1
|
Schenk S, Highgate Q. Methylenedioxymethamphetamine (MDMA): Serotonergic and dopaminergic mechanisms related to its use and misuse. J Neurochem 2021; 157:1714-1724. [PMID: 33711169 DOI: 10.1111/jnc.15348] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022]
Abstract
Methylenedioxymethamphetamine (MDMA) is an amphetamine analogue that preferentially stimulates the release of serotonin (5HT) and results in relatively small increases in synaptic dopamine (DA). The ratio of drug-stimulated increases in synaptic DA, relative to 5HT, predicts the abuse liability; drugs with higher DA:5HT ratios are more likely to be abused. Nonetheless, MDMA is a drug that is misused. Clinical and preclinical studies have suggested that repeated MDMA exposure produces neuroadaptive responses in both 5HT and DA neurotransmission that might explain the development and maintenance of MDMA self-administration in some laboratory animals and the development of a substance use disorder in some humans. In this paper, we describe the research that has demonstrated an inhibitory effect of 5HT on the acquisition of MDMA self-administration and the critical role of DA in the maintenance of MDMA self-administration in laboratory animals. We then describe the circuitry and 5HT receptors that are positioned to modulate DA activity and review the limited research on the effects of MDMA exposure on these receptor mechanisms.
Collapse
Affiliation(s)
- Susan Schenk
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Quenten Highgate
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
2
|
Chitre NM, Bagwell MS, Murnane KS. The acute toxic and neurotoxic effects of 3,4-methylenedioxymethamphetamine are more pronounced in adolescent than adult mice. Behav Brain Res 2019; 380:112413. [PMID: 31809766 DOI: 10.1016/j.bbr.2019.112413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 01/31/2023]
Abstract
3,4-methylenedioxymethamphetamine (MDMA) recently achieved breakthrough status from the Food and Drug Administration (FDA) for post-traumatic stress disorder (PTSD). However, evidence indicates that exposure to toxic doses of MDMA can lead to long-lasting dysregulation of brain monoaminergic neurotransmitters, primarily from studies conducted in young adult rodents. To date, there is a paucity of data on whether toxic doses of MDMA can differentially affect neurotransmitter systems in adolescents and mature adults, which is an important question as adolescents and adults may be differentially vulnerable to MDMA abuse. In the current study, adolescent (6-7 weeks of age) and mature adult (16-18 weeks of age) male, Swiss-Webster mice were exposed to MDMA (20 mg/kg) using a binge-like dosing regimen (4 administrations spaced every 2 h). Acute lethality, acute hyperthermia, and acute decreases in body weight following MDMA administration were more pronounced in adolescent than adult mice. Likewise, acute loss of striatal dopamine neurochemistry was also exacerbated in adolescents, as determined by high-pressure liquid chromatography coupled to electrochemical detection. Exposure to MDMA induced greater turnover of dopamine into its major metabolite dihydroxyphenylacetic acid (DOPAC) in adolescents, but not in adults, suggesting a novel mechanism through which adolescents may show increased vulnerability to the acute toxic and neurotoxic effects of MDMA, or conversely that mature adults show greater protection. These data caution that MDMA exposure in adolescence may be particularly dangerous and that the therapeutic window for MDMA may differ between adolescents and mature adults.
Collapse
Affiliation(s)
- Neha Milind Chitre
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Monique Simone Bagwell
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Kevin Sean Murnane
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA.
| |
Collapse
|
3
|
Spear LP. Consequences of adolescent use of alcohol and other drugs: Studies using rodent models. Neurosci Biobehav Rev 2016; 70:228-243. [PMID: 27484868 DOI: 10.1016/j.neubiorev.2016.07.026] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 07/08/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
Studies using animal models of adolescent exposure to alcohol, nicotine, cannabinoids, and the stimulants cocaine, 3,4-methylenedioxymethampethamine and methamphetamine have revealed a variety of persisting neural and behavioral consequences. Affected brain regions often include mesolimbic and prefrontal regions undergoing notable ontogenetic change during adolescence, although it is unclear whether this represents areas of specific vulnerability or particular scrutiny to date. Persisting alterations in forebrain systems critical for modulating reward, socioemotional processing and cognition have emerged, including apparent induction of a hyper-dopaminergic state with some drugs and/or attenuations in neurons expressing cholinergic markers. Disruptions in cognitive functions such as working memory, alterations in affect including increases in social anxiety, and mixed evidence for increases in later drug self-administration has also been reported. When consequences of adolescent and adult exposure were compared, adolescents were generally found to be more vulnerable to alcohol, nicotine, and cannabinoids, but generally not to stimulants. More work is needed to determine how adolescent drug exposure influences sculpting of the adolescent brain, and provide approaches to prevent/reverse these effects.
