1
|
Van Liefferinge E, Müller M, Van Noten N, Degroote J, Niknafs S, Roura E, Michiels J. Cinnamaldehyde Induces Release of Cholecystokinin and Glucagon-Like Peptide 1 by Interacting with Transient Receptor Potential Ankyrin 1 in a Porcine Ex-Vivo Intestinal Segment Model. Animals (Basel) 2021; 11:2262. [PMID: 34438718 PMCID: PMC8388503 DOI: 10.3390/ani11082262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Cinnamaldehyde and capsaicin have been reported to exert effects on the gastric function, mediated by the interaction with transient receptor potential ankyrin channel 1 (TRPA1) and transient receptor potential vanilloid channel 1 (TRPV1), respectively. This study examined whether these compounds could trigger the release of cholecystokinin (CCK) and/or glucagon-like peptide 1 (GLP-1) in the pig's gut in a porcine ex-vivo intestinal segment model. Furthermore, it was verified whether this response was mediated by TRPA1 or TRPV1 by using the channel's antagonist. These gut peptides play a key role in the "intestinal brake", a feedback mechanism that influences the function of proximal parts of the gut. Structural analogues of cinnamaldehyde were screened as well, to explore structure-dependent activation. Results showed a significant effect of capsaicin on GLP-1 release in the proximal small intestine, TRPV1 independent. TRPA1 showed to be strongly activated by cinnamaldehyde, both in proximal and distal small intestine, evidenced by the release of CCK and GLP-1, respectively. Out of all structural derivates, cinnamaldehyde showed the highest affinity for TRPA1, which elucidates the importance of the α,β-unsaturated aldehyde moiety. In conclusion, cinnamaldehyde as a TRPA1 agonist, is a promising candidate to modulate gastric function, by activating intestinal brake mechanisms.
Collapse
Affiliation(s)
- Elout Van Liefferinge
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
| | - Maximiliano Müller
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.M.); (S.N.); (E.R.)
| | - Noémie Van Noten
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
| | - Jeroen Degroote
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
| | - Shahram Niknafs
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.M.); (S.N.); (E.R.)
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.M.); (S.N.); (E.R.)
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (J.M.)
| |
Collapse
|
2
|
Zolotarev VA, Andreeva YV, Khropycheva RP. Effect of TRPV1 on Activity of Isoforms of Constitutive Nitric Oxide Synthase during Regulation of Bicarbonate Secretion in the Stomach. Bull Exp Biol Med 2019; 166:310-312. [PMID: 30627906 DOI: 10.1007/s10517-019-04339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Indexed: 11/29/2022]
Abstract
Application of mild irritants (1 M NaCl; pH 2.0) on the gastric mucosa potentiates the protective secretion of bicarbonates by epithelial cells. This response is mainly mediated by capsaicin-sensitive afferent nerve endings located in the submucosa. It was shown that activation of vanilloid type 1 receptors (TRPV1) induced by exogenous acidification of GM is not sufficient to potentiate the production of HCO3, including production depending on neuronal NO synthase. However, the effect of exogenous acid on TRPV1 leads to activation of endothelial NO synthase that restrict the gastric secretion of [Formula: see text].
Collapse
Affiliation(s)
- V A Zolotarev
- I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Yu V Andreeva
- I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - R P Khropycheva
- I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
3
|
Maji AK, Banerji P. Phytochemistry and gastrointestinal benefits of the medicinal spice, Capsicum annuum L. (Chilli): a review. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2017; 13:97-122. [PMID: 26756096 DOI: 10.1515/jcim-2015-0037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 12/03/2015] [Indexed: 12/31/2022]
Abstract
Dietary spices and their active constituents provide various beneficial effects on the gastrointestinal system by variety of mechanisms such as influence of gastric emptying, stimulation of gastrointestinal defense and absorption, stimulation of salivary, intestinal, hepatic, and pancreatic secretions. Capsicum annuum (Solanaceae), commonly known as chilli, is a medicinal spice used in various Indian traditional systems of medicine and it has been acknowledged to treat various health ailments. Therapeutic potential of chilli and capsaicin were well documented; however, they act as double-edged sword in many physiological circumstances. In traditional medicine chilli has been used against various gastrointestinal complains such as dyspepsia, loss of appetite, gastroesophageal reflux disease, gastric ulcer, and so on. In chilli, more than 200 constituents have been identified and some of its active constituents play numerous beneficial roles in various gastrointestinal disorders such as stimulation of digestion and gastromucosal defense, reduction of gastroesophageal reflux disease (GERD) symptoms, inhibition of gastrointestinal pathogens, ulceration and cancers, regulation of gastrointestinal secretions and absorptions. However, further studies are warranted to determine the dose ceiling limit of chilli and its active constituents for their utilization as gastroprotective agents. This review summarizes the phytochemistry and various gastrointestinal benefits of chilli and its various active constituents.
