1
|
Ahlawat J, Guillama Barroso G, Masoudi Asil S, Alvarado M, Armendariz I, Bernal J, Carabaza X, Chavez S, Cruz P, Escalante V, Estorga S, Fernandez D, Lozano C, Marrufo M, Ahmad N, Negrete S, Olvera K, Parada X, Portillo B, Ramirez A, Ramos R, Rodriguez V, Rojas P, Romero J, Suarez D, Urueta G, Viel S, Narayan M. Nanocarriers as Potential Drug Delivery Candidates for Overcoming the Blood-Brain Barrier: Challenges and Possibilities. ACS OMEGA 2020; 5:12583-12595. [PMID: 32548442 PMCID: PMC7288355 DOI: 10.1021/acsomega.0c01592] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/18/2020] [Indexed: 05/21/2023]
Abstract
The design of a drug that successfully overcomes the constraints imposed by the blood-brain barrier (BBB, which acts as a gatekeeper to the entry of substances into the brain) requires an understanding of the biological firewall. It is also of utmost importance to understand the physicochemical properties of the said drug and how it engages the BBB to avoid undesired side effects. Since fewer than 5% of the tested molecules can pass through the BBB, drug development pertaining to brain-related disorders takes inordinately long to develop. Furthermore, in most cases it is also unsuccessful for allied reasons. Several drug delivery systems (DDSs) have shown excellent potential in drug delivery across the BBB while demonstrating minimal side effects. This mini-review summarizes key features of the BBB, recapitulates recent advances in our understanding of the BBB, and highlights existing strategies for the delivery of drug to the brain parenchyma.
Collapse
Affiliation(s)
- Jyoti Ahlawat
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | | | - Shima Masoudi Asil
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Melinda Alvarado
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Isabela Armendariz
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Jose Bernal
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Ximena Carabaza
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Stephanie Chavez
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Paulina Cruz
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Vassti Escalante
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Savana Estorga
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Daniel Fernandez
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Carolina Lozano
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Martin Marrufo
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Nabeel Ahmad
- School
of Biotechnology, IFTM University, Moradabad, India
| | - Sergio Negrete
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Karyme Olvera
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Ximena Parada
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Brianna Portillo
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Andrea Ramirez
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Raul Ramos
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Veronica Rodriguez
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Paola Rojas
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Jessica Romero
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - David Suarez
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Graciela Urueta
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Stephanie Viel
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department
of Chemistry and Biochemistry, Department of Environmental Science and
Engineering, and FYRIS Laboratory, Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
2
|
Therapeutic Potential and Utility of Elacridar with Respect to P-glycoprotein Inhibition: An Insight from the Published In Vitro, Preclinical and Clinical Studies. Eur J Drug Metab Pharmacokinet 2018; 42:915-933. [PMID: 28374336 DOI: 10.1007/s13318-017-0411-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The occurrence of efflux mechanisms via Permeability-glycoprotein (P-gp) recognized as an important physiological process impedes drug entry or transport across membranes into tissues. In some instances, either low oral bioavailability or lack of brain penetration has been attributed to P-gp mediated efflux activity. Therefore, the objective of development of P-gp inhibitors was to facilitate the attainment of higher drug exposures in tissues. Many third-generation P-gp inhibitors such as elacridar, tariquidar, zosuquidar, etc. have entered clinical development to fulfil the promise. The body of evidence from in vitro and in vivo preclinical and clinical data reviewed in this paper provides the basis for an effective blockade of P-gp efflux mechanism by elacridar. However, clinical translation of the promise has been elusive not just for elacridar but also for other P-gp inhibitors in this class. The review provides introspection and perspectives on the lack of clinical translation of this class of drugs and a broad framework of strategies and considerations in the potential application of elacridar and other P-gp inhibitors in oncology therapeutics.
