1
|
Zimmer AA, Collier AC. Scaling factors to inform in vitro- in vivo extrapolation from preclinical and livestock animals: state of the field and recommendations for development of missing data. Drug Metab Rev 2025; 57:91-114. [PMID: 39898873 DOI: 10.1080/03602532.2025.2462527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
The use of in-vitro-in-vivo physiologically based pharmacokinetic (IVIVE-PBPK) modeling approaches assists for prediction of first-in animal or human trials. These approaches are underpinned by the scaling factors: microsomal protein per gram (MPPG) and cytosolic protein per gram (CPPG). In addition, IVIVE-PBPK has significant application in the reduction and refinement of live animal models in research. While human scaling factors are well-defined, many preclinical and livestock species remain poorly elucidated or uncharacterized. The MPPG parameter for liver (MPPGL) is the best characterized across all species and is well-defined for mouse, rat, and dog models. The MPPG parameters for Kidney (MPPGK) and intestine (MPPGI), are however; relatively indefinite for most species. Similarly, CPPG scaling factors for liver, kidney, and intestine (CPPGL/CPPGK/CPPGI) are generally sparse in all species. In addition to generation of mathematical values for scaling factors, methodological and animal-specific considerations, such as age, sex, and strain differences, have not yet been comprehensively described. Here, we review the current state-of-the-field for microsomal and cytosolic scaling factors, including highlighting areas that may need further description and development, with the intention of drawing attention to key knowledge gaps. The intention is to promote improved accuracy and precision in IVIVE-PBPK, concordance between laboratories, and stimulate work in underserved, but increasingly vital areas.
Collapse
Affiliation(s)
- Austin A Zimmer
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
- Prostate Cancer Foundation Canada, Surrey, Canada
| | - Abby C Collier
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
- Prostate Cancer Foundation Canada, Surrey, Canada
| |
Collapse
|
2
|
Subash S, Prasad B. Age-Dependent Changes in Cytochrome P450 Abundance and Composition in Human Liver. Drug Metab Dispos 2024; 52:1363-1372. [PMID: 39284705 PMCID: PMC11585312 DOI: 10.1124/dmd.124.001608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/11/2024] [Indexed: 11/17/2024] Open
Abstract
Cytochrome P450 (CYP) superfamily represents the major drug-metabolizing enzymes responsible for metabolizing over 65% of therapeutic drugs, including those for pediatric use. CYP-ontogeny based physiologically based pharmacokinetic (PBPK) modeling has emerged as useful approach to mechanistically extrapolate adult pharmacokinetic data to children. However, these models integrate physiological differences in the pediatric population including age-dependent differences in the abundances of CYP enzymes. Conventionally, developmental changes in CYP enzymes have been reported using protein abundance and activity data from subcellular fractions such as microsomes, which are prone to high technical variability. Similarly, the available pediatric pharmacokinetic data suffer from the lack of specific CYP substrates, especially in younger children. In the present study, we used viable hepatocytes from 50 pediatric (age, 1 day-18 years) and 8 adult human donors and carried out global proteomics-based quantification of all major hepatic CYP enzymes, including orphan enzymes that have not been studied previously. While CYPs 2B6, 3A5, 4A11, 4F3, and 4V2 did not show a significant association with age, all other quantified isoforms either increased or decreased with age. CYPs 1A2, 2C8, 2C18, and 2C19 were absent or barely detected in the neonatal group, while CYP3A7 was the highest in this group. The >1 to 2 years age group showed the highest total abundance of all CYP enzymes. The age-dependent differences in CYP enzymes reported in this study can be used to develop ontogeny-based PBPK models, which in turn can help improve pediatric dose prediction based on adult dosing, leading to safer drug pharmacology in children. SIGNIFICANCE STATEMENT: We quantified the age-dependent differences in the abundances of hepatic CYP enzymes using a large set of viable pediatric and adult hepatocytes using quantitative global proteomics. We report for the first time the ontogeny in the abundance of CYP enzymes in human hepatocytes, especially, orphan CYPs 20A1, 27A1, 51A1, 7B1, and 8B1 and CYP4 subfamily of enzymes. Our study provides important data about CYP ontogeny that can be used for the better prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling.