Collapse
|
4
|
Granger DN, Holm L, Kvietys P. The Gastrointestinal Circulation: Physiology and Pathophysiology. Compr Physiol 2016; 5:1541-83. [PMID: 26140727 DOI: 10.1002/cphy.c150007] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) circulation receives a large fraction of cardiac output and this increases following ingestion of a meal. While blood flow regulation is not the intense phenomenon noted in other vascular beds, the combined responses of blood flow, and capillary oxygen exchange help ensure a level of tissue oxygenation that is commensurate with organ metabolism and function. This is evidenced in the vascular responses of the stomach to increased acid production and in intestine during periods of enhanced nutrient absorption. Complimenting the metabolic vasoregulation is a strong myogenic response that contributes to basal vascular tone and to the responses elicited by changes in intravascular pressure. The GI circulation also contributes to a mucosal defense mechanism that protects against excessive damage to the epithelial lining following ingestion of toxins and/or noxious agents. Profound reductions in GI blood flow are evidenced in certain physiological (strenuous exercise) and pathological (hemorrhage) conditions, while some disease states (e.g., chronic portal hypertension) are associated with a hyperdynamic circulation. The sacrificial nature of GI blood flow is essential for ensuring adequate perfusion of vital organs during periods of whole body stress. The restoration of blood flow (reperfusion) to GI organs following ischemia elicits an exaggerated tissue injury response that reflects the potential of this organ system to generate reactive oxygen species and to mount an inflammatory response. Human and animal studies of inflammatory bowel disease have also revealed a contribution of the vasculature to the initiation and perpetuation of the tissue inflammation and associated injury response.
Collapse
Affiliation(s)
- D Neil Granger
- Department of Molecular and Cellular Physiology, LSU Health Science Center-Shreveport, Shreveport, Louisiana, USA
| | - Lena Holm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Peter Kvietys
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Holzer P. Acid-sensing ion channels in gastrointestinal function. Neuropharmacology 2015; 94:72-9. [PMID: 25582294 DOI: 10.1016/j.neuropharm.2014.12.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022]
Abstract
Gastric acid is of paramount importance for digestion and protection from pathogens but, at the same time, is a threat to the integrity of the mucosa in the upper gastrointestinal tract and may give rise to pain if inflammation or ulceration ensues. Luminal acidity in the colon is determined by lactate production and microbial transformation of carbohydrates to short chain fatty acids as well as formation of ammonia. The pH in the oesophagus, stomach and intestine is surveyed by a network of acid sensors among which acid-sensing ion channels (ASICs) and acid-sensitive members of transient receptor potential ion channels take a special place. In the gut, ASICs (ASIC1, ASIC2, ASIC3) are primarily expressed by the peripheral axons of vagal and spinal afferent neurons and are responsible for distinct proton-gated currents in these neurons. ASICs survey moderate decreases in extracellular pH and through these properties contribute to a protective blood flow increase in the face of mucosal acid challenge. Importantly, experimental studies provide increasing evidence that ASICs contribute to gastric acid hypersensitivity and pain under conditions of gastritis and peptic ulceration but also participate in colonic hypersensitivity to mechanical stimuli (distension) under conditions of irritation that are not necessarily associated with overt inflammation. These functional implications and their upregulation by inflammatory and non-inflammatory pathologies make ASICs potential targets to manage visceral hypersensitivity and pain associated with functional gastrointestinal disorders. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
6
|