Collapse
|
3
|
Kirtane AR, Langer R, Traverso G. Past, Present, and Future Drug Delivery Systems for Antiretrovirals. J Pharm Sci 2016; 105:3471-3482. [PMID: 27771050 DOI: 10.1016/j.xphs.2016.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
Abstract
The human immunodeficiency virus has infected millions of people and the epidemic continues to grow rapidly in some parts of the world. Antiretroviral (ARV) therapy has provided improved treatment and prolonged the life expectancy of patients. Moreover, there is growing interest in using ARVs to protect against new infections. Hence, ARVs have emerged as our primary strategy in combating the virus. Unfortunately, several challenges limit the optimal performance of these drugs. First, ARVs often require life-long use and complex dosing regimens. This results in low patient adherence and periods of lapsed treatment manifesting in drug resistance. This has prompted the development of alternate dosage forms such as vaginal rings and long-acting injectables that stand to improve patient adherence. Another problem central to therapeutic failure is the inadequate penetration of drugs into infected tissues. This can lead to incomplete treatment, development of resistance, and viral rebound. Several strategies have been developed to improve drug penetration into these drug-free sanctuaries. These include encapsulation of drugs in nanoparticles, use of pharmacokinetic enhancers, and cell-based drug delivery platforms. In this review, we discuss issues surrounding ARV therapy and their impact on drug efficacy. We also describe various drug delivery-based approaches developed to overcome these issues.
Collapse
Affiliation(s)
- Ameya R Kirtane
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| | - Giovanni Traverso
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
4
|
Garg T, Bhandari S, Rath G, Goyal AK. Current strategies for targeted delivery of bio-active drug molecules in the treatment of brain tumor. J Drug Target 2015; 23:865-87. [PMID: 25835469 DOI: 10.3109/1061186x.2015.1029930] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain tumor is one of the most challenging diseases to treat. The major obstacle in the specific drug delivery to brain is blood-brain barrier (BBB). Mostly available anti-cancer drugs are large hydrophobic molecules which have limited permeability via BBB. Therefore, it is clear that the protective barriers confining the passage of the foreign particles into the brain are the main impediment for the brain drug delivery. Hence, the major challenge in drug development and delivery for the neurological diseases is to design non-invasive nanocarrier systems that can assist controlled and targeted drug delivery to the specific regions of the brain. In this review article, our major focus to treat brain tumor by study numerous strategies includes intracerebral implants, BBB disruption, intraventricular infusion, convection-enhanced delivery, intra-arterial drug delivery, intrathecal drug delivery, injection, catheters, pumps, microdialysis, RNA interference, antisense therapy, gene therapy, monoclonal/cationic antibodies conjugate, endogenous transporters, lipophilic analogues, prodrugs, efflux transporters, direct conjugation of antitumor drugs, direct targeting of liposomes, nanoparticles, solid-lipid nanoparticles, polymeric micelles, dendrimers and albumin-based drug carriers.
Collapse
Affiliation(s)
| | - Saurav Bhandari
- b Department of Quality Assurance , ISF College of Pharmacy , Moga , Punjab , India
| | | | | |
Collapse
|
5
|
Salyers KL, Xu Y. Animal Models for Studying Drug Metabolizing Enzymes and Transporters. ADME‐ENABLING TECHNOLOGIES IN DRUG DESIGN AND DEVELOPMENT 2012:253-276. [DOI: 10.1002/9781118180778.ch16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Janneh O, Bray PG, Jones E, Wyen C, Chiba P, Back DJ, Khoo SH. Concentration-dependent effects and intracellular accumulation of HIV protease inhibitors in cultured CD4 T cells and primary human lymphocytes. J Antimicrob Chemother 2010; 65:906-16. [PMID: 20237075 DOI: 10.1093/jac/dkq082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The intracellular and plasma concentrations of HIV protease inhibitors (HPIs) vary widely in vivo. It is unclear whether there is a concentration-dependent effect of HPIs such that at increasing concentration they may either block their own efflux (leading to 'autoboosting') or influx (leading to saturability/decreased intracellular accumulation). METHOD The effects of various concentrations (0-30 microM) of lopinavir, saquinavir, ritonavir and atazanavir on the accumulation of [(14)C]lopinavir, [(3)H]saquinavir, [(3)H]ritonavir and [(3)H]atazanavir, respectively, were investigated in CEM(parental), CEM(VBL) [P-glycoprotein (ABCB1) overexpressing], CEM(E1000) (MRP1 overexpressing) and in peripheral blood mononuclear cells (PBMCs). We also investigated the effects of inhibitors of ABCB1/ABCG2 (tariquidar), ABCC (MK571) and ABCC1/2 (frusemide), singly and in combination with HPIs, on cellular accumulation. RESULTS In all the cell lines, with increasing concentration of lopinavir, saquinavir and ritonavir, there was a significant increase in the cellular accumulation of [(14)C]lopinavir, [(3)H]saquinavir and [(3)H]ritonavir. Tariquidar, MK571 and frusemide (alone and in combination with lopinavir, saquinavir and ritonavir) significantly increased the accumulation of [(14)C]lopinavir, [(3)H]saquinavir and [(3)H]ritonavir. Ritonavir (alone or in combination with tariquidar) decreased the intracellular accumulation of [(3)H]ritonavir in PBMCs. Atazanavir decreased the accumulation of [(3)H]atazanavir in a concentration-dependent manner in all of the cells tested. CONCLUSIONS There are complex and variable drug-specific rather than class-specific effects of the HPIs on their own accumulation.
