1
|
Tufail N, Abidi M, Warsi MS, Kausar T, Nayeem SM. Computational and physicochemical insight into 4-hydroxy-2-nonenal induced structural and functional perturbations in human low-density lipoprotein. J Biomol Struct Dyn 2024; 42:2698-2713. [PMID: 37154523 DOI: 10.1080/07391102.2023.2208234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
Lipid peroxidation (LPO) is a biological process that frequently occurs under physiological conditions. Undue oxidative stress increases the level of LPO; which may further contribute to the development of cancer. 4-Hydroxy-2-nonenal (HNE), one of the principal by-products of LPO, is present in high concentrations in oxidatively stressed cells. HNE rapidly reacts with various biological components, including DNA and proteins; however, the extent of protein degradation by lipid electrophiles is not well understood. The influence of HNE on protein structures will likely have a considerable therapeutic value. This research elucidates the potential of HNE, one of the most researched phospholipid peroxidation products, in modifying low-density lipoprotein (LDL). In this study, we tracked the structural alterations in LDL by HNE using various physicochemical techniques. To comprehend the stability, binding mechanism and conformational dynamics of the HNE-LDL complex, computational investigations were carried out. LDL was altered in vitro by HNE, and the secondary and tertiary structural alterations were examined using spectroscopic methods, such as UV-visible, fluorescence, circular dichroism and fourier transform infrared spectroscopy. Carbonyl content, thiobarbituric acid-reactive-substance (TBARS) and nitroblue tetrazolium (NBT) reduction assays were used to examine changes in the oxidation status of LDL. Thioflavin T (ThT), 1-anilinonaphthalene-8-sulfonic (ANS) binding assay and electron microscopy were used to investigate aggregates formation. According to our research, LDL modified by HNE results in changes in structural dynamics, oxidative stress and the formation of LDL aggregates. The current investigation must characterize HNE's interactions with LDL and comprehend how it can change their physiological or pathological functions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neda Tufail
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Minhal Abidi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Mohd Sharib Warsi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Tasneem Kausar
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
2
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
3
|
Bose C, Hindle A, Lee J, Kopel J, Tonk S, Palade PT, Singhal SS, Awasthi S, Singh SP. Anticancer Activity of Ω-6 Fatty Acids through Increased 4-HNE in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13246377. [PMID: 34944997 PMCID: PMC8699056 DOI: 10.3390/cancers13246377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Epidemiological evidence suggests that breast cancer risk is lowered by Ω-3 and increased by Ω-6 polyunsaturated fatty acids (PUFAs). Paradoxically, the Ω-6 PUFA metabolite 4-hydroxynonenal (4-HNE) inhibits cancer cell growth. This duality prompted us to study whether arachidonic acid (AA) would enhance doxorubicin (dox) cytotoxicity towards breast cancer cells. We found that supplementing AA or inhibiting 4-HNE metabolism potentiated doxorubicin (dox) toxicity toward Her2-dependent breast cancer but spared myocardial cells. Our results suggest that Ω-6 PUFAs could improve outcomes of dox chemotherapy in Her2-overexpressing breast cancer. Abstract Her2-amplified breast cancers resistant to available Her2-targeted therapeutics continue to be a challenge in breast cancer therapy. Dox is the mainstay of chemotherapy of all types of breast cancer, but its usefulness is limited by cumulative cardiotoxicity. Because oxidative stress caused by dox generates the pro-apoptotic Ω-6 PUFA metabolite 4-hydroxynonenal (4-HNE), we surmised that Ω-6 PUFAs would increase the effectiveness of dox chemotherapy. Since the mercapturic acid pathway enzyme RALBP1 (also known as RLIP76 or Rlip) that limits cellular accumulation of 4-HNE also mediates dox resistance, the combination of Ω-6 PUFAs and Rlip depletion could synergistically improve the efficacy of dox. Thus, we studied the effects of the Ω-6 PUFA arachidonic acid (AA) and Rlip knockdown on the antineoplastic activity of dox towards Her2-amplified breast cancer cell lines SK-BR-3, which is sensitive to Her2 inhibitors, and AU565, which is resistant. AA increased lipid peroxidation, 4-HNE generation, apoptosis, cellular dox concentration and dox cytotoxicity in both cell lines while sparing cultured immortalized cardiomyocyte cells. The known functions of Rlip including clathrin-dependent endocytosis and dox efflux were inhibited by AA. Our results support a model in which 4-HNE generated by AA overwhelms the capacity of Rlip to defend against apoptosis caused by dox or 4-HNE. We propose that Ω-6 PUFA supplementation could improve the efficacy of dox or Rlip inhibitors for treating Her2-amplified breast cancer.
Collapse
Affiliation(s)
- Chhanda Bose
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Ashly Hindle
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Jihyun Lee
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Jonathan Kopel
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Sahil Tonk
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Philip T. Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Sharad S. Singhal
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
- Medical Oncology Service, Doctors Hospital, 16 Middle Rd., George Town, Grand Cayman KY1-1104, Cayman Islands, UK
- Correspondence: (S.A.); (S.P.S.); Tel.: +1-305-949-6066 (S.A.); +1-806-743-1540 (S.P.S.)
| | - Sharda P. Singh
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
- Correspondence: (S.A.); (S.P.S.); Tel.: +1-305-949-6066 (S.A.); +1-806-743-1540 (S.P.S.)
