1
|
Xu XY, Zhang ZY, Zhang XD, Luo JC, Zhong YS, Jin LH, Dai DP, Qian JC. Critical considerations for co-administering rivaroxaban and vonoprazan: Unveiling potential pharmacokinetic interactions. Chem Biol Interact 2025; 406:111342. [PMID: 39643151 DOI: 10.1016/j.cbi.2024.111342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/01/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
To study the effects of metabolic enzyme activity inhibition and genetic polymorphisms on the pharmacokinetics and pharmacodynamics of rivaroxaban, we established an in vitro enzymatic reaction system to screen for inhibitors, and used the UPLC-MS/MS method to detect the levels of rivaroxaban and its metabolite M2-1. Additionally, in vivo pharmacokinetic-pharmacodynamic studies were conducted using Sprague-Dawley rats. Human recombinant CYP2J2 baculosomes were prepared using a baculovirus-insect expression system to investigate the impact of genetic polymorphisms on rivaroxaban metabolism through enzyme kinetics methods. The results demonstrated that acid-suppressing drugs strongly inhibited the metabolism of rivaroxaban in vitro. Among them, vonoprazan significantly increased the systemic exposure of rivaroxaban in vivo, while also prolonging prothrombin time, likely due to the competitive binding of vonoprazan and rivaroxaban to CYP2J2. Moreover, the genetic polymorphisms of CYP2J2 determined the metabolic characteristics of rivaroxaban and the inhibitory potency of vonoprazan. Overall, our findings suggest that vonoprazan-induced inhibition of CYP2J2 activity can affect the pharmacokinetics and pharmacodynamics of rivaroxaban, with the extent of inhibition determined by the genetic polymorphism of CYP2J2. These insights have important implications for the precise management of rivaroxaban in humans.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Zhe-Yan Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xiao-Dan Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Jian-Chao Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yun-Shan Zhong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Le-Hao Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Da-Peng Dai
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Jian-Chang Qian
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
2
|
Yamazoe Y, Murayama N. Construction of a CYP2J2-Template System and Its Application for Ligand Metabolism Prediction. Food Saf (Tokyo) 2024; 12:69-82. [PMID: 39713276 PMCID: PMC11649976 DOI: 10.14252/foodsafetyfscj.d-24-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
A Template system for the understanding of human CYP2J2-mediated reactions was constructed from the assembly of the ligands with the introduction of ideas of allowable width, Trigger-residue and the residue-initiated movement of ligands in the active site, which were in common with other Template* systems for human CYP1A1, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2E1, CYP3A4, CYP3A5, and CYP3A7 (Drug Metab Pharmacokinet 2016, 2017, 2019, 2020, 2021, 2022, 2023, 2024, and in press 2024). CYP2J2 system also includes ideas of bi-molecule binding of ligands on the Template. From their placements on the Template and rules for interaction modes, verifications of good and poor substrates, regio/stereo-selectivity, and inhibitory interaction became available faithfully for these ligands. The refined CYP2J2-Template system will thus offer reliable estimations of this human CYP catalysis toward ligands of diverse structures, together with their deciphering information to lead to judgments.
Collapse
Affiliation(s)
- Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate
School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai
980-8578, Japan
- Division of Risk Assessment, National Institute of Health
Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Norie Murayama
- Showa Pharmaceutical University, Machida, Tokyo 194-8543,
Japan
| |
Collapse
|
3
|
Leow JWH, Chan ECY. CYP2J2-mediated metabolism of arachidonic acid in heart: A review of its kinetics, inhibition and role in heart rhythm control. Pharmacol Ther 2024; 258:108637. [PMID: 38521247 DOI: 10.1016/j.pharmthera.2024.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Cytochrome P450 2 J2 (CYP2J2) is primarily expressed extrahepatically and is the predominant epoxygenase in human cardiac tissues. This highlights its key role in the metabolism of endogenous substrates. Significant scientific interest lies in cardiac CYP2J2 metabolism of arachidonic acid (AA), an omega-6 polyunsaturated fatty acid, to regioisomeric bioactive epoxyeicosatrienoic acid (EET) metabolites that show cardioprotective effects including regulation of cardiac electrophysiology. From an in vitro perspective, the accurate characterization of the kinetics of CYP2J2 metabolism of AA including its inhibition and inactivation by drugs could be useful in facilitating in vitro-in vivo extrapolations to predict drug-AA interactions in drug discovery and development. In this review, background information on the structure, regulation and expression of CYP2J2 in human heart is presented alongside AA and EETs as its endogenous substrate and metabolites. The in vitro and in vivo implications of the kinetics of this endogenous metabolic pathway as well as its perturbation via inhibition and inactivation by drugs are elaborated. Additionally, the role of CYP2J2-mediated metabolism of AA to EETs in cardiac electrophysiology will be expounded.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
4
|
Zhang Y, Yao B, Guo Y, Huang S, Liu J, Zhang Y, Liang C, Huang J, Tang Y, Wang X. Sorafenib reduces the production of epoxyeicosatrienoic acids and leads to cardiac injury by inhibiting CYP2J in rats. Biochem Pharmacol 2024; 223:116169. [PMID: 38548244 DOI: 10.1016/j.bcp.2024.116169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
Sorafenib, an important cancer drug in clinical practice, has caused heart problems such as hypertension, myocardial infarction, and thrombosis. Although some mechanisms of sorafenib-induced cardiotoxicity have been proposed, there is still more research needed to reach a well-established definition of the causes of cardiotoxicity of sorafenib. In this report, we demonstrate that sorafenib is a potent inhibitor of the CYP2J enzyme. Sorafenib significantly inhibited the production of epoxyeicosatrienoic acids (EETs) in rat cardiac microsomes. The in vivo experimental results also showed that after the administration of sorafenib, the levels of 11,12-EET and 14,15-EET in rat plasma were significantly reduced, which was similar to the results of CYP2J gene knockout. Sorafenib decreased the levels of EETs, leading to abnormal expression of mitochondrial fusion and fission factors in heart tissue. In addition, the expression of mitochondrial energy metabolism factors (Pgc-1α, Pgc-1β, Ampk, and Sirt1) and cardiac mechanism factors (Scn5a and Prkag2) was significantly reduced, increasing the risk of arrhythmia and heart failure. Meanwhile, the increase in injury markers Anp, CK, and CK-MB further confirmed the cardiotoxicity of sorafenib. This study is of great significance for understanding the cardiotoxicity of sorafenib, and is also a model for studying the cardiotoxicity of other drugs that inhibit CYP2J activity.