Collapse
Affiliation(s)
- Omar Janneh
- Department of Biomolecular and Sport Sciences, James Starley Building, Priory Street, Coventry University, Coventry CV1 5FB, UK
| | | | | | | | | | | | | |
Collapse
|
7
|
Second generation of BACE-1 inhibitors part 3: Towards non hydroxyethylamine transition state mimetics. Bioorg Med Chem Lett 2009; 19:3674-8. [DOI: 10.1016/j.bmcl.2009.03.149] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 03/30/2009] [Accepted: 03/30/2009] [Indexed: 01/16/2023]
|
8
|
Axelrod D, Bielory L. Fexofenadine hydrochloride in the treatment of allergic disease: a review. J Asthma Allergy 2008; 1:19-29. [PMID: 21436982 PMCID: PMC3121339 DOI: 10.2147/jaa.s3092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fexofenadine is a selective, non-sedating H1 receptor antagonist, marketed in the United States since 2000. The FDA approved an oral suspension in 2006, for the treatment of seasonal allergic rhinitis and chronic idiopathic urticaria in children. The tablet, capsule, and oral suspension are bioequivalent. Although fexofenadine does not use P450 CYP 3A4 it does interact with a number of drugs at P-glycoprotein and organic anion transporter polypeptides. The risk of toxicity from other drugs may increase with the administration of fexofenadine. Orange and grapefruit juices reduce the bioavailability of fexofenadine. Fexofenadine has been shown to have an impact on inflammatory mediators, other than histamine, such as decreasing the production of LTC4, LTD4, LTE4, PGE2, and PGF2α; inhibiting cyclo-oxygenase 2, thromboxane; limiting iNOS generation of NO; decreasing cytokine levels (ICAM-1, ELAM-1, VCAM-1, RANTES, I-TAC, MDC, TARC, MMP-2, MMP-9, tryptase); and diminishing eosinophil adherence, chemotaxis, and opsonization of particles. These effects may provide benefit to some of the inflammatory responses of an acute allergic reaction and provide a basis for future development of H1 antagonists with stronger anti-inflammatory effects. These studies also support the contention that fexofenadine is effective for the treatment of allergic rhinits and chronic idiopathic urticaria.
Collapse
|
9
|
Magadala P, van Vlerken LE, Shahiwala A, Amiji MM. Multifunctional Polymeric Nanosystems for Tumor-Targeted Delivery. MULTIFUNCTIONAL PHARMACEUTICAL NANOCARRIERS 2008. [DOI: 10.1007/978-0-387-76554-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Abstract
P-glycoprotein actively transports structurally unrelated compounds out of cells, conferring the multidrug resistance phenotype in cancer. Tariquidar is a potent, specific, noncompetitive inhibitor of P-glycoprotein. Tariquidar inhibits the ATPase activity of P-glycoprotein, suggesting that the modulating effect is derived from the inhibition of substrate binding, inhibition of ATP hydrolysis or both. In clinical trials, tariquidar is tolerable and does not have significant pharmacokinetic interaction with chemotherapy. In patients, inhibition of P-glycoprotein has been demonstrated for 48 h after a single dose of tariquidar. Studies to assess a possible increase in toxicity of chemotherapy and the impact of P-glycoprotein inhibition on tumor response and patient outcome are ongoing. Tariquidar can be considered an ideal agent for testing the role of P-glycoprotein inhibition in cancer.