| |
Collapse
|
4
|
Guo X, Chen Y, Moore MM, Mei N. Detection of Loss of Heterozygosity in Tk-Deficient Mutants from L5178Y Tk +/--3.7.2C Mouse Lymphoma Cells. Methods Mol Biol 2020; 2102:251-270. [PMID: 31989560 DOI: 10.1007/978-1-0716-0223-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mouse lymphoma assay (MLA), a forward mutation assay using the Tk+/--3.7.2C clone of the L5178Y mouse lymphoma cell line and the Thymidine kinase (Tk) gene, has been widely used as an in vitro genetic toxicity assay for more than four decades. The MLA can evaluate the ability of mutagens to induce a wide range of genetic events including both gene mutations and chromosomal mutations and has been recommended as one component of several genotoxicity test batteries. Tk-deficient mutants often exhibit chromosomal abnormalities involving the distal end of chromosome 11 where the Tk gene is located, in mice, and the type of chromosome alteration can be analyzed using a loss of heterozygosity (LOH) approach. LOH has been considered an important event in human tumorigenesis and can result from any of the following several mechanisms: large deletions, mitotic recombination, and chromosome loss. In this chapter, the authors describe the procedures for the detection of LOH in the Tk mutants from the MLA, and apply LOH analysis for understanding the types of genetic damage that is induced by individual chemicals.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Ying Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | | | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA.
| |
Collapse
|
5
|
Kompella P, Vasquez KM. Obesity and cancer: A mechanistic overview of metabolic changes in obesity that impact genetic instability. Mol Carcinog 2019; 58:1531-1550. [PMID: 31168912 PMCID: PMC6692207 DOI: 10.1002/mc.23048] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022]
Abstract
Obesity, defined as a state of positive energy balance with a body mass index exceeding 30 kg/m2 in adults and 95th percentile in children, is an increasing global concern. Approximately one-third of the world's population is overweight or obese, and in the United States alone, obesity affects one in six children. Meta-analysis studies suggest that obesity increases the likelihood of developing several types of cancer, and with poorer outcomes, especially in children. The contribution of obesity to cancer risk requires a better understanding of the association between obesity-induced metabolic changes and its impact on genomic instability, which is a major driving force of tumorigenesis. In this review, we discuss how molecular changes during adipose tissue dysregulation can result in oxidative stress and subsequent DNA damage. This represents one of the many critical steps connecting obesity and cancer since oxidative DNA lesions can result in cancer-associated genetic instability. In addition, the by-products of the oxidative degradation of lipids (e.g., malondialdehyde, 4-hydroxynonenal, and acrolein), and gut microbiota-mediated secondary bile acid metabolites (e.g., deoxycholic acid and lithocholic acid), can function as genotoxic agents and tumor promoters. We also discuss how obesity can impact DNA repair efficiency, potentially contributing to cancer initiation and progression. Finally, we outline obesity-related epigenetic changes and identify the gaps in knowledge to be addressed for the development of better therapeutic strategies for the prevention and treatment of obesity-related cancers.
Collapse
Affiliation(s)
- Pallavi Kompella
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Karen M. Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| |
Collapse
|
6
|
Gęgotek A, Skrzydlewska E. Biological effect of protein modifications by lipid peroxidation products. Chem Phys Lipids 2019; 221:46-52. [DOI: 10.1016/j.chemphyslip.2019.03.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/26/2019] [Accepted: 03/24/2019] [Indexed: 01/26/2023]
|
7
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
8
|
Grúz P, Shimizu M, Yamada M, Sugiyama KI, Honma M. Opposing roles of Y-family DNA polymerases in lipid peroxide mutagenesis at the hisG46 target in the Ames test. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 829-830:43-49. [PMID: 29704992 DOI: 10.1016/j.mrgentox.2018.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 02/05/2023]
Abstract
DNA polymerases play a key role in mutagenesis by performing translesion DNA synthesis (TLS). The Y-family of DNA polymerases comprises several evolutionarily conserved families, specializing in TLS of different DNA adducts. Exocyclic etheno and propano DNA adducts are among the most common endogenous DNA lesions induced by lipid peroxidation reactions triggered by oxidative stress. We have investigated the participation of two enterobacterial representatives of the PolIV and PolV branches of Y-family DNA polymerases in mutagenesis by two model lipid peroxidation derived genotoxins, glyoxal and crotonaldehyde. Mutagenesis by the ethano adduct (glyoxal-derived) and the propano adduct (crontonaldehyde-derived) at the GC target in the Ames test depended exclusively on PolV type DNA polymerases such as PolRI. In contrast, PolIV suppressed glyoxal and, even more, crotonaldehyde mutagenesis, as detected by enzyme overexpression and gene knockout approaches. We propose that DNA polymerase IV, which is the mammalian DNA polymerase κ ortholog, acts as a housekeeper protecting the genome from lipoxidative stress.
Collapse
Affiliation(s)
- Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan.
| | - Masatomi Shimizu
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan; Division of Medical Nutrition, Faculty of Healthcare, Tokyo Healthcare University, Tokyo, Japan
| | - Masami Yamada
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan; Department of Applied Chemistry, National Defense Academy, Japan
| | - Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| |
Collapse
|
9
|
Łuczaj W, Gęgotek A, Skrzydlewska E. Antioxidants and HNE in redox homeostasis. Free Radic Biol Med 2017; 111:87-101. [PMID: 27888001 DOI: 10.1016/j.freeradbiomed.2016.11.033] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022]
Abstract
Under physiological conditions, cells are in a stable state known as redox homeostasis, which is maintained by the balance between continuous ROS/RNS generation and several mechanisms involved in antioxidant activity. ROS overproduction results in alterations in the redox homeostasis that promote oxidative damage to major components of the cell, including the biomembrane phospholipids. Lipid peroxidation subsequently generates a diverse set of products, including α,β-unsaturated aldehydes. Of these products, 4-hydroxy-2-nonenal (HNE) is the most studied aldehyde on the basis of its involvement in cellular physiology and pathology. This review summarizes the current knowledge in the field of HNE generation, metabolism, and detoxification, as well as its interactions with various cellular macromolecules (protein, phospholipid, and nucleic acid). The formation of HNE-protein adducts enables HNE to participate in multi-step regulation of cellular metabolic pathways that include signaling and transcription of antioxidant enzymes, pro-inflammatory factors, and anti-apoptotic proteins. The most widely described roles for HNE in the signaling pathways are associated with its activation of kinases, as well as transcription factors that are responsible for redox homeostasis (Ref-1, Nrf2, p53, NFκB, and Hsf1). Depending on its level, HNE exerts harmful or protective effects associated with the induction of antioxidant defense mechanisms. These effects make HNE a key player in maintaining redox homeostasis, as well as producing imbalances in this system that participate in aging and the development of pathological conditions.