Collapse
Affiliation(s)
- Sandhya Subash
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
3
|
Prasad B, Al-Majdoub ZM, Wegler C, Rostami-Hodjegan A, Achour B. Quantitative Proteomics for Translational Pharmacology and Precision Medicine: State of The Art and Future Outlook. Drug Metab Dispos 2024; 52:1208-1216. [PMID: 38821856 DOI: 10.1124/dmd.124.001600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Over the past 20 years, quantitative proteomics has contributed a wealth of protein expression data, which are currently used for a variety of systems pharmacology applications, as a complement or a surrogate for activity of the corresponding proteins. A symposium at the 25th North American International Society for the Study of Xenobiotics meeting, in Boston, in September 2023, was held to explore current and emerging applications of quantitative proteomics in translational pharmacology and strategies for improved integration into model-informed drug development based on practical experience of each of the presenters. A summary of the talks and discussions is presented in this perspective alongside future outlook that was outlined for future meetings. SIGNIFICANCE STATEMENT: This perspective explores current and emerging applications of quantitative proteomics in translational pharmacology and precision medicine and outlines the outlook for improved integration into model-informed drug development.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Zubida M Al-Majdoub
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Christine Wegler
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Amin Rostami-Hodjegan
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
4
|
Parvez MM, Thakur A, Mehrotra A, Stancil S, Pearce RE, Basit A, Leeder JS, Prasad B. Age-Dependent Abundance of CYP450 Enzymes Involved in Metronidazole Metabolism: Application to Pediatric PBPK Modeling. Clin Pharmacol Ther 2024; 116:1090-1099. [PMID: 38955794 DOI: 10.1002/cpt.3354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
The expression of cytochrome P450 (CYP) enzymes is highly variable and associated with factors, such as age, genotype, sex, and disease states. In this study, quantification of metronidazole metabolizing CYP isoforms (CYP2A6, CYP2E1, CYP3A4, CYP3A5, and CYP3A7) in human liver microsomes from 115 children and 35 adults was performed using a quantitative proteomics method. The data confirmed age-dependent increase in CYP2A6, CYP2E1, and CYP3A4 abundance, whereas, as expected, CYP3A7 abundance showed postnatal decrease with age. In particular, the fold difference (neonatal to adulthood levels) in the protein abundance of CYP2A6, CYP2E1, and CYP3A4 was 14, 11, and 20, respectively. In contrast, protein abundance of CYP3A7 was > 125-fold higher in the liver microsomes of neonates than of adults. The abundance of CYP2A6 and CYP3A5 was associated with genotypes, rs4803381 and rs776746, respectively. A proteomics-informed physiologically based pharmacokinetic (PBPK) model was developed to describe the pharmacokinetics of metronidazole and its primary metabolite, 2-hydroxymethylmetronidazole. The model revealed an increase in the metabolite-to-parent ratio with age and showed a strong correlation between CYP2A6 abundance and metabolite formation (r 2 = 0.75). Notably, the estimated contribution of CYP3A7 was ~ 75% in metronidazole clearance in neonates. These data suggest that variability in CYP2A6 and CYP3A7 in younger children poses the risk of variable pharmacokinetics of metronidazole and its active metabolite with a potential impact on drug efficacy and safety. No sex-dependent difference was observed in the protein abundance of the studied CYPs. The successful integration of hepatic CYP ontogeny data derived from a large liver bank into the pediatric PBPK model of metronidazole can be extended to other drugs metabolized by the studied CYPs.
