055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/28/2021] [Accepted: 03/09/2021] [Indexed: 01/04/2023]
Abstract
Dimethyl sulfoxide (DMSO) is widely used as a solvent for small hydrophobic drug molecules. However, the safe volume allowing to avoid its embryotoxic effect has been poorly studied. In this study, we documented the effects of dimethyl sulfoxide (DMSO) in the developing chicken embryo at morphological, histological, and molecular levels. We focused on the developing chicken liver as the main organ involved in the process of detoxification. In our study, 100% DMSO was administered subgerminally onto the eggshell membrane (membrana papyracea) at various volumes (5, 10, 15, 20, 25, 30, 35, and 50 µL) on 4th embryonic day (ED). We focused on histopathological alterations of the liver structure, and noticed the overall impact of DMSO on developing chicken embryos (embryotoxicity, malformation). At the molecular level, we studied cytochrome P450 complex (CYP) isoform's activities in relation to changes of CYP1A5, CYP3A37, and CYP3A80 gene expression. Total embryotoxicity after application of different doses of DMSO on ED 4, and the embryo lethality increased with increasing DMSO amounts. Overall mortality after DMSO administration ranged below 33%. Mortality was increased with higher amounts of DMSO, mainly from 20 µL. The highest mortality was observed for the highest dose of DMSO over 35 µL. The results also showed a decrease in body weight with increased application volumes of DMSO. At the histological level, we observed mainly the presence of lipid droplets and dilated bile canaliculi and sinusoids in samples over the administration of 25 µL of DMSO. While these findings were not statistically significant, DMSO treatment caused a significant different up-regulation of mRNA expression in all studied genes. For CYP1A5, CYP3A37, and CYP3A80 DMSO volumes needed were 15 µL, 10 µL, and 20 µL, respectively. A significant down-regulation of all studied CYP isoform was detected after application of a DMSO dose of 5 µL. Regarding the morphological results, we can assume that the highest safe dose of DMSO without affecting chicken embryo development and its liver is up to 10 µL. This conclusion is corroborated with the presence of number of malformations and body weight reduction, which correlates with histological findings. Moreover, the gene expression results showed that even the lowest administered DMSO volume could affect hepatocytes at the molecular level causing down-regulation of cytochrome P450 complex (CYP1A5, CYP3A37, CYP3A80).
Collapse
Affiliation(s)
- Lenka Luptakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
- Correspondence: ; Tel.: +421-918-919-686
| | - Simona Dvorcakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Zuzana Demcisakova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (Z.D.); (K.H.); (E.P.)
| | - Lassaad Belbahri
- Laboratory of Soil Biodiversity, Department of Biology, University of Neuchatel, 2000 Neuchatel, Switzerland;
| | - Katarina Holovska
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (Z.D.); (K.H.); (E.P.)
| | - Eva Petrovova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (Z.D.); (K.H.); (E.P.)
| |
Collapse
|
34
|
Popescu RG, Bulgaru C, Untea A, Vlassa M, Filip M, Hermenean A, Marin D, Țăranu I, Georgescu SE, Dinischiotu A. The Effectiveness of Dietary Byproduct Antioxidants on Induced CYP Genes Expression and Histological Alteration in Piglets Liver and Kidney Fed with Aflatoxin B1 and Ochratoxin A. Toxins (Basel) 2021; 13:148. [PMID: 33671978 PMCID: PMC7919288 DOI: 10.3390/toxins13020148] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to investigate the potential of a byproduct mixture derived from grapeseed and sea buckthorn oil industry to mitigate the harmful damage produced by ochratoxin A and aflatoxin B1 at hepatic and renal level in piglets after weaning. Forty cross-bred TOPIGS-40 hybrid piglets after weaning were assigned to three experimental groups (E1, E2, E3) and one control group (C), and fed with experimental diets for 30 days. The basal diet was served as a control and contained normal compound feed for starter piglets without mycotoxins. The experimental groups were fed as follows: E1-basal diet plus a mixture (1:1) of two byproducts (grapeseed and sea buckthorn meal); E2-the basal diet experimentally contaminated with mycotoxins (479 ppb OTA and 62ppb AFB1); and E3-basal diet containing 5% of the mixture (1:1) of grapeseed and sea buckthorn meal and contaminated with the mix of OTA and AFB1. After 4 weeks, the animals were slaughtered, and tissue samples were taken from liver and kidney in order to perform gene expression and histological analysis. The gene expression analysis showed that when weaned piglets were fed with contaminated diet, the expression of most analyzed genes was downregulated. Among the CYP450 family, CYP1A2 was the gene with the highest downregulation. According to these results, in liver, we found that mycotoxins induced histomorphological alterations in liver and kidney and had an effect on the expression level of CYP1A2, CYP2A19, CYP2E1, and CYP3A29, but we did not detect important changes in the expression level of CY4A24, MRP2 and GSTA1 genes.