Collapse
Affiliation(s)
- Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland.
| |
Collapse
|
10
|
Khan F, Moinuddin, Mir AR, Islam S, Alam K, Ali A. Immunochemical studies on HNE-modified HSA: Anti-HNE–HSA antibodies as a probe for HNE damaged albumin in SLE. Int J Biol Macromol 2016; 86:145-54. [DOI: 10.1016/j.ijbiomac.2016.01.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 12/21/2015] [Accepted: 01/15/2016] [Indexed: 12/24/2022]
|
11
|
Shoeb M, Ansari NH, Srivastava SK, Ramana KV. 4-Hydroxynonenal in the pathogenesis and progression of human diseases. Curr Med Chem 2014; 21:230-7. [PMID: 23848536 DOI: 10.2174/09298673113209990181] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 06/18/2013] [Accepted: 07/05/2013] [Indexed: 02/06/2023]
Abstract
Metastable aldehydes produced by lipid peroxidation act as 'toxic second messengers' that extend the injurious potential of free radicals. 4-hydroxy 2-nonenal (HNE), a highly toxic and most abundant stable end product of lipid peroxidation, has been implicated in the tissue damage, dysfunction, injury associated with aging and other pathological states such as cancer, Alzheimer, diabetes, cardiovascular and inflammatory complications. Further, HNE has been considered as a oxidative stress marker and it act as a secondary signaling molecule to regulates a number of cell signaling pathways. Biological activity of HNE depends on its intracellular concentration, which can differentially modulate cell death, growth and differentiation. Therefore, the mechanisms responsible for maintaining the intracellular levels of HNE are most important, not only in the defense against oxidative stress but also in the pathophysiology of a number of disease processes. In this review, we discussed the significance of HNE in mediating various disease processes and how regulation of its metabolism could be therapeutically effective.
Collapse
Affiliation(s)
- Mohammad Shoeb
- Department of Biochemistry and Molecular biology, University of Texas Medical Branch, Galveston, Texas -77555, USA.
| | | | | | | |
Collapse
|
12
|
Guo X, Zhang S, Dial SL, Boudreau MD, Xia Q, Fu PP, Levy DD, Moore MM, Mei N. In vitro investigation of the mutagenic potential of Aloe vera extracts. Toxicol Res (Camb) 2014; 3:487-496. [PMID: 33953902 DOI: 10.1039/c4tx00053f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A 2-year cancer bioassay in rodents with a preparation of Aloe vera whole leaf extract administered in drinking water showed clear evidence of carcinogenic activity. To provide insight into the identity and mechanisms associated with mutagenic components of the Aloe vera extracts, we used the mouse lymphoma assay to evaluate the mutagenicity of the Aloe vera whole leaf extract (WLE) and Aloe vera decolorized whole leaf extract (WLD). The WLD extract was obtained by subjecting WLE to activated carbon-adsorption. HPLC analysis indicated that the decolorization process removed many components from the WLE extract, including anthraquinones. Both WLE and WLD extracts showed cytotoxic and mutagenic effects in mouse lymphoma cells but in different concentration ranges, and WLD induced about 3-fold higher levels of intracellular reactive oxygen species than WLE. Molecular analysis of mutant colonies from cells treated with WLE and WLD revealed that the primary type of damage from both treatments was largely due to chromosome mutations (deletions and/or mitotic recombination). The fact that the samples were mutagenic at different concentrations suggests that while some mutagenic components of WLE were removed by activated carbon filtration, components with pro-oxidant activity and mutagenic activity remained. The results demonstrate the utility of the mouse lymphoma assay as a tool to characterize the mutagenic activity of fractionated complex botanical mixtures to identify bioactive components.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Suhui Zhang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.,Department of Pharmacology and Toxicology, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Stacey L Dial
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Mary D Boudreau
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Qingsu Xia
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Peter P Fu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Dan D Levy
- Center for Food Safety and Applied Nutrition, College Park, MD 20740, USA
| | - Martha M Moore
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| |
Collapse
|
13
|
McElhanon KE, Bose C, Sharma R, Wu L, Awasthi YC, Singh SP. Gsta4 Null Mouse Embryonic Fibroblasts Exhibit Enhanced Sensitivity to Oxidants: Role of 4-Hydroxynonenal in Oxidant Toxicity. ACTA ACUST UNITED AC 2013; 2. [PMID: 24353929 DOI: 10.4236/ojapo.2013.21001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The alpha class glutathione s-transferase (GST) isozyme GSTA4-4 (EC2.5.1.18) exhibits high catalytic efficiency to-wards 4-hydroxynon-2-enal (4-HNE), a major end product of oxidative stress induced lipid peroxidation. Exposure of cells and tissues to heat, radiation, and chemicals has been shown to induce oxidative stress resulting in elevated concentrations of 4-HNE that can be detrimental to cell survival. Alternatively, at physiological levels 4-HNE acts as a signaling molecule conveying the occurrence of oxidative events initiating the activation of adaptive pathways. To examine the impact of oxidative/electrophilic stress in a model with impaired 4-HNE metabolizing capability, we disrupted the Gsta4 gene that encodes GSTA4-4 in mice. The effect of electrophile and oxidants on embryonic fibroblasts (MEF) isolated from wild type (WT) and Gsta4 null mice were examined. Results indicate that in the absence of GSTA4-4, oxidant-induced toxicity is potentiated and correlates with elevated accumulation of 4-HNE adducts and DNA damage. Treatment of Gsta4 null MEF with 1,1,4-tris(acetyloxy)-2(E)-nonene [4-HNE(Ac)3], a pro-drug form of 4-HNE, resulted in the activation and phosphorylation of the c-jun-N-terminal kinase (JNK), extracellular-signal-regulated kinases (ERK 1/2) and p38 mitogen activated protein kinases (p38 MAPK) accompanied by enhanced cleavage of caspase-3. Interestingly, when recombinant mammalian or invertebrate GSTs were delivered to Gsta4 null MEF, activation of stress-related kinases in 4-HNE(Ac)3 treated Gsta4 null MEF were inversely correlated with the catalytic efficiency of delivered GSTs towards 4-HNE. Our data suggest that GSTA4-4 plays a major role in protecting cells from the toxic effects of oxidant chemicals by attenuating the accumulation of 4-HNE.