Takeuchi K, Ise F, Takahashi K, Aihara E, Hayashi S. H2S-induced HCO3- secretion in the rat stomach--involvement of nitric oxide, prostaglandins, and capsaicin-sensitive sensory neurons. Nitric Oxide 2014; 46:157-64. [PMID: 25460323 DOI: 10.1016/j.niox.2014.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/03/2014] [Accepted: 11/04/2014] [Indexed: 11/28/2022]
Abstract
Hydrogen sulfide (H2S) is known to be an important gaseous mediator that affects various functions under physiological and pathological conditions. We examined the effects of NaHS, a H2S donor, on HCO3(-) secretion in rat stomachs and investigated the mechanism involved in this response. Under urethane anesthesia, rat stomachs were mounted on an ex vivo chamber and perfused with saline. Acid secretion had been inhibited by omeprazole. The secretion of HCO3(-) was measured at pH 7.0 using a pH-stat method and by the addition of 10 mM HCl. NaHS (0.5-10 mM) was perfused in the stomach for 5 min. Indomethacin or L-NAME was administered s.c. before NaHS treatment, while glibenclamide (a KATP channel blocker), ONO-8711 (an EP1 antagonist), or propargylglycine (a cystathionine γ-lyase inhibitor) was given i.p. before. The mucosal perfusion of NaHS dose-dependently increased the secretion of HCO3(-), and this effect was significantly attenuated by indomethacin, L-NAME, and sensory deafferentation, but not by glibenclamide or ONO-8711. The luminal output of nitric oxide, but not the mucosal production of prostaglandin E2, was increased by the perfusion of NaHS. Mucosal acidification stimulated HCO3(-) secretion, and this response was inhibited by sensory deafferentation, indomethacin, L-NAME, and ONO-8711, but not by propargylglycine. These results suggested that H2S increased HCO3(-) secretion in the stomach, and this effect was mediated by capsaicin-sensitive afferent neurons and dependent on nitric oxide and prostaglandins, but not ATP-sensitive K(+) channels. Further study is needed to define the role of endogenous H2S in the mechanism underlying acid-induced gastric HCO3(-) secretion.
Collapse
Affiliation(s)
- Koji Takeuchi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan; General Incorporated Association, Kyoto Research Center for Gastrointestinal Diseases, Karasuma-Oike, 671, Kyoto 604-8106, Japan.
| | - Fumitaka Ise
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan
| | - Kento Takahashi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan
| | - Eitaro Aihara
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan
| | - Shusaku Hayashi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan
| |
Collapse
|
7
|
Assas BM, Pennock JI, Miyan JA. Calcitonin gene-related peptide is a key neurotransmitter in the neuro-immune axis. Front Neurosci 2014; 8:23. [PMID: 24592205 PMCID: PMC3924554 DOI: 10.3389/fnins.2014.00023] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/27/2014] [Indexed: 12/26/2022] Open
Abstract
The question of how the neural and immune systems interact in host defense is important, integrating a system that senses the whole body with one that protects. Understanding the mechanisms and routes of control could produce novel and powerful ways of promoting and enhancing normal functions as well as preventing or treating abnormal functions. Fragmentation of biological research into specialities has resulted in some failures in recognizing and understanding interactions across different systems and this is most striking across immunology, hematology, and neuroscience. This reductionist approach does not allow understanding of the in vivo orchestrated response generated through integration of all systems. However, many factors make the understanding of multisystem cross-talk in response to a threat difficult, for instance the nervous and immune systems share communication molecules and receptors for a wide range of physiological signals. But, it is clear that physical, hard-wired connections exist between the two systems, with the key link involving sensory, unmyelinated nerve fibers (c fibers) containing the neuropeptide calcitonin gene-related peptide (CGRP), and modified macrophages, mast cells and other immune and host defense cells in various locations throughout the body. In this review we will therefore focus on the induction of CGRP and its key role in the neuroimmune axis.