Collapse
Affiliation(s)
- Md Masud Parvez
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Aarzoo Thakur
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Aanchal Mehrotra
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Stephani Stancil
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy-Kansas City, Kansas City, Missouri, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Robin E Pearce
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy-Kansas City, Kansas City, Missouri, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy-Kansas City, Kansas City, Missouri, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| |
Collapse
|
5
|
Nagar S, Parise R, Korzekwa K. Predicting Clearance with Simple and Permeability-Limited Physiologically Based Pharmacokinetic Frameworks: Comparison of Well-Stirred, Dispersion, and Parallel-Tube Liver Models. Drug Metab Dispos 2024; 52:1060-1072. [PMID: 39084881 PMCID: PMC11409860 DOI: 10.1124/dmd.124.001782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
One-compartment (1C) and permeability-limited models were used to evaluate the ability of microsomal and hepatocyte intrinsic clearances to predict hepatic clearance. Well-stirred (WSM), parallel-tube (PTM), and dispersion (DM) models were evaluated within the liver as well as within whole-body physiologically based pharmacokinetic frameworks. It was shown that a linear combination of well-stirred and parallel-tube average liver blood concentrations accurately approximates dispersion model blood concentrations. Using a flow/permeability-limited model, a large systematic error was observed for acids and no systematic error for bases. A scaling factor that reduced interstitial fluid (ISF) plasma protein binding could greatly decrease the absolute average fold error (AAFE) for acids. Using a 1C model, a scalar to reduce plasma protein binding decreased the microsomal clearance AAFE for both acids and bases. With a permeability-limited model, only acids required this scalar. The mechanism of the apparent increased cytosolic concentrations for acids remains unknown. We also show that for hepatocyte intrinsic clearance in vitro-in vivo correlations (IVIVCs), a 1C model is mechanistically appropriate since hepatocyte clearance should represent the net clearance from ISF to elimination. A relationship was derived that uses microsomal and hepatocyte intrinsic clearance to solve for an active hepatic uptake clearance, but the results were inconclusive. Finally, the PTM model generally performed better than the WSM or DM models, with no clear advantage between microsomes and hepatocytes. SIGNIFICANCE STATEMENT: Prediction of drug clearance from microsomes or hepatocytes remains challenging. Various liver models (e.g., well-stirred, parallel-tube, and dispersion) have been mathematically incorporated into liver as well as whole-body physiologically based pharmacokinetic frameworks. Although the resulting models allow incorporation of pH partitioning, permeability, and active uptake for prediction of drug clearance, including these processes did not improve clearance predictions for both microsomes and hepatocytes.
Collapse
Affiliation(s)
- Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Rachel Parise
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Subash S, Singh DK, Ahire D, Khojasteh SC, Murray BP, Zientek MA, Jones RS, Kulkarni P, Zubair F, Smith BJ, Heyward S, Leeder JS, Prasad B. Ontogeny of Human Liver Aldehyde Oxidase: Developmental Changes and Implications for Drug Metabolism. Mol Pharm 2024; 21:2740-2750. [PMID: 38717252 DOI: 10.1021/acs.molpharmaceut.3c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Despite the increasing importance of aldehyde oxidase (AO) in the drug metabolism of clinical candidates, ontogeny data for AO are limited. The objective of our study was to characterize the age-dependent AO content and activity in the human liver cytosolic fraction (HLC) and human hepatocytes (HH). HLC (n = 121 donors) and HH (n = 50 donors) were analyzed for (1) AO protein content by quantitative proteomics and (2) enzyme activity using carbazeran as a probe substrate. AO activity showed high technical variability and poor correlation with the content in HLC samples, whereas hepatocyte samples showed a strong correlation between the content and activity. Similarly, AO content and activity showed no significant age-dependent differences in HLC samples, whereas the average AO content and activity in hepatocytes increased significantly (∼20-40-fold) from the neonatal levels (0-28 days). Based on the hepatocyte data, the age at which 50% of the adult AO content is reached (age50) was 3.15 years (0.32-13.97 years, 95% CI). Metabolite profiling of carbazeran revealed age-dependent metabolic switching and the role of non-AO mechanisms (glucuronidation and desmethylation) in carbazeran elimination. The content-activity correlation in hepatocytes improved significantly (R2 = 0.95; p < 0.0001) in samples showing <10% contribution of glucuronidation toward the overall metabolism, confirming that AO-mediated oxidation and glucuronidation are the key routes of carbazeran metabolism. Considering the confounding effect of glucuronidation on AO activity, AO content-based ontogeny data are a more direct reflection of developmental changes in protein expression. The comprehensive ontogeny data of AO in HH samples are more reliable than HLC data, which are important for developing robust physiologically based pharmacokinetic models for predicting AO-mediated metabolism in children.