Collapse
Affiliation(s)
- Kevin E McElhanon
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, USA ; Central Arkansas Veterans Healthcare System, Little Rock, USA
| | - Chhanda Bose
- Central Arkansas Veterans Healthcare System, Little Rock, USA ; Department of Internal Medicine, Nephrology Division, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Rajendra Sharma
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, USA ; Central Arkansas Veterans Healthcare System, Little Rock, USA
| | - Liping Wu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, USA ; Central Arkansas Veterans Healthcare System, Little Rock, USA
| | - Yogesh C Awasthi
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, USA
| | - Sharda P Singh
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, USA ; Central Arkansas Veterans Healthcare System, Little Rock, USA
| |
Collapse
|
14
|
Oxidized LDL triggers pro-oncogenic signaling in human breast mammary epithelial cells partly via stimulation of MiR-21. PLoS One 2012; 7:e46973. [PMID: 23091604 PMCID: PMC3473036 DOI: 10.1371/journal.pone.0046973] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 09/10/2012] [Indexed: 11/28/2022] Open
Abstract
Dyslipidemia and obesity are primary risk factors for the development of atherosclerosis and are also epidemiologically linked to increased susceptibility to a variety of cancers including breast cancer. One of the prominent features of dyslipidemia is enhanced production of oxidized LDL (ox-LDL), which has been shown to be implicated in key steps of atherogenesis including inflammatory signaling and proliferation of vascular cells. In this study we analyzed the effects of ox-LDL in human mammary epithelial cells (MCF10A). MCF10A cells avidly internalized dil-ox-LDL and exhibited increased proliferative response to ox-LDL within the range of 1–50 µg/ml in a dose-dependent manner. Treatment of cells with 20 µg/ml ox-LDL for 2 and 12 hours was associated with upregulation of LOX-1 and CD36 scavenger receptors while MSR1 and CXLC16 receptors did not change. Ox-LDL-treated cells displayed significant upregulation of NADPH oxidases (subunits P22phox and P47phox), lipoxygenases-12 and -15, and cytoplasmic, but not mitochondrial, SOD. Ox-LDL also triggered phosphorylation of IκBα coupled with nuclear translocation of NF-κB and stimulated p44/42 MAPK, PI3K and Akt while intracellular PTEN (PI3K/Akt pathway inhibitor and target of miR-21) declined. Quantitative PCR revealed increased expression of hsa-miR-21 in ox-LDL treated cells coupled with inhibition of miR-21 target genes. Further, transfection of MCF10A cells with miR-21 inhibitor prevented ox-LDL mediated stimulation of PI3K and Akt. We conclude that, similarly to vascular cells, mammary epithelial cells respond to ox-LDL by upregulation of proliferative and pro-inflammatory signaling. We also report for the first time that part of ox-LDL triggered reactions in MCF10A cells is mediated by oncogenic hsa-miR-21 through inhibition of its target gene PTEN and consequent activation of PI3K/Akt pathway.
Collapse
|
15
|
Mei N, Zhang Y, Chen Y, Guo X, Ding W, Ali SF, Biris AS, Rice P, Moore MM, Chen T. Silver nanoparticle-induced mutations and oxidative stress in mouse lymphoma cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:409-19. [PMID: 22576574 PMCID: PMC6349369 DOI: 10.1002/em.21698] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/28/2012] [Accepted: 03/30/2012] [Indexed: 05/21/2023]
Abstract
Silver nanoparticles (Ag-NPs) have increasingly been used for coatings on various textiles and certain implants, for the treatment of wounds and burns, as a water disinfectant, and in air-freshener sprays. The wide use of Ag-NPs may have potential human health impacts. In this study, the mutagenicity of 5-nm Ag-NPs was evaluated in the mouse lymphoma assay system, and modes of action were assessed using standard alkaline and enzyme-modified Comet assays and gene expression analysis. Treatments of L5178Y/Tk(+/-) mouse lymphoma cells with 5-nm uncoated Ag-NPs resulted in a significant yield of mutants at doses between 3 and 6 μg/mL; the upper range was limited by toxicity. Loss of heterozygosity analysis of the Tk mutants revealed that treatments with uncoated Ag-NPs induced mainly chromosomal alterations spanning less than 34 megabase pairs on chromosome 11. Although no significant induction of DNA damage in Ag-NP-treated mouse lymphoma cells was observed in the standard Comet assay, the Ag-NP treatments induced a dose-responsive increase in oxidative DNA damage in the enzyme-modified Comet assay in which oxidative lesion-specific endonucleases were added. Gene expression analysis using an oxidative stress and antioxidant defense polymerase chain reaction (PCR) array showed that the expressions of 17 of the 59 genes on the arrays were altered in the cells treated with Ag-NPs. These genes are involved in production of reactive oxygen species, oxidative stress response, antioxidants, oxygen transporters, and DNA repair. These results suggest that 5 nm Ag-NPs are mutagenic in mouse lymphoma cells due to induction of oxidative stress by the Ag-NPs.