Collapse
Affiliation(s)
- Bakri M Assas
- Translational Medicine, Faculty of Medical and Human Sciences, The University of Manchester Manchester, UK ; Department of Immunology, Faculty of Applied Sciences, King Abdulaziz University Jeddah, Saudi Arabia
| | - Joanne I Pennock
- Translational Medicine, Faculty of Medical and Human Sciences, The University of Manchester Manchester, UK
| | - Jaleel A Miyan
- Neurosciences, Faculty of Life Sciences, The University of Manchester Manchester, UK
| |
Collapse
|
8
|
Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacol Ther 2011; 131:142-70. [PMID: 21420431 PMCID: PMC3107431 DOI: 10.1016/j.pharmthera.2011.03.006] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
Abstract
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
9
|
Abstract
Acidosis in the gastrointestinal tract can be both a physiological and pathological condition. While gastric acid serves digestion and protection from pathogens, pathological acidosis is associated with defective acid containment, inflammation and ischaemia. The pH in the oesophagus, stomach and intestine is surveyed by an elaborate network of acid-sensing mechanisms to maintain homeostasis. Deviations from physiological values of extracellular pH (7.4) are monitored by multiple acid sensors expressed by epithelial cells and sensory neurones. Protons evoke multiple currents in primary afferent neurones, which are carried by several acid-sensitive ion channels. Among these, acid-sensing ion channels (ASICs) and transient receptor potential (TRP) vanilloid-1 (TRPV1) ion channels have been most thoroughly studied. ASICs survey moderate decreases in extracellular pH whereas TRPV1 is activated only by severe acidosis resulting in pH values below 6. Other molecular acid sensors comprise TRPV4, TRPC4, TRPC5, TRPP2 (PKD2L1), epithelial Na(+) channels, two-pore domain K(+) (K₂(P)) channels, ionotropic purinoceptors (P2X), inward rectifier K(+) channels, voltage-activated K(+) channels, L-type Ca²(+) channels and acid-sensitive G-protein-coupled receptors. Most of these acid sensors are expressed by primary sensory neurones, although to different degrees and in various combinations. As upregulation and overactivity of acid sensors appear to contribute to various forms of chronic inflammation and pain, acid-sensitive ion channels and receptors are also considered as targets for novel therapeutics.
Collapse
Affiliation(s)
- P Holzer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria.
| |
Collapse
|
10
|
Takeuchi K, Kita K, Hayashi S, Aihara E. Regulatory mechanism of duodenal bicarbonate secretion: Roles of endogenous prostaglandins and nitric oxide. Pharmacol Ther 2010; 130:59-70. [PMID: 21185865 DOI: 10.1016/j.pharmthera.2010.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 11/27/2022]
Abstract
The secretion of HCO(3)(-) in the duodenum is increased by exogenous prostaglandin (PG) E(2) and mucosal acidification, the latter being accompanied by a rise in mucosal PGE(2) content and nitric oxide (NO) release. The stimulatory effect of PGE(2) is mediated intracellularly by both Ca(2+) and 3',5'-adenosine cyclic adenosine monophosphate (cAMP), and this action is inhibited by EP3 and EP4 antagonists. The secretion is also increased by NOR3 (NO donor), and this response is mimicked by dibutyryl 3',5'-cyclic guanosine monophosphate (dbcGMP) and attenuated by indomethacin. Mucosal acidification stimulates HCO(3)(-) secretion with concomitant increases in mucosal PGE(2) production and NO release. The effects on HCO(3)(-) secretion and PGE(2) production are inhibited by indomethacin [nonselective cyclooxygenase (COX) inhibitor] and SC-560 (selective COX-1 inhibitor) but not rofecoxib (selective COX-2 inhibitor). N(G)-nitro-l-arginine methyl ester [l-NAME: nonselective NO synthase (NOS) inhibitor], but not aminoguanidine [selective inducible NOS inhibitor], attenuates the acid-induced HCO(3)(-) secretion and NO release in an l-arginine-sensitive manner. In addition, the response to PGE(2) is potentiated by vinpocetine [phosphodiesterase (PDE) 1 inhibitor] and cilostamide (PDE3 inhibitor), while the response to NOR3 is increased by vinpocetine. We conclude that endogenous PGs and NO are both involved in the local regulation of acid-induced duodenal HCO(3)(-) secretion; COX-1 and constitutive NOS are key enzymes responsible for the production of PGs and NO, respectively; NO stimulates HCO(3)(-) secretion by increasing PG production; PGE(2) stimulates HCO(3)(-) secretion via activation of EP3/EP4 receptors; and both PDE1 and PDE3 are involved in the regulation of duodenal HCO(3)(-) secretion.