Collapse
Affiliation(s)
- Roua Gabriela Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91–95, 050095 Bucharest, Romania; (R.G.P.); (A.D.)
| | - Cristina Bulgaru
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania; (C.B.); (A.U.); (D.M.)
| | - Arabela Untea
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania; (C.B.); (A.U.); (D.M.)
| | - Mihaela Vlassa
- Raluca Ripan Institute for Research in Chemistry, Babeş Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania; (M.V.); (M.F.)
| | - Miuta Filip
- Raluca Ripan Institute for Research in Chemistry, Babeş Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania; (M.V.); (M.F.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania;
| | - Daniela Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania; (C.B.); (A.U.); (D.M.)
| | - Ionelia Țăranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania; (C.B.); (A.U.); (D.M.)
| | - Sergiu Emil Georgescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91–95, 050095 Bucharest, Romania; (R.G.P.); (A.D.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91–95, 050095 Bucharest, Romania; (R.G.P.); (A.D.)
| |
Collapse
|
35
|
Li X, Yu D, Jie H, Zhou H, Ye H, Ma G, Wan L, Li C, Shi H, Yin S. Cytochrome P450 1A2 Is Incapable of Oxidizing Bilirubin Under Physiological Conditions. Front Pharmacol 2019; 10:1220. [PMID: 31680983 PMCID: PMC6813656 DOI: 10.3389/fphar.2019.01220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Bilirubin (BR) is metabolized mainly by uridine diphosphate (UDP)-glucuronosyltransferase 1A1 (UGT1A1) through glucuronidation in the liver. Some studies have shown that several subtypes of cytochrome P450 (CYP) enzymes, including CYP1A2, are upregulated by inducers and proposed to be alternative BR degradation enzymes. However, no information is available on the BR degradation ability of CYP in normal rats without manipulation by CYP inducers. Methods: Quantitative real-time polymerase chain reaction (QRT-PCR), western blot, immunofluorescence, and confocal microscopy were used to find expression of CYP1A2 in the brain and the liver. BR metabolites in microsomal fractions during development were examined by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (LC-MS/MS). Results: In the present study, we observed that CYP1A2 mRNA levels increased at postnatal days (P)14 and P30 with respect to the level at P7 both in liver and brain, this increment was especially pronounced in the brain at P14. The expression of CYP1A2 in the brainstem (BS) was higher than that in the cerebellum (CLL) and cortex (COR). Meanwhile, the CYP1A2 protein level was significantly higher in the COR than in the brainstem and CLL at P14. The levels of BR and its metabolites (m/z values 301, 315, 333 and biliverdin) were statistically unaltered by incubation with liver and brain microsomal fractions. Conclusion: Our results indicated that the region-specific expression of CYP1A2 increased during development, but CYP family enzymes were physiologically incapable of metabolizing BR. The ability of CYPs to oxidize BR may be triggered by CYP inducers.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Dongzhen Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Huiqun Jie
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Huiqun Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Haibo Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Guo Ma
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Lili Wan
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chunyan Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Haibo Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
36
|
Khanal S, Bhattarai SR, Sankar J, Bhandari RK, Macdonald JM, Bhattarai N. Nano-fibre Integrated Microcapsules: A Nano-in-Micro Platform for 3D Cell Culture. Sci Rep 2019; 9:13951. [PMID: 31562351 PMCID: PMC6765003 DOI: 10.1038/s41598-019-50380-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/09/2019] [Indexed: 01/25/2023] Open
Abstract
Nano-in-micro (NIM) system is a promising approach to enhance the performance of devices for a wide range of applications in disease treatment and tissue regeneration. In this study, polymeric nanofibre-integrated alginate (PNA) hydrogel microcapsules were designed using NIM technology. Various ratios of cryo-ground poly (lactide-co-glycolide) (PLGA) nanofibres (CPN) were incorporated into PNA hydrogel microcapsule. Electrostatic encapsulation method was used to incorporate living cells into the PNA microcapsules (~500 µm diameter). Human liver carcinoma cells, HepG2, were encapsulated into the microcapsules and their physio-chemical properties were studied. Morphology, stability, and chemical composition of the PNA microcapsules were analysed by light microscopy, fluorescent microscopy, scanning electron microscopy (SEM), Fourier-Transform Infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The incorporation of CPN caused no significant changes in the morphology, size, and chemical structure of PNA microcapsules in cell culture media. Among four PNA microcapsule products (PNA-0, PNA-10, PNA-30, and PNA-50 with size 489 ± 31 µm, 480 ± 40 µm, 473 ± 51 µm and 464 ± 35 µm, respectively), PNA-10 showed overall suitability for HepG2 growth with high cellular metabolic activity, indicating that the 3D PNA-10 microcapsule could be suitable to maintain better vitality and liver-specific metabolic functions. Overall, this novel design of PNA microcapsule and the one-step method of cell encapsulation can be a versatile 3D NIM system for spontaneous generation of organoids with in vivo like tissue architectures, and the system can be useful for numerous biomedical applications, especially for liver tissue engineering, cell preservation, and drug toxicity study.
Collapse
Affiliation(s)
- Shalil Khanal
- 0000 0001 0287 4439grid.261037.1Department of Applied Science and Technology, North Carolina A&T State University, Greensboro, NC USA ,0000 0001 0287 4439grid.261037.1Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC USA
| | - Shanta R. Bhattarai
- 0000 0001 0287 4439grid.261037.1Department of Chemistry, North Carolina A&T State University, Greensboro, NC USA ,0000 0001 0287 4439grid.261037.1Department of Biology, North Carolina A&T State University, Greensboro, NC USA ,0000 0001 0671 255Xgrid.266860.cDepartment of Biology, University of North Carolina Greensboro, Greensboro, NC USA
| | - Jagannathan Sankar
- 0000 0001 0287 4439grid.261037.1Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, NC USA
| | - Ramji K. Bhandari
- 0000 0001 0671 255Xgrid.266860.cDepartment of Biology, University of North Carolina Greensboro, Greensboro, NC USA
| | - Jeffrey M. Macdonald
- 0000 0001 1034 1720grid.410711.2Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC USA
| | - Narayan Bhattarai
- 0000 0001 0287 4439grid.261037.1Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC USA
| |
Collapse
|