1
|
Yamamoto S, Kosugi Y, Hirabayashi H, Moriwaki T. Impact of P-Glycoprotein on Intestinal Absorption of an Inhibitor of Apoptosis Protein Antagonist in Rats: Mechanisms of Nonlinear Pharmacokinetics and Food Effects. Pharm Res 2018; 35:190. [PMID: 30105478 DOI: 10.1007/s11095-018-2470-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE This study was designed to investigate the effects of P-glycoprotein (P-gp) expressed in the intestine on the nonlinear pharmacokinetics (PK) of T-3256336, an inhibitor of apoptosis protein inhibitor, and food effects on its bioavailability in rats. METHODS To investigate the factors that contribute to nonlinear PK of T-3256336 in the intestine and liver, rats double-cannulated in the portal vein and femoral artery (PS rats) were used. FaFg (Fa, absorption ratio; Fg, intestinal availability) and hepatic availability (Fh) were simultaneously evaluated based on the difference between the portal and systemic blood area under the concentration-time curve (AUC). Elacridar was used as a P-gp inhibitor to assess the impact of P-gp on the intestinal absorption. RESULTS After oral administration of T-3256336 to PS rats at 3 and 30 mg/kg, FaFg value increased with dose escalation, whereas Fh value was nearly constant. Moreover, co-administration of elacridar resulted in a 5-fold increase in the FaFg value at 3 mg/kg. The AUC value of T-3256336 under fed conditions was 3-fold lower than that under fasted conditions. This food effect on the oral bioavailability (BA) was reduced by concomitant administration of elacridar. CONCLUSION P-gp expressed in the intestine would cause nonlinear PK and a food effect on BA of T-3256336 in rats.
Collapse
Affiliation(s)
- Syunsuke Yamamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan.
| | - Yohei Kosugi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Hideki Hirabayashi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Toshiya Moriwaki
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| |
Collapse
|
2
|
Schiffman SS, Rother KI. Sucralose, a synthetic organochlorine sweetener: overview of biological issues. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2013; 16:399-451. [PMID: 24219506 PMCID: PMC3856475 DOI: 10.1080/10937404.2013.842523] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sucralose is a synthetic organochlorine sweetener (OC) that is a common ingredient in the world's food supply. Sucralose interacts with chemosensors in the alimentary tract that play a role in sweet taste sensation and hormone secretion. In rats, sucralose ingestion was shown to increase the expression of the efflux transporter P-glycoprotein (P-gp) and two cytochrome P-450 (CYP) isozymes in the intestine. P-gp and CYP are key components of the presystemic detoxification system involved in first-pass drug metabolism. The effect of sucralose on first-pass drug metabolism in humans, however, has not yet been determined. In rats, sucralose alters the microbial composition in the gastrointestinal tract (GIT), with relatively greater reduction in beneficial bacteria. Although early studies asserted that sucralose passes through the GIT unchanged, subsequent analysis suggested that some of the ingested sweetener is metabolized in the GIT, as indicated by multiple peaks found in thin-layer radiochromatographic profiles of methanolic fecal extracts after oral sucralose administration. The identity and safety profile of these putative sucralose metabolites are not known at this time. Sucralose and one of its hydrolysis products were found to be mutagenic at elevated concentrations in several testing methods. Cooking with sucralose at high temperatures was reported to generate chloropropanols, a potentially toxic class of compounds. Both human and rodent studies demonstrated that sucralose may alter glucose, insulin, and glucagon-like peptide 1 (GLP-1) levels. Taken together, these findings indicate that sucralose is not a biologically inert compound.
Collapse
Affiliation(s)
- Susan S. Schiffman
- Department of Electrical and Computer Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Address correspondence to Susan S. Schiffman, PhD, Department of Electrical and Computer Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695-7911, USA. E-mail:
| | - Kristina I. Rother
- Section on Pediatric Diabetes & Metabolism, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Cantin LD, Bayrakdarian M, Buon C, Grazzini E, Hu YJ, Labrecque J, Leung C, Luo X, Martino G, Paré M, Payza K, Popovic N, Projean D, Santhakumar V, Walpole C, Yu XH, Tomaszewski MJ. Discovery of P2X3 selective antagonists for the treatment of chronic pain. Bioorg Med Chem Lett 2012; 22:2565-71. [PMID: 22370269 DOI: 10.1016/j.bmcl.2012.01.124] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/27/2012] [Accepted: 01/30/2012] [Indexed: 11/26/2022]
Abstract
Purinergic receptor P2X3 has been linked to analgesia in a number of pre-clinical models of pain, and is expressed in the human pain perception pathway. Only few P2X3-selective antagonists have been reported to date. This Letter describes the SAR and in vivo analgesic profile of a novel scaffold of selective P2X3 antagonists.