Collapse
Affiliation(s)
- Elizabeth Fox
- National Cancer Institute, Pediatric Oncology Branch, Bethesda, MD 20892, USA.
| | | |
Collapse
|
11
|
Jain R, Duvvuri S, Kansara V, Mandava NK, Mitra AK. Intestinal absorption of novel-dipeptide prodrugs of saquinavir in rats. Int J Pharm 2007; 336:233-40. [PMID: 17207946 PMCID: PMC3166959 DOI: 10.1016/j.ijpharm.2006.11.058] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 11/21/2006] [Accepted: 11/27/2006] [Indexed: 11/28/2022]
Abstract
Saquinavir (SQV) was the first human immuno-virus-1 (HIV-1) protease inhibitor approved by FDA. However, P-glycoprotein (P-gp), an efflux pump limits its oral and brain bioavailabilities. The objective of this study is to investigate whether prodrug modification of SQV to dipeptide prodrugs Valine-Valine-Saquinavir (Val-Val-SQV) and Glycine-Valine-Saquinavir (Gly-Val-SQV) targeting intestinal peptide transporter can enhance intestinal permeability of SQV by circumventing P-gp mediated efflux. Single pass intestinal perfusion experiments in rat jejunum were performed to calculate the absorption rate constant and intestinal permeability of SQV, Val-Val-SQV and Gly-Val-SQV. Equimolar concentration (25 microM) of SQV, Val-Val-SQV and Gly-Val-SQV were employed in the perfusion studies. Perfusion experiments were also carried out in the presence of cyclosporine (10 microM) and glycyl-sarcosine (20 mM). Absorption rate constants in rat jejunum (ka) for SQV, Val-Val-SQV and Gly-Val-SQV were found to be 14.1+/-3.4x10(-3), 65.8+/-4.3x10(-3), and 25.6+/-5.7x10(-3) min(-1), respectively. Enhanced absorption of Val-Val-SQV and Gly-Val-SQV relative to SQV can be attributed to their translocation by the peptide transporter in the jejunum. Significant permeability enhancement of SQV across rat jejunum was observed in the presence of cyclosporine 10 microM (P-gp inhibitor). However, permeability of Val-Val-SQV was unchanged in the presence of cyclosporine suggesting lack of any interaction of the prodrug with efflux pump. Intestinal absorption of Val-Val-SQV was significantly inhibited in the presence of gly-sar indicating the involvement of peptide transporter in intestinal absorption. In conclusion, peptide transporter targeted prodrug modification of P-gp substrates could lead to shielding of these drug molecules from efflux pumps.
Collapse
Affiliation(s)
- Ritesh Jain
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri- Kansas City, Kansas City, Missouri 64110-2499, U.S.A
| | - Sridhar Duvvuri
- Wyeth Pharmaceuticals, 401 N. Middletown Road Pearl River, NY 10965-1299, USA
| | - Viral Kansara
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri- Kansas City, Kansas City, Missouri 64110-2499, U.S.A
| | - Nanda Kishore Mandava
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri- Kansas City, Kansas City, Missouri 64110-2499, U.S.A
| | - Ashim K. Mitra
- Corresponding Author: Ashim K. Mitra, Ph.D., School of Pharmacy, University of Missouri - Kansas City, 5005 Rockhill Road, Kansas City, Missouri 64110-2499, U.S.A., Phone: 816-235-1615, Fax: 816-235-5190,
| |
Collapse
|
12
|
Motl S, Zhuang Y, Waters CM, Stewart CF. Pharmacokinetic considerations in the treatment of CNS tumours. Clin Pharmacokinet 2007; 45:871-903. [PMID: 16928151 DOI: 10.2165/00003088-200645090-00002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite aggressive therapy, the majority of primary and metastatic brain tumour patients have a poor prognosis with brief survival periods. This is because of the different pharmacokinetic parameters of systemically administered chemotherapeutic agents between the brain and the rest of the body. Specifically, before systemically administered drugs can distribute into the CNS, they must cross two membrane barriers, the blood-brain barrier (BBB) and blood-cerebrospinal fluid (CSF) barrier (BCB). To some extent, these structures function to exclude xenobiotics, such as anticancer drugs, from the brain. An understanding of these unique barriers is essential to predict when and how systemically administered drugs will be transported to the brain. Specifically, factors such as physiological variables (e.g. blood flow), physicochemical properties of the drug (e.g. molecular weight), as well as influx and efflux transporter expression at the BBB and BCB (e.g. adenosine triphosphate-binding cassette transporters) determine what compounds reach the CNS. A large body of preclinical and clinical research exists regarding brain penetration of anticancer agents. In most cases, a surrogate endpoint (i.e. CSF to plasma area under the concentration-time curve [AUC] ratio) is used to describe how effectively agents can be transported into the CNS. Some agents, such as the topoisomerase I inhibitor, topotecan, have high CSF to plasma AUC ratios, making them valid therapeutic options for primary and metastatic brain tumours. In contrast, other agents like the oral tyrosine kinase inhibitor, imatinib, have a low CSF to plasma AUC ratio. Knowledge of these data can have important clinical implications. For example, it is now known that chronic myelogenous leukaemia patients treated with imatinib might need additional CNS prophylaxis. Since most anticancer agents have limited brain penetration, new pharmacological approaches are needed to enhance delivery into the brain. BBB disruption, regional administration of chemotherapy and transporter modulation are all currently being evaluated in an effort to improve therapeutic outcomes. Additionally, since many chemotherapeutic agents are metabolised by the cytochrome P450 3A enzyme system, minimising drug interactions by avoiding concomitant drug therapies that are also metabolised through this system may potentially enhance outcomes. Specifically, the use of non-enzyme-inducing antiepileptic drugs and curtailing nonessential corticosteroid use may have an impact.