Collapse
Affiliation(s)
- Sandhya Subash
- College of Pharmacy and Pharmaceutical Sciences, Washington State University (WSU), Spokane, Washington 99202, United States
| | - Dilip K Singh
- College of Pharmacy and Pharmaceutical Sciences, Washington State University (WSU), Spokane, Washington 99202, United States
| | - Deepak Ahire
- College of Pharmacy and Pharmaceutical Sciences, Washington State University (WSU), Spokane, Washington 99202, United States
| | - S Cyrus Khojasteh
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California 94080, United States
| | - Bernard P Murray
- Drug Metabolism, Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Michael A Zientek
- Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - Robert S Jones
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California 94080, United States
| | - Priyanka Kulkarni
- Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Faizan Zubair
- Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - Bill J Smith
- Terminal Phase Consulting LLC, Colorado Springs, Colorado 94404, United States
| | - Scott Heyward
- BioIVT, Inc., Baltimore, Maryland 21227, United States
| | - J Steven Leeder
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri 64108, United States
| | - Bhagwat Prasad
- College of Pharmacy and Pharmaceutical Sciences, Washington State University (WSU), Spokane, Washington 99202, United States
| |
Collapse
|
7
|
Sierra T, Achour B. In Vitro to In Vivo Scalars for Drug Clearance in Nonalcoholic Fatty Liver and Steatohepatitis. Drug Metab Dispos 2024; 52:390-398. [PMID: 38423789 DOI: 10.1124/dmd.123.001629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
In vitro-in vivo extrapolation (IVIVE) allows prediction of clinical outcomes across populations from in vitro data using specific scalars tailored to the biologic characteristics of each population. This study experimentally determined scalars for patients with varying degrees of nonalcoholic fatty liver disease (NAFLD), ranging from fatty liver to nonalcoholic steatohepatitis (NASH) and cirrhosis. Microsomal, S9, and cytosol fractions were extracted from 36 histologically normal and 66 NAFLD livers (27 nonalcoholic fatty liver [NAFL], 13 NASH, and 26 NASH with cirrhosis). Corrected microsomal protein per gram liver (MPPGL) progressively decreased with disease severity (26.8, 27.4, and 24.3 mg/g in NAFL, NASH, and NASH/cirrhosis, respectively, compared with 35.6 mg/g in normal livers; ANOVA, P < 0.001). Homogenate, S9, and cytosolic protein showed a consistent trend of decline in NASH/cirrhosis relative to normal control (post-hoc t test, P < 0.05). No differences across the groups were observed in homogenate, S9, cytosolic, and microsomal protein content in matched kidney samples. MPPGL-based scalars that combine protein content with liver size revealed that the reduction in MPPGL in NAFL and NASH was compensated by the reported increase in liver size (relative scalar ratios of 0.96 and 0.99, respectively), which was not the case with NASH/cirrhosis (ratio of 0.63), compared with healthy control. Physiologically based pharmacokinetics-informed global sensitivity analysis of the relative contribution of IVIVE scalars (hepatic CYP3A4 abundance, MPPGL, and liver size) to variability in exposure (area under the curve) to three CYP3A substrates (alprazolam, midazolam, and ibrutinib) revealed enzyme abundance as the most significant parameter, followed by MPPGL, whereas liver volume was the least impactful factor. SIGNIFICANCE STATEMENT: Nonalcoholic fatty liver disease-specific scalars necessary for extrapolation from in vitro systems to liver tissue are lacking. These are required in clearance prediction and dose selection in nonalcoholic fatty liver and steatohepatitis populations. Previously reported disease-driven changes have focused on cirrhosis, with no data on the initial stages of liver disease. The authors obtained experimental values for microsomal, cytosolic, and S9 fractions and assessed the relative impact of microsomal scalars on predicted exposure to substrate drugs using physiologically based pharmacokinetics.