Collapse
Affiliation(s)
- Louis-David Cantin
- Department of Medicinal Chemistry, AstraZeneca R&D, 7171 Frederick-Banting, Montréal, QC, Canada H4S 1Z9.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Fenner KS, Jones HM, Ullah M, Kempshall S, Dickins M, Lai Y, Morgan P, Barton HA. The evolution of the OATP hepatic uptake transport protein family in DMPK sciences: from obscure liver transporters to key determinants of hepatobiliary clearance. Xenobiotica 2011; 42:28-45. [PMID: 22077101 DOI: 10.3109/00498254.2011.626464] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Over the last two decades the impact on drug pharmacokinetics of the organic anion transporting polypeptides (OATPs: OATP-1B1, 1B3 and 2B1), expressed on the sinusoidal membrane of the hepatocyte, has been increasingly recognized. OATP-mediated uptake into the hepatocyte coupled with subsequent excretion into bile via efflux proteins, such as MRP2, is often referred to as hepatobiliary excretion. OATP transporter proteins can impact some drugs in several ways including pharmacokinetic variability, pharmacodynamic response and drug-drug interactions (DDIs). The impact of transporter mediated hepatic clearance is illustrated with case examples, from the literature and also from the Pfizer portfolio. The currently available in vitro techniques to study the hepatic transporter proteins involved in the hepatobiliary clearance of drugs are reviewed herein along with recent advances in using these in vitro data to predict the human clearance of compounds recognized by hepatic uptake transporters.
Collapse
Affiliation(s)
- Katherine S Fenner
- Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Sandwich, Kent, UK.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Harrison A, Gardner I, Hay T, Dickins M, Beaumont K, Phipps A, Purkins L, Allan G, Christian R, Duckworth J, Gurrell I, Kempshall S, Savage M, Seymour M, Simpson M, Taylor L, Turnpenny P. Case studies addressing human pharmacokinetic uncertainty using a combination of pharmacokinetic simulation and alternative first in human paradigms. Xenobiotica 2011; 42:57-74. [PMID: 21992032 DOI: 10.3109/00498254.2011.622418] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PF-184298 ((S)-2,3-dichloro-N-isobutyl-N-pyrrolidin-3-ylbenzamide) and PF-4776548 ((3-(4-fluoro-2-methoxy-benzyl)-7-hydroxy-8,9-dihydro-3H,7H-pyrrolo[2,3-c][1,7]naphthyridin-6-one)) are novel compounds which were selected to progress to human studies. Discordant human pharmacokinetic predictions arose from pre-clinical in vivo studies in rat and dog, and from human in vitro studies, resulting in a clearance prediction range of 3 to >20 mL min⁻¹ kg⁻¹ for PF-184298, and 5 to >20 mL min⁻¹ kg⁻¹ for PF-4776548. A package of work to investigate the discordance for PF-184298 is described. Although ultimately complementary to the human pharmacokinetic data in characterising the disposition of PF-184298 in humans, these data did not provide any further confidence in pharmacokinetic prediction. A fit for purpose human pharmacokinetic study was conducted for each compound, with an oral pharmacologically active dose for PF-184298, and an intravenous and oral microdose for PF-4776548. This provided a relatively low cost, clear decision making approach, resulting in the termination of PF-4776548 and further progression of PF-184298. A retrospective analysis of the data showed that, if the tools had been available at the time, the pharmacokinetics of PF-184298 in human could have been predicted from a population based simulation tool in combination with physicochemical properties and in vitro human intrinsic clearance.