Collapse
Affiliation(s)
- Susannah Motl
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | |
Collapse
|
13
|
Spitzenberger TJ, Heilman D, Diekmann C, Batrakova E, Kabanov A, Gendelman HE, Elmquist WF, Persidsky Y. Novel delivery system enhances efficacy of antiretroviral therapy in animal model for HIV-1 encephalitis. J Cereb Blood Flow Metab 2007; 27:1033-42. [PMID: 17063148 PMCID: PMC3070745 DOI: 10.1038/sj.jcbfm.9600414] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Most potent antiretroviral drugs (e.g., HIV-1 protease inhibitors) poorly penetrate the blood-brain barrier. Brain distribution can be limited by the efflux transporter, P-glycoprotein (P-gp). The ability of a novel drug delivery system (block co-polymer P85) that inhibits P-gp, to increase the efficacy of antiretroviral drugs in brain was examined using a severe combined immunodeficiency (SCID) mouse model of HIV-1 encephalitis (HIVE). Severe combined immunodeficiency mice inoculated with HIV-1 infected human monocyte-derived macrophages (MDM) into the basal ganglia were treated with P85, antiretroviral therapy (ART) (zidovudine, lamivudine and nelfinavir (NEL)), or P85 and ART. Mice were killed on days 7 and 14, and brains were evaluated for levels of viral infection. Antiviral effects of NEL, P85, or their combination were evaluated in vitro using HIV-1 infected MDM and showed antiretroviral effects of P85 alone. In SCID mice injected with virus-infected MDM, the combination of ART-P85 and ART alone showed a significant decrease of HIV-1 p24 expressing MDM (25% and 33% of controls, respectively) at day 7 while P85 alone group was not different from control. At day 14, all treatment groups showed a significant decrease in percentage of HIV-1 infected MDM as compared with control. P85 alone and combined ART-P85 groups showed the most significant reduction in percentage of HIV-1 p24 expressing MDM (8% to 22% of control) that were superior to the ART alone group (38% of control). Our findings indicate major antiretroviral effects of P85 and enhanced in vivo efficacy of antiretroviral drugs when combined with P85 in a SCID mouse model of HIVE.
Collapse
Affiliation(s)
| | - David Heilman
- Center for Neurovirology and Neurodegenerative Disorders, Univ. Nebraska Medical Center, Omaha, NE 68198
- Dept. Pharmacology and Experimental Neuroscience, Univ. Nebraska Medical Center, Omaha, NE 68198
| | - Casey Diekmann
- Center for Neurovirology and Neurodegenerative Disorders, Univ. Nebraska Medical Center, Omaha, NE 68198
- Dept. Pharmacology and Experimental Neuroscience, Univ. Nebraska Medical Center, Omaha, NE 68198
| | - Elena Batrakova
- Dept. Pharmaceutical Sciences, Univ. Nebraska Medical Center, Omaha, NE 68198
| | - Alexander Kabanov
- Dept. Pharmaceutical Sciences, Univ. Nebraska Medical Center, Omaha, NE 68198
| | - Howard E. Gendelman
- Center for Neurovirology and Neurodegenerative Disorders, Univ. Nebraska Medical Center, Omaha, NE 68198
- Dept. Pharmacology and Experimental Neuroscience, Univ. Nebraska Medical Center, Omaha, NE 68198
| | | | - Yuri Persidsky
- Center for Neurovirology and Neurodegenerative Disorders, Univ. Nebraska Medical Center, Omaha, NE 68198
- Dept. Pharmacology and Experimental Neuroscience, Univ. Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
14
|
Vyas TK, Shah L, Amiji MM. Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites. Expert Opin Drug Deliv 2006; 3:613-28. [PMID: 16948557 DOI: 10.1517/17425247.3.5.613] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Providing the optimum treatment of AIDS is a major challenge in the 21st Century. HIV is localised and harboured in certain inaccessible compartments of the body, such as the CNS, the cerebrospinal fluid, the lymphatic system and in the macrophages, where it cannot be reached by the majority of therapeutic agents in adequate concentrations or in which the therapeutic agents cannot reside for the necessary duration. Progression in HIV/AIDS treatment suggests that available therapy can lower the systemic viral load below the detection limit. However, on discontinuation of treatment, there is relapse of the infection from the reservoir sites and a potential for resistance development. This review discusses the aetiology and pathology of HIV, with emphasis on the viral reservoirs, current therapy of AIDS, and the opportunity for nanotechnology-based drug delivery systems to facilitate complete eradication of viral load from the reservoir sites. Literature-cited examples of drug delivery systems that are under investigation for the treatment of AIDS are discussed. The article also focuses on the future outlook and strategies for investigational drug formulations that use nanotherapeutic strategy for HIV/AIDS.