Collapse
Affiliation(s)
- Teresa Sierra
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Brahim Achour
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
8
|
Stancil SL, Pearce RE, Staggs VS, Leeder JS. Ontogeny of Scaling Factors for Pediatric Physiologically Based Pharmacokinetic Modeling and Simulation: Cytosolic Protein Per Gram of Liver. Drug Metab Dispos 2023; 51:1578-1582. [PMID: 37735064 PMCID: PMC10658907 DOI: 10.1124/dmd.123.001417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
Scaling factors are necessary for translating in vitro drug biotransformation data to in vivo clearance values in physiologically-based pharmacokinetic modeling and simulation. Values for microsomal protein per gram of liver are available from several sources for use as a scaling factor to estimate hepatic clearance from microsomal drug biotransformation data. However, data regarding the distribution of cytosolic protein per gram of liver (CPPGL) values across the lifespan are limited, and sparse pediatric data have been published to date. Thus, CPPGL was determined in 160 liver samples from pediatric (n = 129) and adult (n = 31) donors obtained from multiple sources: the University of Maryland Brain and Tissue Bank, tissue retrieval services at the University of Minnesota and University of Pittsburgh, and Sekisui-XenoTech. Tissues were homogenized and subjected to differential centrifugation to isolate cytosolic fractions. Cytosolic protein content was determined by BCA assay. CPPGL varied from two- to sixfold within each age group/developmental stage. Tissue source and sex did not contribute substantially to variability in protein content. Regression analyses revealed minimal change in CPPGL over the first two decades of life (logCPPGL increases 0.1 mg/g per decade). A mean ± S.D. CPPGL value of 44.4 ± 17.4 mg/g or median 41.0 mg/g is representative of values observed between birth and early adulthood (0-18 years, n = 129). SIGNIFICANCE STATEMENT: Cytosolic protein per gram of liver (CPPGL) is a scaling factor required for physiologically based pharmacokinetic modeling and simulation of drug biotransformation by cytosolic enzymes, but pediatric data are limited. Although CPPGL varies from two- to sixfold within developmental stages, a value of 44.4 ± 17.4 mg/g (mean ± S.D.) is representative of the pediatric period (0-18 years, n = 129).
Collapse
Affiliation(s)
- Stephani L Stancil
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics and Children's Mercy Research Institute, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Robin E Pearce
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics and Children's Mercy Research Institute, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Vincent S Staggs
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics and Children's Mercy Research Institute, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics and Children's Mercy Research Institute, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| |
Collapse
|
9
|
Dinh J, Johnson TN, Grimstein M, Lewis T. Physiologically Based Pharmacokinetics Modeling in the Neonatal Population-Current Advances, Challenges, and Opportunities. Pharmaceutics 2023; 15:2579. [PMID: 38004559 PMCID: PMC10675397 DOI: 10.3390/pharmaceutics15112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Physiologically based pharmacokinetic (PBPK) modeling is an approach to predicting drug pharmacokinetics, using knowledge of the human physiology involved and drug physiochemical properties. This approach is useful when predicting drug pharmacokinetics in under-studied populations, such as pediatrics. PBPK modeling is a particularly important tool for dose optimization for the neonatal population, given that clinical trials rarely include this patient population. However, important knowledge gaps exist for neonates, resulting in uncertainty with the model predictions. This review aims to outline the sources of variability that should be considered with developing a neonatal PBPK model, the data that are currently available for the neonatal ontogeny, and lastly to highlight the data gaps where further research would be needed.