Collapse
Affiliation(s)
- Koji Takeuchi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8414, Japan.
| | | | | | | |
Collapse
|
11
|
Premkumar LS, Sikand P. TRPV1: a target for next generation analgesics. Curr Neuropharmacol 2010; 6:151-63. [PMID: 19305794 PMCID: PMC2647151 DOI: 10.2174/157015908784533888] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/17/2007] [Accepted: 11/11/2007] [Indexed: 12/11/2022] Open
Abstract
Transient Receptor Potential Vanilloid 1 (TRPV1) is a Ca2+ permeant non-selective cation channel expressed in a subpopulation of primary afferent neurons. TRPV1 is activated by physical and chemical stimuli. It is critical for the detection of nociceptive and thermal inflammatory pain as revealed by the deletion of the TRPV1 gene. TRPV1 is distributed in the peripheral and central terminals of the sensory neurons and plays a role in initiating action potentials at the nerve terminals and modulating neurotransmitter release at the first sensory synapse, respectively. Distribution of TRPV1 in the nerve terminals innervating blood vessels and in parts of the CNS that are not subjected to temperature range that is required to activate TRPV1 suggests a role beyond a noxious thermal sensor. Presently, TRPV1 is being considered as a target for analgesics through evaluation of different antagonists. Here, we will discuss the distribution and the functions of TRPV1, potential use of its agonists and antagonists as analgesics and highlight the functions that are not related to nociceptive transmission that might lead to adverse effects.
Collapse
Affiliation(s)
- Louis S Premkumar
- Department of Pharmacology, Southern Illinois University School of Medicine Springfield, IL 62702, USA.
| | | |
Collapse
|
12
|
Abstract
Acidosis is a noxious condition associated with inflammation, ischaemia or defective acid containment. As a consequence, acid sensing has evolved as an important property of afferent neurons with unmyelinated and thinly myelinated nerve fibres. Protons evoke multiple currents in primary afferent neurons, which are carried by several acid-sensitive ion channels. Among these, acid-sensing ion channels (ASICs) and transient receptor potential (TRP) vanilloid-1 (TRPV1) ion channels have been most thoroughly studied. ASICs survey moderate decreases in extracellular pH, whereas TRPV1 is activated only by severe acidosis resulting in pH values below 6. Two-pore-domain K(+) (K(2P)) channels are differentially regulated by small deviations of extra- or intracellular pH from physiological levels. Other acid-sensitive channels include TRPV4, TRPC4, TRPC5, TRPP2 (PKD2L1), ionotropic purinoceptors (P2X), inward rectifier K(+) channels, voltage-activated K(+) channels, L-type Ca(2+) channels, hyperpolarization-activated cyclic nucleotide gated channels, gap junction channels, and Cl(-) channels. In addition, acid-sensitive G protein coupled receptors have also been identified. Most of these molecular acid sensors are expressed by primary sensory neurons, although to different degrees and in various combinations. Emerging evidence indicates that many of the acid-sensitive ion channels and receptors play a role in acid sensing, acid-induced pain and acid-evoked feedback regulation of homeostatic reactions. The existence and apparent redundancy of multiple pH surveillance systems attests to the concept that acid-base regulation is a vital issue for cell and tissue homeostasis. Since upregulation and overactivity of acid sensors appear to contribute to various forms of chronic pain, acid-sensitive ion channels and receptors are considered as targets for novel analgesic drugs. This approach will only be successful if the pathological implications of acid sensors can be differentiated pharmacologically from their physiological function.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria.