Collapse
Affiliation(s)
- Tushar K Vyas
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, 110 Mugar Life Sciences Building, Boston, MA 02115, USA
| | | | | |
Collapse
|
15
|
Anderson BD, May MJ, Jordan S, Song L, Roberts MJ, Leggas M. Dependence of nelfinavir brain uptake on dose and tissue concentrations of the selective P-glycoprotein inhibitor zosuquidar in rats. Drug Metab Dispos 2006; 34:653-9. [PMID: 16434546 DOI: 10.1124/dmd.105.006536] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Most reverse transcriptase and protease inhibitors used in highly active antiretroviral therapy for treating human immunodeficiency virus (HIV) infections exhibit poor penetration into the brain, raising the concern that the brain may be a sanctuary site for the development of resistant HIV variants. This study explores the relationship between the dose and plasma and brain concentrations of zosuquidar and the effect of this selective P-glycoprotein inhibitor on central nervous system penetration of the HIV protease inhibitor nelfinavir maintained at steady state by intravenous infusions in rats. Nelfinavir was infused (10 mg/kg/h) for up to 10 h with or without concurrent administration of an intravenous bolus dose of 2, 6, or 20 mg/kg zosuquidar given at 4 h. Brain tissue and plasma were analyzed for both drug concentrations. Brain tissue/plasma nelfinavir concentration ratios (uncorrected for the vascular contribution) increased nonlinearly with zosuquidar dose from 0.06 +/- 0.03 in the absence of zosuquidar and 0.09 +/- 0.02 between 2 and 6 h after 2 mg/kg zosuquidar to 0.85 +/- 0.19 after 6 mg/kg and 1.58 +/- 0.67 after 20 mg/kg zosuquidar. Zosuquidar brain tissue/plasma concentration ratios exhibited a similar abrupt increase from 2.8 +/- 0.3 after a 2 mg/kg dose to approximately 15 after the 6 and 20 mg/kg doses. The apparent threshold in the plasma concentration of zosuquidar necessary to produce significant enhancement in brain uptake of nelfinavir appears to be close to the plasma concentrations associated with the maximum tolerated dose reported in the literature after repeated dosing of zosuquidar in patients.
Collapse
Affiliation(s)
- Bradley D Anderson
- University of Kentucky, Department of Pharmaceutical Sciences, ASTeCC Bldg, Room A323A, Lexington, KY 40506-0286, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Thangathurai D, Roffey P, Mogos M, Riad M, Bohorguez A. Mediastinal haemorrhage mimicking tamponade during en-bloc oesophagectomy. Eur J Anaesthesiol 2005; 22:555-6. [PMID: 16045149 DOI: 10.1017/s0265021505240942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Gimenez F, Fernandez C, Mabondzo A. Transport of HIV protease inhibitors through the blood-brain barrier and interactions with the efflux proteins, P-glycoprotein and multidrug resistance proteins. J Acquir Immune Defic Syndr 2005; 36:649-58. [PMID: 15167283 DOI: 10.1097/00126334-200406010-00001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HIV protease inhibitors (HPIs) have limited penetration into the brain. This poor transport through the blood-brain barrier is mainly due to active efflux by proteins such as P-glycoprotein (P-gp) preventing drugs from clearing the brain of the virus. The present paper focuses on cerebral uptake of HPIs and interactions between HPIs and efflux proteins, either as substrates or modulators. Most of the studies described HPIs as P-gp substrates. Studies are more controversial when investigating HPIs as inhibitors of P-gp. HPIs seem to be able to inhibit efflux proteins of in vitro cell models but with limited consequences in vivo. Moreover, after repeated administrations of HPIs, most of them are also able to induce the expression and functionality of P-gp. For these reasons, certain combinations of HPIs may not efficiently increase brain uptake of HPIs as would combinations of more potent efflux inhibitors.