Collapse
Affiliation(s)
- Jean Dinh
- Certara UK Limited, Sheffield S1 2BJ, UK; (J.D.); (T.N.J.)
| | | | - Manuela Grimstein
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Tamorah Lewis
- Pediatric Clinical Pharmacology & Toxicology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
10
|
Zubiaur P, Soria-Chacartegui P, Boone EC, Prasad B, Dinh J, Wang WY, Zugbi S, Rodríguez-Lopez A, González-Iglesias E, Leeder JS, Abad-Santos F, Gaedigk A. Impact of CYP2C:TG Haplotype on CYP2C19 Substrates Clearance In Vivo, Protein Content, and In Vitro Activity. Clin Pharmacol Ther 2023; 114:1033-1042. [PMID: 37528442 PMCID: PMC10592245 DOI: 10.1002/cpt.3012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
A novel haplotype composed of two non-coding variants, CYP2C18 NM_000772.3:c.*31T (rs2860840) and NM_000772.2:c.819+2182G (rs11188059), referred to as "CYP2C:TG," was recently associated with ultrarapid metabolism of various CYP2C19 substrates. As the underlying mechanism and clinical relevance of this effect remain uncertain, we analyzed existing in vivo and in vitro data to determine the magnitude of the CYP2C:TG haplotype effect. We assessed variability in pharmacokinetics of CYP2C19 substrates, including citalopram, sertraline, voriconazole, omeprazole, pantoprazole, and rabeprazole in 222 healthy volunteers receiving one of these six drugs. We also determined its impact on CYP2C8, CYP2C9, CYP2C18, and CYP2C19 protein abundance in 135 human liver tissue samples, and on CYP2C18/CYP2C19 activity in vitro using N-desmethyl atomoxetine formation. No effects were observed according to CYP2C:TG haplotype or to CYP2C19*1+TG alleles (i.e., CYP2C19 alleles containing the CYP2C:TG haplotype). In contrast, CYP2C19 intermediate (e.g., CYP2C19*1/*2) and poor metabolizers (e.g., CYP2C19*2/*2) showed significantly higher exposure in vivo, lower CYP2C19 protein abundance in human liver microsomes, and lower activity in vitro compared with normal, rapid (i.e., CYP2C19*1/*17), and ultrarapid metabolizers (i.e., CYP2C19*17/*17). Moreover, a tendency toward lower exposure was observed in ultrarapid metabolizers compared with rapid metabolizers and normal metabolizers. Furthermore, when the CYP2C19*17 allele was present, CYP2C18 protein abundance was increased suggesting that genetic variation in CYP2C19 may be relevant to the overall metabolism of certain drugs by regulating not only its expression levels, but also those of CYP2C18. Considering all available data, we conclude that there is insufficient evidence supporting clinical CYP2C:TG testing to inform drug therapy.
Collapse
Affiliation(s)
- Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, MO, United States
| | - Paula Soria-Chacartegui
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Erin C Boone
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, MO, United States
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Jean Dinh
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, MO, United States
| | - Wendy Y Wang
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, MO, United States
| | - Santiago Zugbi
- Unit of Innovative Treatments, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Andrea Rodríguez-Lopez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Eva González-Iglesias
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - J. Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28006 Madrid, Spain
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
11
|
Cleary Y, Kletzl H, Grimsey P, Heinig K, Ogungbenro K, Silber Baumann HE, Frey N, Aarons L, Galetin A, Gertz M. Estimation of FMO3 Ontogeny by Mechanistic Population Pharmacokinetic Modelling of Risdiplam and Its Impact on Drug-Drug Interactions in Children. Clin Pharmacokinet 2023; 62:891-904. [PMID: 37148485 PMCID: PMC10256639 DOI: 10.1007/s40262-023-01241-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Spinal muscular atrophy (SMA) is a progressive neuromuscular disease caused by insufficient levels of survival motor neuron (SMN) protein. Risdiplam (EvrysdiTM) increases SMN protein and is approved for the treatment of SMA. Risdiplam has high oral bioavailability and is primarily eliminated through hepatic metabolism by flavin-containing monooxygenase3 (FMO3) and cytochrome P450 (CYP) 3A, by 75% and 20%, respectively. While the FMO3 ontogeny is critical input data for the prediction of risdiplam pharmacokinetics (PK) in children, it was mostly studied in vitro, and robust