Collapse
Affiliation(s)
- Anthony Harrison
- Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Sandwich Laboratories, Sandwich, Kent, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Attkins N, Betts A, Hepworth D, Heatherington AC. Pharmacokinetics and elucidation of the rates and routes of N-glucuronidation of PF-592379, an oral dopamine 3 agonist in rat, dog, and human. Xenobiotica 2010; 40:730-42. [DOI: 10.3109/00498254.2010.514961] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Tajiri S, Kanamaru T, Yoshida K, Hosoi Y, Konno T, Yada S, Nakagami H. The Relationship between the Drug Concentration Profiles in Plasma and the Drug Doses in the Colon. Chem Pharm Bull (Tokyo) 2010; 58:1295-300. [DOI: 10.1248/cpb.58.1295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shinichiro Tajiri
- Formulation Technology Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Taro Kanamaru
- Formulation Technology Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Kazuhiro Yoshida
- Formulation Technology Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Yasue Hosoi
- Formulation Technology Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Tsutomu Konno
- Formulation Technology Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Shuichi Yada
- Formulation Technology Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Hiroaki Nakagami
- Formulation Technology Research Laboratories, Daiichi Sankyo Co., Ltd
| |
Collapse
|
8
|
Attkins NJ, Heatherington AC, Phipps J, Verrier H, Huyghe I. Predictability of intranasal pharmacokinetics in man using pre-clinical pharmacokinetic data with a dopamine 3 receptor agonist, PF-219061. Xenobiotica 2009; 39:523-33. [PMID: 19480558 DOI: 10.1080/00498250902893775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
(R)-3-(4-propylmorpholin-2-yl) phenol (PF-219061) is a potent, selective agonist of the dopamine 3 receptor for the treatment of female sexual dysfunction. In vivo, PF-219061 exhibits liver blood flow clearance in both rat and dog. Oral bioavailability was 0.7% in dog and less than 5% in rat. Intranasal dosing was investigated to improve bioavailability. Pre-clinical assessments in rat and dog demonstrated intranasal bioavailabilities of 16-38% in rat and 54-61% in dog with very rapid absorption. It was predicted that an intranasal dose in man would give approximately 25-50% bioavailability. The clinical data verified the preclinical predictions demonstrating rapid absorption and approximately dose-proportional increases in exposure. The intranasal bioavailability in man was estimated to be 26-38%. These findings indicate the potential utility of intranasal dosing as a route that circumvents the first-pass effects for PF-219061 resulting in high exposures.
Collapse
Affiliation(s)
- N J Attkins
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Sandwich, UK.
| | | | | | | | | |
Collapse
|
9
|
Davis J, Burton J, Connor A, Macrae R, Wilding I. Scintigraphic Study to Investigate the Effect of Food on a HPMC Modified Release Formulation of UK-294,315. J Pharm Sci 2009; 98:1568-76. [DOI: 10.1002/jps.21507] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Saitoh R, Miyayama T, Mitsui T, Akiba Y, Higashida A, Takata S, Kawanishi T, Aso Y, Itoh Z, Omura S. Nonlinear intestinal pharmacokinetics of mitemcinal, the first acid-resistant non-peptide motilin receptor agonist, in rats. Xenobiotica 2008; 37:1421-32. [DOI: 10.1080/00498250701668592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Pharmacokinetic, Pharmacodynamic, and Pharmacogenetic Targeted Therapy of Antiepileptic Drugs. Ther Drug Monit 2008; 30:173-80. [DOI: 10.1097/ftd.0b013e318167d11b] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Anderson GD, Shen DD. Where is the evidence that p-glycoprotein limits brain uptake of antiepileptic drug and contributes to drug resistance in epilepsy? Epilepsia 2008; 48:2372-4. [PMID: 18088270 DOI: 10.1111/j.1528-1167.2007.01260_3.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
In Vivo Performance of an Oral MR Matrix Tablet Formulation in the Beagle Dog in the Fed and Fasted State: Assessment of Mechanical Weakness. Pharm Res 2007; 25:1075-84. [DOI: 10.1007/s11095-007-9462-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 09/20/2007] [Indexed: 10/22/2022]
|
14
|