Collapse
Affiliation(s)
- François Gimenez
- Pharmacie Clinique, Université Paris XI, Châtenay-Malabry, France.
| | | | | |
Collapse
|
18
|
Graff CL, Pollack GM. Nasal drug administration: potential for targeted central nervous system delivery. J Pharm Sci 2005; 94:1187-95. [PMID: 15858850 DOI: 10.1002/jps.20318] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nasal administration as a means of delivering therapeutic agents preferentially to the brain has gained significant recent interest. While some substrates appear to be delivered directly to the brain via this route, the mechanisms governing overall brain uptake and exposure remain unclear. Some substrates utilize the olfactory nerve tract and gain direct access to the brain, thus bypassing the blood-brain barrier (BBB). However, most agents of pharmacologic interest likely gain access to the brain via the olfactory epithelium, which represents a more direct route of uptake. While the traditional BBB is not present at the interface between nasal epithelium and brain, P-glycoprotein (and potentially other barrier transporters) is expressed at this interface. In addition, work in this laboratory has demonstrated that P-glycoprotein throughout the brain can be modulated with nasal administration of appropriate inhibitors. The potential for targeted central nervous system delivery via this route is discussed.
Collapse
Affiliation(s)
- Candace L Graff
- Division of Drug Delivery and Disposition, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7360, USA
| | | |
Collapse
|
19
|
Bachmeier CJ, Spitzenberger TJ, Elmquist WF, Miller DW. Quantitative assessment of HIV-1 protease inhibitor interactions with drug efflux transporters in the blood-brain barrier. Pharm Res 2005; 22:1259-68. [PMID: 16078135 DOI: 10.1007/s11095-005-5271-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 04/05/2005] [Indexed: 11/28/2022]
Abstract
PURPOSE To quantitatively characterize the drug efflux interactions of various HIV-1 protease inhibitors in an in vitro model of the blood-brain barrier (BBB) and to compare that with HIV-1 protease inhibitor stimulated P-glycoprotein (P-gp)-ATPase activity. METHODS Cellular accumulation of the P-gp sensitive probe, rhodamine 123 (R123), and the mixed P-gp/multidrug resistance-associated protein (MRP) probe, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF), were evaluated in primary cultured bovine brain microvessel endothelial cells (BBMEC) in the presence of various concentrations of HIV-1 protease inhibitors. The potency (IC50) and efficacy (Imax) of the drugs in the cell accumulation assays for P-gp and/or MRP was determined and compared to activity in a P-gp ATPase assay. RESULTS For R123 (P-gp probe), the rank order potency for inhibiting R123 accumulation in the BBMEC was saquinavir=nelfinavir>ritonavir=amprenavir>indinavir. This correlated well with the rank order affinity in the P-gp ATPase assay. The rank order potency for MRP-related drug efflux transporters, was nelfinavir>ritonavir>saquinavir>amprenavir>indinavir. CONCLUSIONS HIV-1 protease inhibitors potently interact with both P-gp and MRP-related transporters in BBMEC. Characterization of the interactions between the HIV-1 protease inhibitors and drug efflux transporters in brain microvessel endothelial cells will provide insight into potential drug-drug interactions and permeability issues in the BBB.