Collapse
Affiliation(s)
- Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Yongbin Zhang
- Nanotechnology Core Facility, National Center for Toxicological Research, Jefferson, Arkansas
| | - Ying Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Wei Ding
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Syed F. Ali
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Alexandru S. Biris
- Nanotechnology Center, University of Arkansas at Little Rock, Little Rock, Arkansas
| | - Penelope Rice
- Center for Food Safety and Applied Nutrition, College Park, Maryland
| | - Martha M. Moore
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
- Correspondence to: Tao Chen, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079.
| |
Collapse
|
16
|
Fellows MD, Doherty AT, Priestley CC, Howarth V, O'Donovan MR. The ability of the mouse lymphoma TK assay to detect aneugens. Mutagenesis 2011; 26:771-81. [PMID: 21775299 DOI: 10.1093/mutage/ger045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is some evidence that the mouse lymphoma TK assay (MLA) can detect aneugens, and this is accepted in the current International Conference on Harmonisation guidance for testing pharmaceuticals. However, whether or not it can be used as a reliable screen for aneugenicity has been the subject of debate. Consequently, aneugens with diverse mechanisms of action were tested in the MLA using 24-h exposure. No evidence of increased mutant frequency was seen with noscapine, diazepam or colchicine and increases were seen with taxol, carbendazim, econazole and chloral hydrate only at high levels of toxicity (for all but one taxol concentration survival reduced to ≤10% of control). None of these agents would be unequivocally classified as positive using currently accepted criteria. The largest increases in mutant number were seen with taxol and carbendazim; therefore, trifluorothymidine (TFT)-resistant clones resulting from treatment with them were cultured and analysed for chromosome 11 copy number using fluorescent in situ hybridisation (FISH) and loss of heterozygosity (LOH). High concentrations of these aneugens induced LOH at all loci examined indicating only one chromosome 11 was present but, perhaps surprisingly, all were found to have two copies of chromosome 11 using FISH. This would be consistent with loss of the tk(+) chromosome 11b with concomitant duplication of chromosome 11a, which has been proposed as a likely mechanism for induction of TFT-resistant clones. However, it was also surprising that analysis of centromere size showed that almost all the clones had both small and large centromeres, i.e. suggesting the presence of both chromosomes 11a and 11b. In conclusion, it appears that the TFT-resistant mutants resulting from treatment with toxic concentrations of some aneugens such as taxol and carbendazim have undergone complex genetic changes. However, these data show that the MLA cannot be used as a routine screen to detect aneugens.
Collapse
Affiliation(s)
- Michael D Fellows
- AstraZeneca, R&D Alderley Park, Macclesfield, Cheshire SK10 4TG, UK.
| | | | | | | | | |
Collapse
|
17
|
Demir E, Kaya B, Soriano C, Creus A, Marcos R. Genotoxic analysis of four lipid-peroxidation products in the mouse lymphoma assay. Mutat Res 2011; 726:98-103. [PMID: 21763450 DOI: 10.1016/j.mrgentox.2011.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/01/2011] [Accepted: 04/10/2011] [Indexed: 11/16/2022]
Abstract
Lipid-peroxidation products are formed by the thermal treatment of foodstuffs, as well as by endogenous processes. In addition, they are also common environmental pollutants originating from many different sources. Since conflicting data exist on their possible risk for humans, we have selected four lipid-peroxidation products namely acrolein, crotonaldehyde, 4-hydroxy-hexenal (4-HHE) and 4-oxo-2-nonenal (4-ONE) to determine their ability to induce mutagenicity in mammalian cells. There is an important lack of mutagenicity data on mammalian cells for such products, which presents an important gap for any risk-assessment estimation. We have used the mouse lymphoma assay (MLA) to determine the mutagenic potential of these four compounds. This assay detects a broad spectrum of mutational events, from point mutations to chromosome alterations. The results obtained indicate that the four selected compounds are mutagenic in the MLA assay, showing a direct dose-effect relationship. The relative mutagenic potencies according to the induced mutant frequency (IMF) are as follows: crotonaldehyde (IMF=758.5×10(-6)), 4-ONE (IMF=700.5×10(-6)), acrolein (IMF=660.5×10(-6)) and 4-HHE (IMF=572×10(-6)). Although the differences between the induced mutant frequencies for these compounds are not very large, the α,β-unsaturated aldehyde 4-oxo-2-nonenal turned out to be the agent most mutagenic. This is because its induced mutant frequency was reached after treatment with 10μM, while 50μM of the other compounds was needed to reach the reported frequencies.
Collapse
Affiliation(s)
- Eşref Demir
- Akdeniz University, Department of Biology, Antalya, Turkey
| | | | | | | | | |
Collapse
|
18
|
Guéraud F, Atalay M, Bresgen N, Cipak A, Eckl PM, Huc L, Jouanin I, Siems W, Uchida K. Chemistry and biochemistry of lipid peroxidation products. Free Radic Res 2010; 44:1098-124. [PMID: 20836659 DOI: 10.3109/10715762.2010.498477] [Citation(s) in RCA: 379] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress and resulting lipid peroxidation is involved in various and numerous pathological states including inflammation, atherosclerosis, neurodegenerative diseases and cancer. This review is focused on recent advances concerning the formation, metabolism and reactivity towards macromolecules of lipid peroxidation breakdown products, some of which being considered as 'second messengers' of oxidative stress. This review relates also new advances regarding apoptosis induction, survival/proliferation processes and autophagy regulated by 4-hydroxynonenal, a major product of omega-6 fatty acid peroxidation, in relationship with detoxication mechanisms. The use of these lipid peroxidation products as oxidative stress/lipid peroxidation biomarkers is also addressed.
Collapse
Affiliation(s)
- F Guéraud
- UMR1089 Xénobiotiques, INRA, Toulouse, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Roede JR, Jones DP. Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:380-90. [PMID: 20544880 PMCID: PMC5906392 DOI: 10.1002/em.20553] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mitochondrial dysfunction is a global term used in the context of "unhealthy" mitochondria. In practical terms, mitochondria are extremely complex and highly adaptive in structure, chemical and enzymatic composition, subcellular distribution and functional interaction with other components of cells. Consequently, altered mitochondrial properties that are used in experimental studies as measures of mitochondrial dysfunction often provide little or no distinction between adaptive and maladaptive changes. This is especially a problem in terms of generation of oxidant species by mitochondria, wherein increased generation of superoxide anion radical (O(2*)(-)) or hydrogen peroxide (H(2)O(2)) is often considered synonymously with mitochondrial dysfunction. However, these oxidative species are signaling molecules in normal physiology so that a change in production or abundance is not a good criterion for mitochondrial dysfunction. In this review, we consider generation of reactive electrophiles and consequent modification of mitochondrial proteins as a means to define mitochondrial dysfunction. Accumulated evidence indicates that 4-hydroxynonenal (HNE) modification of proteins reflects mitochondrial dysfunction and provides an operational criterion for experimental definition of mitochondrial dysfunction. Improved means to detect and quantify mitochondrial HNE-protein adduct formation could allow its use for environmental healthrisk assessment. Furthermore, application of improved mass spectrometry-based proteomic methods will lead to further understanding of the critical targets contributing to disease risk.