Collapse
Affiliation(s)
- Yanfang Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanqing Guo
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Chenmeizi Liang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Junze Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yu Tang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
5
|
Wiley AM, Yang J, Madhani R, Nath A, Totah RA. Investigating the association between CYP2J2 inhibitors and QT prolongation: a literature review. Drug Metab Rev 2024; 56:145-163. [PMID: 38478383 DOI: 10.1080/03602532.2024.2329928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Drug withdrawal post-marketing due to cardiotoxicity is a major concern for drug developers, regulatory agencies, and patients. One common mechanism of cardiotoxicity is through inhibition of cardiac ion channels, leading to prolongation of the QT interval and sometimes fatal arrythmias. Recently, oxylipin signaling compounds have been shown to bind to and alter ion channel function, and disruption in their cardiac levels may contribute to QT prolongation. Cytochrome P450 2J2 (CYP2J2) is the predominant CYP isoform expressed in cardiomyocytes, where it oxidizes arachidonic acid to cardioprotective epoxyeicosatrienoic acids (EETs). In addition to roles in vasodilation and angiogenesis, EETs bind to and activate various ion channels. CYP2J2 inhibition can lower EET levels and decrease their ability to preserve cardiac rhythm. In this review, we investigated the ability of known CYP inhibitors to cause QT prolongation using Certara's Drug Interaction Database. We discovered that among the multiple CYP isozymes, CYP2J2 inhibitors were more likely to also be QT-prolonging drugs (by approximately 2-fold). We explored potential binding interactions between these inhibitors and CYP2J2 using molecular docking and identified four amino acid residues (Phe61, Ala223, Asn231, and Leu402) predicted to interact with QT-prolonging drugs. The four residues are located near the opening of egress channel 2, highlighting the potential importance of this channel in CYP2J2 binding and inhibition. These findings suggest that if a drug inhibits CYP2J2 and interacts with one of these four residues, then it may have a higher risk of QT prolongation and more preclinical studies are warranted to assess cardiovascular safety.
Collapse
Affiliation(s)
- Alexandra M Wiley
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Jade Yang
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Rivcka Madhani
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Abhinav Nath
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| |
Collapse
|
6
|
Zhang Y, Gao L, Yao B, Huang S, Zhang Y, Liu J, Liu Z, Wang X. Role of epoxyeicosatrienoic acids in cardiovascular diseases and cardiotoxicity of drugs. Life Sci 2022; 310:121122. [DOI: 10.1016/j.lfs.2022.121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
|
7
|
Kojima A, Nadai M, Murayama N, Yamazaki H, Katoh M. Effects of multi-kinase inhibitors on the activity of cytochrome P450 2J2. Xenobiotica 2022; 52:669-675. [PMID: 36251932 DOI: 10.1080/00498254.2022.2137068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. Cytochrome P450 2J2 (CYP2J2) shows high expression in extrahepatic tissues, including the heart and kidney and in tumours. Inhibition of CYP2J2 has attracted attention for cancer treatment because it metabolises arachidonic acid (AA) to epoxyeicosatrienoic acid (EET), which inhibits apoptosis and promotes tumour growth. Multi-kinase inhibitor (MKI) is a molecular-targeted drug with antitumor activities. This study aimed to clarify the inhibitory effects of MKIs on CYP2J2 activity. We also investigated whether MKIs affected CYP2J2-catalysed EET formation from AA.2. Twenty MKIs showed different inhibitory potencies against astemizole O-demethylation in CYP2J2. In particular, apatinib, motesanib, and vatalanib strongly inhibited astemizole O-demethylation. These three MKIs exhibited competitive inhibition with inhibition constant (Ki) values of 9.3, 15.4, and 65.0 nM, respectively. Apatinib, motesanib, and vatalanib also inhibited CYP2J2-catalysed 14,15-EET formation from AA.3. In simulations of docking to CYP2J2, the U energy values of apatinib, motesanib, and vatalanib were low, and measured -84.5, -69.9, and -52.3 kcal/mol, respectively.4. In conclusion, apatinib, motesanib, and vatalanib strongly inhibited CYP2J2 activity, suggesting that the effects of a given CYP2J2 substrate may be altered upon the administration of these MKIs.
Collapse
Affiliation(s)
- Ayaka Kojima
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Masayuki Nadai
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Miki Katoh
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|