Betts A, Atkinson F, Gardner I, Fox D, Webster R, Beaumont K, Morgan P. Impact of physicochemical and structural properties on the pharmacokinetics of a series of alpha1L-adrenoceptor antagonists. Drug Metab Dispos 2007; 35:1435-45. [PMID: 17502340 DOI: 10.1124/dmd.107.015180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A rational drug discovery process was initiated to design a potent and prostate-selective alpha1(L)-adrenoceptor antagonist with pharmacokinetic properties suitable for once a day administration after oral dosing, for the treatment of benign prostatic hyperplasia. Two series of compounds based on a quinoline or quinazoline template were identified with appropriate pharmacology. A series of high molecular weight cations with high hydrogen-bonding potential had extensive in vivo clearance, despite demonstrating metabolic stability. Studies in the isolated perfused rat liver and fresh rat hepatocytes indicated that active transport protein-mediated hepatobiliary elimination is an efficient clearance process for these compounds. A reduction in molecular weight and hydrogen-bonding potential resulted in a second series of compounds with in vivo hepatic clearance predictable from in vitro metabolic clearance. Initially, lipophilicity was reduced within this second series to reduce metabolic clearance and increase elimination half-life. However, this strategy also resulted in a concomitant reduction in volume of distribution and a negligible effect on prolonging half-life. An alternative strategy was to increase the intrinsic metabolic stability of the molecule by careful structural modifications while maintaining lipophilicity. Replacement of the metabolically vulnerable morpholine side chain resulted in identification of UK-338,003, (N-[2-(4-amino-6,7-dimethoxy-5-pyridin-2-yl-quinazolin-2-yl)-1,2,3,4-tetrahydro-isoquinolin-5-yl]-methanesulfonamide), which fulfilled the objectives of the discovery program with suitable pharmacology (human prostate alpha1(L) pA(2) of 9.2 with 25-fold selectivity over rat aorta alpha1(D)) and sufficiently long elimination half-life in human volunteers (11-17 h) for once a day administration.
Collapse
Affiliation(s)
- Alison Betts
- Pfizer Global Research and Development, Department of Pharmacokinetics, Dynamics and Metabolism, Sandwich, Kent, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
15
|
Takeuchi T, Yoshitomi S, Higuchi T, Ikemoto K, Niwa SI, Ebihara T, Katoh M, Yokoi T, Asahi S. Establishment and characterization of the transformants stably-expressing MDR1 derived from various animal species in LLC-PK1. Pharm Res 2006; 23:1460-72. [PMID: 16779700 DOI: 10.1007/s11095-006-0285-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 03/01/2006] [Indexed: 11/24/2022]
Abstract
PURPOSE Stable transformants expressing human multidrug resistance 1 (MDR1), monkey MDR1, canine MDR1, rat MDR1a, rat MDR1b, mouse mdr1a, and mouse mdr1b in LLC-PK1 were established to investigate species differences in P-glycoprotein (P-gp, ABCB1) mediated efflux activity. METHODS The seven cDNAs of MDR1 from five animals were cloned, and their transformants stably expressing the series of MDR1 in LLC-PK1 were established. Transport studies of clarithromycin, daunorubicin, digoxin, erythromycin, etoposide, paclitaxel, propranolol, quinidine, ritonavir, saquinavir, verapamil, and vinblastine were performed by using these cells, and efflux activity was compared among the species. RESULTS Except for propranolol, all compounds showed efflux activity in all transformants, and were judged to be substrates of P-gp. There were slight interspecies and interisoforms differences in the substrate recognition. However, the efflux ratio among the series of the MDR1 stably expressing cells showed good correlation as represented between human and monkey MDR1, and poor correlation as represented between human MDR1 and mouse mdr1a, and human and canine MDR1. CONCLUSIONS Results in the present study indicate that all MDR1 stably expressing cells have efflux activity for various P-gp substrates, and that interspecies differences and similarities of the P-gp substrate efflux activity may exist.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP-Binding Cassette Transporters/biosynthesis
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Biological Transport
- Clarithromycin/metabolism
- Digoxin/antagonists & inhibitors
- Digoxin/metabolism
- Dogs
- Dose-Response Relationship, Drug
- Haplorhini
- Humans