in vivo FMO3 ontogeny is currently lacking. We derived in vivo FMO3 ontogeny by mechanistic population PK modelling of risdiplam and investigated its impact on drug-drug interactions in children. METHODS Population and physiologically based PK (PPK and PBPK) modelling conducted during the development of risdiplam were integrated into a mechanistic PPK (Mech-PPK) model to estimate in vivo FMO3 ontogeny. A total of 10,205 risdiplam plasma concentration-time data from 525 subjects aged 2 months-61 years were included. Six different structural models were examined to describe the in vivo FMO3 ontogeny. Impact of the newly estimated FMO3 ontogeny on predictions of drug-drug interaction (DDI) in children was investigated by simulations for dual CYP3A-FMO3 substrates including risdiplam and theoretical substrates covering a range of metabolic fractions (fm) of CYP3A and FMO3 (fmCYP3A:fmFMO3 = 10%:90%, 50%:50%, 90%:10%). RESULTS All six models consistently predicted higher FMO3 expression/activity in children, reaching a maximum at the age of 2 years with an approximately threefold difference compared with adults. Different trajectories of FMO3 ontogeny in infants < 4 months of age were predicted by the six models, likely due to limited observations for this age range. Use of this in vivo FMO3 ontogeny function improved prediction of risdiplam PK in children compared to in vitro FMO3 ontogeny functions. The simulations of theoretical dual CYP3A-FMO3 substrates predicted comparable or decreased CYP3A-victim DDI propensity in children compared to adults across the range of fm values. Refinement of FMO3 ontogeny in the risdiplam model had no impact on the previously predicted low CYP3A-victim or -perpetrator DDI risk of risdiplam in children. CONCLUSION Mech-PPK modelling successfully estimated in vivo FMO3 ontogeny from risdiplam data collected from 525 subjects aged 2 months-61 years. To our knowledge, this is the first investigation of in vivo FMO3 ontogeny by population approach using comprehensive data covering a wide age range. Derivation of a robust in vivo FMO3 ontogeny function has significant implications on the prospective prediction of PK and DDI in children for other FMO3 substrates in the future, as illustrated in the current study for FMO3 and/or dual CYP3A-FMO3 substrates. CLINICAL TRIAL REGISTRY NUMBERS NCT02633709, NCT03032172, NCT02908685, NCT02913482, NCT03988907.
Collapse
Affiliation(s)
- Yumi Cleary
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.
| | - Heidemarie Kletzl
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Paul Grimsey
- Roche Pharma Research and Early Development, Roche Innovation Center, Welwyn, UK
| | - Katja Heinig
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Hanna Elisabeth Silber Baumann
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Nicolas Frey
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Leon Aarons
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Michael Gertz
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
12
|
Barber J, Al-Majdoub ZM, Couto N, Howard M, Elmorsi Y, Scotcher D, Alizai N, de Wildt S, Stader F, Sepp A, Rostami-Hodjegan A, Achour B. Toward systems-informed models for biologics disposition: covariates of the abundance of the neonatal Fc Receptor (FcRn) in human tissues and implications for pharmacokinetic modelling. Eur J Pharm Sci 2023; 182:106375. [PMID: 36626943 DOI: 10.1016/j.ejps.2023.106375] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Biologics are a fast-growing therapeutic class, with intertwined pharmacokinetics and pharmacodynamics, affected by the abundance and function of the FcRn receptor. While many investigators assume adequacy of classical models, such as allometry, for pharmacokinetic characterization of biologics, advocates of physiologically-based pharmacokinetics (PBPK) propose consideration of known systems parameters that affect the fate of biologics to enable a priori predictions, which go beyond allometry. The aim of this study was to deploy a systems-informed modelling approach to predict the disposition of Fc-containing biologics. We used global proteomics to quantify the FcRn receptor [p51 and β2-microglobulin (B2M) subunits] in 167 samples of human tissue (liver, intestine, kidney and skin) and assessed covariates of its expression. FcRn p51 subunit was highest in liver relative to other tissues, and B2M was 1-2 orders of magnitude more abundant than FcRn p51 across all