Collapse
Affiliation(s)
- James R. Roede
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Dean P. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
20
|
The "two-faced" effects of reactive oxygen species and the lipid peroxidation product 4-hydroxynonenal in the hallmarks of cancer. Cancers (Basel) 2010; 2:338-63. [PMID: 24281073 PMCID: PMC3835081 DOI: 10.3390/cancers2020338] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/18/2010] [Accepted: 03/25/2010] [Indexed: 11/24/2022] Open
Abstract
Reacytive Oxygen Species (ROS) have long been considered to be involved in the initiation, progression and metastasis of cancer. However, accumulating evidence points to the benefical role of ROS. Moreover, ROS production, leading to apoptosis, is the mechanism by which many chemotherapeutic agents can act. Beside direct actions, ROS elicit lipid peroxidation, leading to the production of 4-hydroxynoneal (HNE). Interestingly, HNE also seems to have a dual behaviour with respect to cancer. In this review we present recent literature data which outline the "two-faced" character of oxidative stress and lipid peroxidation in carcinogenesis and in the hallmarks of cancer.
Collapse
|
21
|
Mei N, Hu J, Xia Q, Fu PP, Moore MM, Chen T. Cytotoxicity and mutagenicity of retinol with ultraviolet A irradiation in mouse lymphoma cells. Toxicol In Vitro 2010; 24:439-44. [PMID: 19835946 PMCID: PMC6359890 DOI: 10.1016/j.tiv.2009.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/07/2009] [Accepted: 10/08/2009] [Indexed: 11/25/2022]
Abstract
Vitamin A (all-trans-retinol; retinol) is an essential human nutrient and plays an important role in several biological functions. However, under certain circumstances, retinol treatment can cause free radical generation and induce oxidative stress. In this study, we investigated photocytotoxicity and photomutagenicity of retinol using L5178Y/Tk(+/-) mouse lymphoma cells concomitantly exposed to retinol and ultraviolet A (UVA) light. While the cells treated with retinol alone at the doses of 5 or 10microg/ml in the absence of light did not increase the mutant frequency (MF) in the Tk gene, the treatment of the cells with 1-4microg/ml retinol under UVA light (1.38mW/cm(2) for 30min) increased the MF in the Tk gene in a dose-responsive manner. To elucidate the underlying mechanism of action, we also examined the mutational types of the Tk mutants by determining their loss of heterozygosity (LOH) at four microsatellite loci spanning the entire chromosome 11 on which the Tk gene is located. The mutational spectrum for the retinol+UVA treatment was significantly different from those of the control and UVA alone. More than 93% of the mutants from retinol+UVA treatment lost heterozygosity at the Tk1 locus and the major type (58%) of mutations was LOHs extending to D11Mit42, an alternation involving approximately 6cM of the chromosome, whereas the main type of mutations in the control was non-LOH mutations. These results suggest that retinol is mutagenic when exposed to UVA in mouse lymphoma cells through a clastogenic mode-of-action.
Collapse
Affiliation(s)
- Nan Mei
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Tazearslan Ç, Ayyadevara S, Bharill P, Shmookler Reis RJ. Positive feedback between transcriptional and kinase suppression in nematodes with extraordinary longevity and stress resistance. PLoS Genet 2009; 5:e1000452. [PMID: 19360094 PMCID: PMC2661368 DOI: 10.1371/journal.pgen.1000452] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 03/11/2009] [Indexed: 01/08/2023] Open
Abstract
Insulin/IGF-1 signaling (IIS) regulates development and metabolism, and modulates aging, of Caenorhabditis elegans. In nematodes, as in mammals, IIS is understood to operate through a kinase-phosphorylation cascade that inactivates the DAF-16/FOXO transcription factor. Situated at the center of this pathway, phosphatidylinositol 3-kinase (PI3K) phosphorylates PIP(2) to form PIP(3), a phospholipid required for membrane tethering and activation of many signaling molecules. Nonsense mutants of age-1, the nematode gene encoding the class-I catalytic subunit of PI3K, produce only a truncated protein lacking the kinase domain, and yet confer 10-fold greater longevity on second-generation (F2) homozygotes, and comparable gains in stress resistance. Their F1 parents, like weaker age-1 mutants, are far less robust-implying that maternally contributed trace amounts of PI3K activity or of PIP(3) block the extreme age-1 phenotypes. We find that F2-mutant adults have <10% of wild-type kinase activity in vitro and <60% of normal phosphoprotein levels in vivo. Inactivation of PI3K not only disrupts PIP(3)-dependent kinase signaling, but surprisingly also attenuates transcripts of numerous IIS components, even upstream of PI3K, and those of signaling molecules that cross-talk with IIS. The age-1(mg44) nonsense mutation results, in F2 adults, in changes to kinase profiles and to expression levels of multiple transcripts that distinguish this mutant from F1 age-1 homozygotes, a weaker age-1 mutant, or wild-type adults. Most but not all of those changes are reversed by a second mutation to daf-16, implicating both DAF-16/ FOXO-dependent and -independent mechanisms. RNAi, silencing genes that are downregulated in long-lived worms, improves oxidative-stress resistance of wild-type adults. It is therefore plausible that attenuation of those genes in age-1(mg44)-F2 adults contributes to their exceptional survival. IIS in nematodes (and presumably in other species) thus involves transcriptional as well as kinase regulation in a positive-feedback circuit, favoring either survival or reproduction. Hyperlongevity of strong age-1(mg44) mutants may result from their inability to reset this molecular switch to the reproductive mode.