- Kinetics
- LLC-PK1 Cells
- Mice
- Pharmaceutical Preparations/metabolism
- RNA, Messenger/metabolism
- Rats
- Swine
- Transfection
- Verapamil/pharmacology
- Vinblastine/metabolism
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Toshiyuki Takeuchi
- Development Research Center, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-17-85 Juso-Honmachi, Yodogawa-ku, Osaka, 532-8686, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kalgutkar AS, Hatch HL, Kosea F, Nguyen HT, Choo EF, McClure KF, Taylor TJ, Henne KR, Kuperman AV, Dombroski MA, Letavic MA. Preclinical pharmacokinetics and metabolism of 6-(4-(2,5-difluorophenyl)oxazol-5-yl)-3-isopropyl-[1,2,4]-triazolo[4,3-a]pyridine, a novel and selective p38α inhibitor: identification of an active metabolite in preclinical species and human liver microsomes. Biopharm Drug Dispos 2006; 27:371-86. [PMID: 16944451 DOI: 10.1002/bdd.520] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The disposition of 6-(4-(2,5-difluorophenyl)oxazol-5-yl)-3-isopropyl-[1,2,4]-triazolo[4,3-a]pyridine (1), a potent and selective inhibitor of mitogen activated protein (MAP) kinase p38alpha, was characterized in several animal species in support of its selection for preclinical safety studies and potential clinical development. 1 demonstrated generally favorable pharmacokinetic properties in all species examined. Following intravenous (i.v.) administration, 1 exhibited low volumes of distribution at steady state (Vd(ss)) ranging from 0.4-1.3 l/kg (2.4-26 l/m(2)) in the rat, dog and monkey. Systemic plasma clearance was low in cynomolgus monkeys (6.00 ml/min/kg, 72.0 ml/min/m(2)) and Sprague-Dawley rats (7.65+/-1.08 ml/min/kg, 45.9+/-6.48 ml/min/m(2) in male rats and 3.15+/-0.27 ml/min/kg, 18.9+/-1.62 ml/min/m(2) in female rats) and moderate in beagle dogs (12.3+/-5.1 ml/min/kg, 246+/-102 ml/min/m(2)) resulting in plasma half-lives ranging from 1 to 5 h in preclinical species. Moderate to high bioavailability of 1 was observed in rats (30-65%), dogs (87%) and monkeys (40%) after oral (p.o.) dosing consistent with the in vitro absorption profile of 1 in the Caco-2 permeability assay. In rats, the oral pharmacokinetics were dose dependent over the dose range studied (5, 50 and 100 mg/kg). The principal route of clearance of 1 in rat, dog, monkey and human liver microsomes and in vivo in preclinical species involved oxidative metabolism mediated by cytochrome P450 enzymes. The major metabolic fate of 1 in preclinical species and humans involved hydroxylation on the isopropyl group to yield the tertiary alcohol metabolite 2. In human liver microsomes, this transformation was catalysed by CYP3A4 as judged from reaction phenotyping analysis using isozyme-specific inhibitors and recombinant CYP enzymes. Metabolite 2 was also shown to possess inhibitory potency against p38alpha in a variety of in vitro assays. 1 as well as the active metabolite 2 were moderately to highly bound to plasma proteins (f(u) approximately 0.1-0.33) in rat, mouse, dog, monkey and human. 1 as well as the active metabolite 2 did not exhibit competitive inhibition of the five major cytochrome P450 enzymes namely CYP1A2, 2C9, 2C19, 2D6 and 3A4 (IC(50)>50 microM). Overall, these results indicate that the absorption, distribution, metabolism and excretion (ADME) profile of 1 is relatively consistent across preclinical species and predict potentially favorable pharmacokinetic properties in humans, supporting its selection for toxicity/safety assessment studies and possible investigations in humans as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Amit S Kalgutkar
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kim MK, Han L, Choi MK, Han YH, Kim DD, Chung SJ, Shim CK. Dose dependency in the oral bioavailability of an organic cation model, tributylmethyl ammonium (TBuMA), in rats: Association with the saturation of efflux by the P-gp system on the apical membrane of the intestinal epithelium. J Pharm Sci 2005; 94:2644-55. [PMID: 16258993 DOI: 10.1002/jps.20456] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The oral bioavailability of tributylmethyl ammonium (TBuMA), an organic cation (OC), exhibited a dose-dependency (i.e., 17, 27, and 35% at doses of 0.4, 4, or 12 micromol/kg, respectively) in the rat. Relevant mechanisms were investigated in the present study by estimating the mucosal to serosal (m-s) and serosal to mucosal (s-m) transport of TBuMA across the rat ileum in an Ussing chamber experiment. The m-s permeability rapidly increased with TBuMA concentration in the mucosal side, and then becoming constant at high TBuMA concentrations. Various studies, including temperature- and potential-dependency and inhibition experiments, revealed that carrier-mediated transport mechanisms (most likely OCT1, OCT3, and P-gp) are involved in the s-m transport of TBuMA, and the saturation of the transport at higher concentrations is responsible for the concentration-dependency in the m-s permeability or dose-dependency of the bioavailability of TBuMA. A nonlinear regression of the m-s transport, based on the assumption of a mixed process of linear diffusion and saturable efflux, exhibited a clearance (CLlinear) of 0.343 microL/min/cm2 for the passive diffusion, and an apparent Km of 241 microM for the saturable process. The Km value is consistent with the concentration range in the intestine which is expected to be achieved after the oral dosing of TBuMA at a dose of 0.4 micromol/kg (i.e., 68 approximately 185 microM). Interestingly, the m-s transport of TBuMA was increased by the presence of P-gp substrates or inhibitors in the mucosal side, but not by the mucosal presence of OCT substrates or inhibitors, suggesting that only efflux transport systems on the apical membrane (e.g., P-gp), but not those on the serosal membrane (e.g., OCT1 and OCT3), of the intestinal epithelial cells, are involved in the dose-dependency or concentration dependency. A similar relationship seems likely for drugs that are substrates of efflux transporters on the apical membrane of the intestinal epithelium.
Collapse
Affiliation(s)
- Moon Kyoung Kim
- Department of Pharmaceutics, College of Pharmacy, Seoul National University, Shilim-9-dong, Kwanak-Gu, Seoul 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Walker DK, Abel S, Comby P, Muirhead GJ, Nedderman ANR, Smith DA. Species differences in the disposition of the CCR5 antagonist, UK-427,857, a new potential treatment for HIV. Drug Metab Dispos 2005; 33:587-95. [PMID: 15650075 DOI: 10.1124/dmd.104.002626] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UK-427,857 (4, 4-difluoro-N-[(1S)-3-[exo-3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]oct-8-yl]-1-phenylpropyl]cyclohexanecarboxamide) is a novel CCR5 antagonist undergoing investigation for use in the treatment of human immunodeficiency virus (HIV) infection. Pharmacokinetic and metabolism studies have been performed in mouse, rat, dog, and human after single and multiple administration by oral and intravenous routes. The compound has physicochemical properties that are borderline for good pharmacokinetics, being moderately lipophilic (log D(7.4) 2.1) and basic (pK(a) 7.3), possessing a number of H-bonding functionalities, and with a molecular weight of 514. The compound was incompletely absorbed in rat (approximately 20-30%) but well absorbed in dog (>70%). Based on in vitro studies in Caco-2 cells, UK-427,857 has relatively poor membrane permeability, and transcellular flux is enhanced in the presence of inhibitors of P-glycoprotein. Further evidence for the involvement of P-glycoprotein in restricting the oral absorption of UK-427,857 was obtained in P-glycoprotein null mice (mdr1a/mdr1b knockout). In these animals, AUC after oral administration was 3-fold higher than in control animals. In oral dose escalation studies in humans, the compound demonstrated nonlinear pharmacokinetics, with increased dose-normalized exposure with increased dose size, consistent with saturation of P-glycoprotein. The oral dose-exposure relationship of UK-427,857 in humans was not reflected in either rat or dog. In animal species and humans, UK-427,857 undergoes some metabolism, with parent compound the major component present in the systemic circulation and excreta. Elimination of radioactive dose was primarily via the feces. In rat, parent compound was secreted via bile and directly into the gastrointestinal tract. Metabolites were products of oxidative metabolism and showed a high degree of structural consistency across species.
Collapse
Affiliation(s)
- Don K Walker
- Department of Pharmacokinetics, Dynamics and Metabolism (IPC 664), Pfizer Global Research and Development, Sandwich, Kent, CT13 9NJ, UK.
| | | | | | | | | | | |
Collapse
|