| |
Collapse
|
13
|
Morsy MA, Fouad AA. Mechanisms of gastroprotective effect of eugenol in indomethacin-induced ulcer in rats. Phytother Res 2008; 22:1361-6. [DOI: 10.1002/ptr.2502] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Kita K, Takahashi K, Ohashi Y, Takasuka H, Aihara E, Takeuchi K. Phosphodiesterase isozymes involved in regulation of formula secretion in isolated mouse stomach in vitro. J Pharmacol Exp Ther 2008; 326:889-96. [PMID: 18550692 DOI: 10.1124/jpet.108.138941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
(+/-)-(E)-4-Ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide] (NOR-3), a nitric-oxide (NO) donor, is known to increase HCO(3)(-) secretion in rat stomachs, intracellularly mediated by cGMP; yet, there is no information about the phosphodiesterase (PDE) isozyme involved in this process. We examined the effects of various isozyme-selective PDE inhibitors on the secretion of HCO(3)(-) in the mouse stomach in vitro and the type(s) of PDE isozymes involved in the response to NO. The gastric mucosa of DDY mice was stripped of the muscle layer and mounted on an Ussing chamber. HCO(3)(-) secretion was measured at pH 7.0 using a pH-stat method and by adding 2 mM HCl. NOR-3, 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP), and various PDE inhibitors were added to the serosal side. Vinpocetine (PDE1 inhibitor) or zaprinast (PDE5 inhibitor) was also added serosally 30 min before NOR-3 or 8-Br-cGMP. Both NOR-3 and 8-Br-cGMP stimulated HCO(3)(-) secretion in a dose-dependent manner, and the response to NOR-3 was significantly inhibited by methylene blue. Likewise, the secretion induced by NOR-3 or 8-Br-cGMP was significantly attenuated by 6-((2S,3S)-3-(4-chloro-2-methylphenylsulfonylaminomethyl)-bicyclo(2.2.2)octan-2-yl)-5Z-hexenoic acid (ONO-8711), the PGE receptor (EP)1 antagonist, as well as indomethacin and potentiated by both vinpocetine and zaprinast at doses that had no effect by themselves on the basal secretion, whereas other subtype-selective PDE inhibitors had no effect. NOR-3 increased the mucosal PGE(2) content in a methylene blue-inhibitable manner. These results suggest that NO stimulates gastric HCO(3)(-) secretion mediated intracellularly by cGMP and modified by both PDE1 and PDE5, and this response is finally mediated by endogenous PGE(2) via the activation of EP1 receptors.
Collapse
Affiliation(s)
- Kazutomo Kita
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8414, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Holzer P. Role of visceral afferent neurons in mucosal inflammation and defense. Curr Opin Pharmacol 2007; 7:563-9. [PMID: 18029228 DOI: 10.1016/j.coph.2007.09.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 09/12/2007] [Accepted: 09/13/2007] [Indexed: 12/17/2022]
Abstract
The maintenance of gastrointestinal (GI) mucosal integrity depends on the rapid alarm of protective mechanisms in the face of pending injury. Two populations of extrinsic primary afferent neurons, vagal and spinal, subserve this goal through different mechanisms. These sensory neurons react to GI insults by triggering protective autonomic reflexes including the so-called cholinergic anti-inflammatory reflex. Spinal afferents, in addition, can initiate protective tissue reactions at the site of assault through release of calcitonin gene-related peptide (CGRP) from their peripheral endings. The protective responses triggered by sensory neurons comprise alterations in GI blood flow, secretion, and motility as well as modifications of immune function. This article focuses on significant advances that during the past couple of years have been made in identifying molecular nocisensors on afferent neurons and in dissecting the signaling mechanisms whereby afferent neurons govern inflammatory processes in the gut.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
16
|
Aihara E, Nomura Y, Sasaki Y, Ise F, Kita K, Takeuchi K. Involvement of prostaglandin E receptor EP3 subtype in duodenal bicarbonate secretion in rats. Life Sci 2007; 80:2446-53. [PMID: 17512019 DOI: 10.1016/j.lfs.2007.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 03/31/2007] [Accepted: 04/09/2007] [Indexed: 11/23/2022]
Abstract
We investigated the involvement of prostaglandin E (PGE) receptor subtype EP3 in the regulatory mechanism of duodenal HCO(3)(-) secretion in rats. A proximal duodenal loop or a chambered stomach was perfused with saline, and HCO(3)(-) secretion was measured using a pH-stat method and by adding 2 mM HCl. Mucosal acidification was achieved through 10 min of exposure to 10 mM HCl in the duodenum or 100 mM HCl in the stomach. Various EP agonists or the EP4 antagonist were given i.v., while the EP1 or EP3 antagonist was given s.c. or i.d., respectively. Sulprostone (EP1/EP3 agonists) stimulated duodenal HCO(3)(-) secretion in a dose-dependent manner, and this response was inhibited by AE5-599 (EP3 antagonist) but not AE3-208 (EP4 antagonist). AE1-329 (EP4 agonist) also increased duodenal HCO(3)(-) secretion, and this action was inhibited by AE3-208 but not AE5-599. The response to PGE(2) or acidification in the duodenum was partially attenuated by AE5-599 or AE3-208 alone but completely abolished by the combined administration. Duodenal damage caused by mucosal perfusion with 150 mM HCl for 4 h was worsened by pretreatment with AE5-599 and AE3-208 as well as indomethacin and further aggravated by co-administration of these antagonists. Neither the EP3 nor EP4 antagonist had any effect on the gastric response induced by PGE(2) or acidification. These results clearly demonstrate the involvement of EP3 receptors, in addition to EP4 receptors, in the regulation of duodenal HCO(3)(-) secretion as well as the maintenance of the mucosal integrity of the duodenum against acid injury.