sets. There were no sex-related differences, while higher expression was confirmed in neonate liver compared with adult liver. Trends of expression in liver and kidney indicated a moderate effect of body mass index, which should be confirmed in a larger sample size. Expression of FcRn p51 subunit was approximately 2-fold lower in histologically normal liver tissue adjacent to cancer compared with healthy liver. FcRn mRNA in plasma-derived exosomes correlated moderately with protein abundance in matching liver tissue, opening the possibility of use as a potential clinical tool. Predicted effects of trends in FcRn abundance in healthy and disease (cancer and psoriasis) populations using trastuzumab and efalizumab PBPK models were in line with clinical observations, and global sensitivity analysis revealed endogenous IgG plasma concentration and tissue FcRn abundance as key systems parameters influencing exposure to Fc-conjugated biologics.
Collapse
Affiliation(s)
- Jill Barber
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom
| | - Narciso Couto
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom
| | - Martyn Howard
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom
| | - Yasmine Elmorsi
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom
| | | | - Saskia de Wildt
- Radboud University Medical Center, Radboud University, Nijmegen, the Netherlands
| | - Felix Stader
- Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom
| | - Armin Sepp
- Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom; Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom
| | - Brahim Achour
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, 495A Avedisian Hall, 7 Greenhouse Road, Kingston, RI 02881, United States.
| |
Collapse
|
13
|
Vijaywargi G, Kollipara S, Ahmed T, Chachad S. Predicting transporter mediated drug-drug interactions via static and dynamic physiologically based pharmacokinetic modeling: A comprehensive insight on where we are now and the way forward. Biopharm Drug Dispos 2022. [PMID: 36413625 DOI: 10.1002/bdd.2339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/07/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
The greater utilization and acceptance of physiologically-based pharmacokinetic (PBPK) modeling to evaluate the potential metabolic drug-drug interactions is evident by the plethora of literature, guidance's, and regulatory dossiers available in the literature. In contrast, it is not widely used to predict transporter-mediated DDI (tDDI). This is attributed to the unavailability of accurate transporter tissue expression levels, the absence of accurate in vitro to in vivo extrapolations (IVIVE), enzyme-transporter interplay, and a lack of specific probe substrates. Additionally, poor understanding of the inhibition/induction mechanisms coupled with the inability to determine unbound concentrations at the interaction site made tDDI assessment challenging. Despite these challenges, continuous improvements in IVIVE approaches enabled accurate tDDI predictions. Furthermore, the necessity of extrapolating tDDI's to special (pediatrics, pregnant, geriatrics) and diseased (renal, hepatic impaired) populations is gaining impetus and is encouraged by regulatory authorities. This review aims to visit the current state-of-the-art and summarizes contemporary knowledge on tDDI predictions. The current understanding and ability of static and dynamic PBPK models to predict tDDI are portrayed in detail. Peer-reviewed transporter abundance data in special and diseased populations from recent publications were compiled, enabling direct input into modeling tools for accurate tDDI predictions. A compilation of regulatory guidance's for tDDI's assessment and success stories from regulatory submissions are presented. Future perspectives and challenges of predicting tDDI in terms of in vitro system considerations, endogenous biomarkers, the use of empirical scaling factors, enzyme-transporter interplay, and acceptance criteria for model validation to meet the regulatory expectations were discussed.
Collapse
Affiliation(s)
- Gautam Vijaywargi
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Hyderabad, Telangana, India
| | - Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Hyderabad, Telangana, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Hyderabad, Telangana, India
| | - Siddharth Chachad
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Hyderabad, Telangana, India
| |
Collapse
|