Collapse
Affiliation(s)
- Çagdaþ Tazearslan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Srinivas Ayyadevara
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Central Arkansas Veterans Healthcare Service, Little Rock, Arkansas, United States of America
| | - Puneet Bharill
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Robert J. Shmookler Reis
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Central Arkansas Veterans Healthcare Service, Little Rock, Arkansas, United States of America
| |
Collapse
|
23
|
Abstract
It is widely (although not universally) accepted that organismal aging is the result of two opposing forces: (i) processes that destabilize the organism and increase the probability of death, and (ii) longevity assurance mechanisms that prevent, repair, or contain damage. Processes of the first group are often chemical and physico-chemical in nature, and are either inevitable or only under marginal biological control. In contrast, protective mechanisms are genetically determined and are subject to natural selection. Life span is therefore largely dependent on the investment into protective mechanisms which evolve to optimize reproductive fitness. Recent data indicate that toxicants, both environmental and generated endogenously by metabolism, are major contributors to macromolecular damage and physiological dysregulation that contribute to aging; electrophilic carbonyl compounds derived from lipid peroxidation appear to be particularly important. As a consequence, detoxification mechanisms, including the removal of electrophiles by glutathione transferase-catalyzed conjugation, are major longevity assurance mechanisms. The expression of multiple detoxification enzymes, each with a significant but relatively modest effect on longevity, is coordinately regulated by signaling pathways such as insulin/insulin-like signaling, explaining the large effect of such pathways on life span. The major aging-related toxicants and their cognate detoxification systems are discussed in this review.
Collapse
Affiliation(s)
- Piotr Zimniak
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, United States.
| |
Collapse
|
24
|
Mei N, Hu J, Churchwell MI, Guo L, Moore MM, Doerge DR, Chen T. Genotoxic effects of acrylamide and glycidamide in mouse lymphoma cells. Food Chem Toxicol 2008; 46:628-36. [PMID: 18029077 PMCID: PMC5739312 DOI: 10.1016/j.fct.2007.09.093] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/30/2007] [Accepted: 09/09/2007] [Indexed: 10/22/2022]
Abstract
In addition to occupational exposures to acrylamide (AA), concerns about AA health risks for the general population have been recently raised due to the finding of AA in food. In this study, we evaluated the genotoxicity of AA and its metabolite glycidamide (GA) in L5178Y/Tk(+/-) mouse lymphoma cells. The cells were treated with 2-18 mM of AA or 0.125-4 mM of GA for 4 h without metabolic activation. The DNA adducts, mutant frequencies and the types of mutations for the treated cells were examined. Within the dose range tested, GA induced DNA adducts of adenine and guanine [N3-(2-carbamoyl-2-hydroxyethyl)-adenine and N7-(2-carbamoyl-2-hydroxyethyl)-guanine] in a linear dose-dependent manner. The levels of guanine adducts were consistently about 60-fold higher across the dose range than those of adenine. In contrast, no GA-derived DNA adducts were found in the cells treated with any concentrations of AA, consistent with a lack of metabolic conversion of AA to GA. However, the mutant frequency was significantly increased by AA at concentrations of 12 mM and higher. GA was mutagenic starting with the 2mM dose, suggesting that GA is much more mutagenic than AA. The mutant frequencies were increased with increasing concentrations of AA and GA, mainly due to an increase of proportion of small colony mutants. To elucidate the underlying mutagenic mechanism, we examined the loss of heterozygosity (LOH) at four microsatellite loci spanning the entire chromosome 11 for mutants induced by AA or GA. Compared to GA induced mutations, AA induced more mutants whose LOH extended to D11Mit22 and D11Mit74, an alteration of DNA larger than half of the chromosome. Statistical analysis of the mutational spectra revealed a significant difference between the types of mutations induced by AA and GA treatments (P=0.018). These results suggest that although both AA and GA generate mutations through a clastogenic mode of action in mouse lymphoma cells, GA induces mutations via a DNA adduct mechanism whereas AA induces mutations by a mechanism not involving the formation of GA adducts.
Collapse
Affiliation(s)
- Nan Mei
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, United States.
| | | | | | | | | | | | | |
Collapse
|
25
|
Poli G, Schaur R, Siems W, Leonarduzzi G. 4-Hydroxynonenal: A membrane lipid oxidation product of medicinal interest. Med Res Rev 2008; 28:569-631. [DOI: 10.1002/med.20117] [Citation(s) in RCA: 508] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Mei N, Xia Q, Chen L, Moore MM, Chen T, Fu PP. Photomutagenicity of anhydroretinol and 5,6-epoxyretinyl palmitate in mouse lymphoma cells. Chem Res Toxicol 2006; 19:1435-40. [PMID: 17112230 PMCID: PMC6371395 DOI: 10.1021/tx0600907] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Retinyl palmitate (RP) is frequently used as an ingredient in cosmetics and other retail products. We previously reported that, under UVA light irradiation, RP is facilely decomposed into multiple products, including anhydroretinol (AR) and 5,6-epoxyretinyl palmitate (5,6-epoxy-RP). We also determined that combined treatment of mouse lymphoma cells with RP and UVA irradiation produced a photomutagenic effect. In this study, we evaluated the photomutagenicity of AR and 5,6-epoxy-RP, in L5178Y/Tk+/- mouse lymphoma cells. Treatment of cells with AR or 5,6-epoxy-RP alone at 10 and 25 microg/mL for 4 h did not show a positive mutagenic response. However, because these doses did not induce the required amount of cytotoxicity for mouse lymphoma assay, we are unable to determine whether or not these two compounds are mutagenic. Treatment of cells with 1-25 microg/mL AR or 5,6-epoxy-RP under UVA light (315-400 nm) for 30 min (1.38 mW/cm2) produced a synergistic photomutagenic effect. At 10 microg/mL (37.3 microM) AR with UVA exposure, the mutant frequency (MF) was about 3-fold higher than that for UVA exposure alone, whereas the MF for 25microg/mL (46.3microM) of 5,6-epoxy-RP + UVA was approximately 2-fold higher than that for UVA exposure alone. Compared with previous results for RP + UVA treatment, the potency of the induced phototoxicity and photomutagenicity was AR > RP > 5,6-epoxy-RP. To elucidate the underlying photomutagenic mechanism, we examined the loss of heterozygosity (LOH) at four microsatellite loci spanning the entire chromosome 11 for mutants induced by AR or 5,6-epoxy-RP. Most mutants lost the Tk+ allele, and more than 70% of the chromosome damage extended to 38 cM in chromosome length. AR + UVA induced about twice as many mutants that lost all four microsatellite markers from the chromosome 11 carrying the Tk+ allele as RP + UVA or 5,6-epoxy-RP + UVA. These results suggest that two of RP's photodecomposition products are photomutagenic in mouse lymphoma cells, causing events that affect a large segment of the chromosome.