Collapse
Affiliation(s)
- Eitaro Aihara
- Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The duodenum absorbs nearly all secreted gastric acid. Carbonic anhydrases facilitate transmucosal acid movement. The upper gastrointestinal tract must resist a variety of injuries, including those caused by ingested noxious substances, acid, ischemia/reperfusion, and infections such as Helicobacter pylori. The results are similar, however, regardless of insult: inflammation, ulceration, or metaplasia/dysplasia. In the past year, there have been prominent findings suggesting that oxidative stress and the formation of reactive oxygen species may play a pivotal role in all forms of injury, and that antioxidants may be the key to injury prevention and healing. RECENT FINDINGS Oxidative injury may be a common mechanism by which the upper gastrointestinal mucosa responds to noxious insults. Endogenous antioxidants, such as ghrelin, L-carnitine, and annexin-1 attenuate the oxidative-stress response. Similarly, exogenous antioxidants have also been shown to decrease inflammation, upregulate free radical scavengers, and prevent the formation of reactive oxygen species. SUMMARY Many studies published in the past year have linked oxidative stress to a variety of upper gastrointestinal insults. Exogenous and endogenous antioxidant compounds prevent the oxidative stress response. The future holds great promise for the development of pharmaceuticals with antioxidant properties that are safe, efficacious, and inexpensive.
Collapse
Affiliation(s)
- Mamie H Dong
- Department of Internal Medicine, UCLA Medical Center, USA
| | | |
Collapse
|
18
|
Fukushima K, Aoi Y, Kato S, Takeuchi K. Gastro-protective action of lafutidine mediated by capsaicin-sensitive afferent neurons without interaction with TRPV1 and involvement of endogenous prostaglandins. World J Gastroenterol 2006; 12:3031-7. [PMID: 16718783 PMCID: PMC4124377 DOI: 10.3748/wjg.v12.i19.3031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Lafutidine, a histamine H2 receptor antagonist, exhibits gastro-protective action mediated by capsaicin-sensitive afferent neurons (CSN). We compared the effect between lafutidine and capsaicin, with respect to the interaction with endogenous prostaglandins (PG), nitric oxide (NO) and the afferent neurons, including transient receptor potential vanilloid subtype 1 (TRPV1).
METHODS: Male SD rats and C57BL/6 mice, both wild-type and prostacyclin IP receptor knockout animals, were used after 18 h of fasting. Gastric lesions were induced by the po administration of HCl/ethanol (60% in 150 mmol/L HCl) in a volume of 1 mL for rats or 0.3 mL for mice.
RESULTS: Both lafutidine and capsaicin (1-10 mg/kg, po) afforded dose-dependent protection against HCl/ethanol in rats and mice. The effects were attenuated by both the ablation of CSN and pretreatment with NG-nitro-L-arginine methyl ester, yet only the effect of capsaicin was mitigated by prior administration of capsazepine, the TRPV1 antagonist, as well as indomethacin. Lafutidine protected the stomach against HCl/ethanol in IP receptor knockout mice, similar to wild-type animals, while capsaicin failed to afford protection in the animals lacking IP receptors. Neither of these agents affected the mucosal PGE2 or 6-keto PGF1α contents in rat stomachs. Capsaicin evoked an increase in [Ca2+]i in rat TRPV1-transfected HEK293 cells while lafutidine did not.
CONCLUSION: These results suggest that although both lafutidine and capsaicin exhibit gastro-protective action mediated by CSN, the mode of their effects differs regarding the dependency on endogenous PGs/IP receptors and TRPV1. It is assumed that lafutidine interacts with CSN at yet unidentified sites other than TRPV1.
Collapse
Affiliation(s)
- Kazuhiro Fukushima
- Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Yamashina, Kyoto 607, Japan
| | | | | | | |
Collapse
|