Collapse
Affiliation(s)
- Corbin J Bachmeier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | |
Collapse
|
20
|
|
21
|
Salama NN, Kelly EJ, Bui T, Ho RJY. The Impact of Pharmacologic and Genetic Knockout of P-Glycoprotein on Nelfinavir Levels in the Brain and Other Tissues in Mice. J Pharm Sci 2005; 94:1216-25. [PMID: 15858856 DOI: 10.1002/jps.20344] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insufficient concentrations of protease inhibitors such as nelfinavir may reduce the effectiveness of HIV dementia treatment. The efflux transporter mdr1 product P-glycoprotein (P-gp) has been demonstrated to play a role in limiting nelfinavir brain levels. The goal of this study was to compare the effect of GF120918 (10 mg/kg, IV), a P-gp inhibitor, on intravenous nelfinavir (10 mg/kg) in vivo disposition and tissue penetration in P-gp-competent mdr1a/1b (+/+) mice versus P-gp double knockout mdr1a/1b (-/-) mice. Intravenous administration with the P-gp inhibitor GF120918 to mdr1a/1b (+/+) mice increased nelfinavir concentrations over a range of 2.3- to 27-fold, whereas nelfinavir distribution in mdr1a/1b (-/-) mice was 2- to 16-fold higher than that in their wild counterparts. Nelfinavir levels after GF120918 coadministration were higher in the heart, liver, and kidneys than those detected with mdr1a/1b knockout mice. In contrast, mdr1a/1b knockout mice exhibited higher nelfinavir levels in the brain (16.1-fold vs. 8.9-fold increase) and spleen (4.1-fold vs. 2.3-fold increase) compared to pharmacological inhibition with GF120918 in wild mice. Most notably, GF120918 provided tissue-specific effects in mdr1a/1b knockout mice with enhanced (p < 0.05) drug accumulation in the brain ( approximately 21-fold) and heart (3.3-fold). Our results suggest mdr1a/1b-independant mechanisms may also contribute to nelfinavir tissue distribution in mice.
Collapse
Affiliation(s)
- Noha N Salama
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
22
|
Edwards JE, Alcorn J, Savolainen J, Anderson BD, McNamara PJ. Role of P-glycoprotein in distribution of nelfinavir across the blood-mammary tissue barrier and blood-brain barrier. Antimicrob Agents Chemother 2005; 49:1626-8. [PMID: 15793156 PMCID: PMC1068594 DOI: 10.1128/aac.49.4.1626-1628.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
As a first approach in understanding the possible efficacy and toxicity of human immunodeficiency virus protease inhibitors during breast feeding, the milk-to-plasma ratio of nelfinavir was determined in lactating rats. The milk-to-plasma ratio of nelfinavir was determined to be 0.56 +/- 0.10 (means +/- standard deviations). Western blotting indicated that P-glycoprotein is expressed in rat mammary and brain tissue; however, the multidrug-resistant modulator GF120918 showed a significant effect only at the blood-brain barrier and not at the mammary-epithelial tissue barrier.
Collapse
Affiliation(s)
- Jeffrey E Edwards
- Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | |
Collapse
|
23
|
Lam JL, Benet LZ. HEPATIC MICROSOME STUDIES ARE INSUFFICIENT TO CHARACTERIZE IN VIVO HEPATIC METABOLIC CLEARANCE AND METABOLIC DRUG-DRUG INTERACTIONS: STUDIES OF DIGOXIN METABOLISM IN PRIMARY RAT HEPATOCYTES VERSUS MICROSOMES. Drug Metab Dispos 2004. [DOI: 10.1124/dmd.32.11.1311] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Imbert F, Jardin M, Fernandez C, Gantier JC, Dromer F, Baron G, Mentre F, Van Beijsterveldt L, Singlas E, Gimenez F. Effect of efflux inhibition on brain uptake of itraconazole in mice infected with Cryptococcus neoformans. Drug Metab Dispos 2003; 31:319-25. [PMID: 12584159 DOI: 10.1124/dmd.31.3.319] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Itraconazole is a fungistatic agent that, although highly lipophilic, shows poor transport through the blood brain barrier that may be due to efflux proteins. The combined administration of an efflux inhibitor with itraconazole should increase cerebral itraconazole concentrations and therefore, improve the treatment of Cryptococcus neoformans meningitis with this antifungal agent. To test this hypothesis, we have studied the influence of murine cerebral infection with C. neoformans and the inhibition of efflux by intraperitoneal injection of a P-glycoprotein inhibitor, GF120918 [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)-ethyl]-phenyl)9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide], on the pharmacokinetics of itraconazole in plasma and brain after a single intraperitoneal itraconazole injection. We also investigated the influence of efflux inhibition on the efficacy of repeated doses of itraconazole in this murine model. The results showed that in healthy and infected mice pretreated or not with GF120918, plasma itraconazole values of area under the curve (AUC) were similar. In contrast, cerebral values of AUC were higher in infected mice compared with healthy mice. Moreover, the pretreatment of infected mice with GF120918 significantly increased cerebral itraconazole values of area under the curve and decreased weight loss in the treatment with itraconazole of a cerebral infection with C. neoformans.
Collapse
Affiliation(s)
- Frédéric Imbert
- Département de Pharmacie Clinique, Faculté de Pharmacie, Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|