Collapse
Affiliation(s)
- Nan Mei
- Division of Genetic, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Lim JH, Lee JC, Lee YH, Choi IY, Oh YK, Kim HS, Park JS, Kim WK. Simvastatin prevents oxygen and glucose deprivation/reoxygenation-induced death of cortical neurons by reducing the production and toxicity of 4-hydroxy-2E-nonenal. J Neurochem 2006; 97:140-50. [PMID: 16515553 DOI: 10.1111/j.1471-4159.2006.03715.x] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lipid membrane peroxidation is highly associated with neuronal death in various neurodegenerative diseases including cerebral stroke. Here, we report that simvastatin decreases oxygen and glucose deprivation (OGD)/reoxygenation-evoked neuronal death by inhibiting the production and cytoxicity of 4-hydroxy-2E-nonenal (HNE), the final product of lipid peroxidation. Simvastatin markedly decreased the OGD/reoxygenation-evoked death of cortical neurons. OGD/reoxygenation increased the intracellular HNE level mostly in neuronal cells, not glial cells. Simvastatin decreased the intracellular level of HNE in neuronal cells exposed to OGD/reoxygenation. We further found that HNE induced the cytotoxicity in neuronal cells and synergistically increased the N-methyl-D-aspartate (NMDA) receptor-mediated excitotoxicity. Simvastatin largely blocked the NMDA neurotoxicity potentiated by HNE. However, simvastatin did not alter the NMDA-evoked calcium influx in the absence or presence of HNE. HNE inhibited the activity of nuclear factor-kappa B (NF-kappaB), and the cytotoxicity of HNE was in good correlation with inactivation of NF-kappaB. Simvastatin reversed the inhibition of NF-kappaB activity induced by OGD/reoxygenation or HNE. The neuroprotection by simvastatin was significantly attenuated by various NF-kappaB inhibitors, implying that simvastatin inhibits the cytotoxicity of HNE at least in part by maintaining the activity of NF-kappaB. Further understanding of the neuroprotective mechanism of simvastatin may provide a therapeutic strategy for oxidative stress-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Ji Hyae Lim
- Department of Neuroscience, College of Medicine, Laboratory of neurodegenerative diseases, Ewha Medical Center, Ewha Women's University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Mei N, Xia Q, Chen L, Moore MM, Fu PP, Chen T. Photomutagenicity of retinyl palmitate by ultraviolet a irradiation in mouse lymphoma cells. Toxicol Sci 2005; 88:142-9. [PMID: 16107546 PMCID: PMC6370028 DOI: 10.1093/toxsci/kfi291] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Retinyl palmitate (RP), a storage form of vitamin A, is frequently used as a cosmetic ingredient, with more than 700 RP-containing cosmetic products on the U.S. market in 2004. There are concerns for the possible genotoxicity and carcinogenicity of RP when it is exposed to sunlight. To evaluate the photomutagenicity of RP in cells when exposed to ultraviolet A (UVA) light, L5178Y/Tk+/- mouse lymphoma cells were treated with different doses of RP alone/or in the presence of UVA light. Treatment of the cells with RP alone at the dose range of 25-100 microg/ml did not increase mutant frequencies (MFs) over the negative control, whereas treatment of cells with 1-25 microg/ml RP under UVA light (82.8 mJ/cm2/min for 30 min) produced a dose-dependent mutation induction. The mean induced MF (392 x 10(-6)) for treatment with 25 microg/ml RP under UVA exposure was about threefold higher than that for UVA alone (122 x 10(-6)), a synergistic effect. To elucidate the underlying mechanism of action, we examined the mutants for loss of heterozygosity (LOH) at four microsatellite loci spanning the entire chromosome 11, on which the Tk gene is located. The mutational spectrum for the RP + UVA treatment was significantly different from the negative control, but not significantly different from UVA exposure alone. Ninety four percent of the mutants from RP + UVA treatment lost the Tk+ allele, and 91% of the deleted sequences extended more than 6 cM in chromosome length, indicating clastogenic events affecting a large segment of the chromosome. These results suggest that RP is photomutagenic in combination with UVA exposure in mouse lymphoma cells, with a clastogenic mode-of-action.
Collapse
Affiliation(s)
- Nan Mei
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079
| | - Qingsu Xia
- Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079
| | - Ling Chen
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079
| | - Martha M. Moore
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079
| | - Peter P. Fu
- Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079
- To whom correspondence should be addressed at (Tao Chen) HFT-130, 3900 NCTR Road, Jefferson, AR 72079. Fax: 870–543–768, ; or (Peter P. Fu) HFT-110, 3900 NCTR Road, Jefferson, AR 72079. Fax: 870–543–7136,
| | - Tao Chen
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079
- To whom correspondence should be addressed at (Tao Chen) HFT-130, 3900 NCTR Road, Jefferson, AR 72079. Fax: 870–543–768, ; or (Peter P. Fu) HFT-110, 3900 NCTR Road, Jefferson, AR 72079. Fax: 870–543–7136,
| |
Collapse
|