Collapse
Affiliation(s)
- Linda Patia Spear
- Department of Psychology, Developmental Exposure Alcohol Research Center (DEARC), Binghamton University, Binghamton, NY, United States.
| |
Collapse
|
4
|
MDMA self-administration fails to alter the behavioral response to 5-HT(1A) and 5-HT(1B) agonists. Psychopharmacology (Berl) 2016; 233:1323-30. [PMID: 26856854 DOI: 10.1007/s00213-016-4226-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
RATIONALE Regular use of the street drug, ecstasy, produces a number of cognitive and behavioral deficits. One possible mechanism for these deficits is functional changes in serotonin (5-HT) receptors as a consequence of prolonged 3,4 methylenedioxymethamphetamine (MDMA)-produced 5-HT release. Of particular interest are the 5-HT(1A) and 5-HT(1B) receptor subtypes since they have been implicated in several of the behaviors that have been shown to be impacted in ecstasy users and in animals exposed to MDMA. OBJECTIVES This study aimed to determine the effect of extensive MDMA self-administration on behavioral responses to the 5-HT(1A) agonist, 8-hydroxy-2-(n-dipropylamino)tetralin (8-OH-DPAT), and the 5-HT(1B/1A) agonist, RU 24969. METHODS Male Sprague-Dawley rats self-administered a total of 350 mg/kg MDMA, or vehicle, over 20-58 daily self-administration sessions. Two days after the last self-administration session, the hyperactive response to 8-OH-DPAT (0.03-1.0 mg/kg) or the adipsic response to RU 24969 (0.3-3.0 mg/kg) were assessed. RESULTS 8-OH-DPAT dose dependently increased horizontal activity, but this response was not altered by MDMA self-administration. The dose-response curve for RU 24969-produced adipsia was also not altered by MDMA self-administration. CONCLUSIONS Cognitive and behavioral deficits produced by repeated exposure to MDMA self-administration are not likely due to alterations in 5-HT(1A) or 5-HT(1B) receptor mechanisms.
Collapse
|
5
|
Teixeira-Gomes A, Costa VM, Feio-Azevedo R, Bastos MDL, Carvalho F, Capela JP. The neurotoxicity of amphetamines during the adolescent period. Int J Dev Neurosci 2015; 41:44-62. [PMID: 25482046 DOI: 10.1016/j.ijdevneu.2014.12.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 01/07/2023] Open
Abstract
Amphetamine-type psychostimulants (ATS), such as amphetamine (AMPH), 3,4-methylenedioxymethamphetamine (MDMA), and methamphetamine (METH) are psychoactive substances widely abused, due to their powerful central nervous system (CNS) stimulation ability. Young people particularly use ATS as recreational drugs. Moreover, AMPH is used clinically, particularly for attention deficit hyperactivity disorder, and has the ability to cause structural and functional brain alterations. ATS are known to interact with monoamine transporter sites and easily diffuse across cellular membranes, attaining high levels in several tissues, particularly the brain. Strong evidence suggests that ATS induce neurotoxic effects, raising concerns about the consequences of drug abuse. Considering that many teenagers and young adults commonly use ATS, our main aim was to review the neurotoxic effects of amphetamines, namely AMPH, MDMA, and METH, in the adolescence period of experimental animals. Reports agree that adolescent animals are less susceptible than adult animals to the neurotoxic effects of amphetamines. The susceptibility to the neurotoxic effects of ATS seems roughly located in the early adolescent period of animals. Many authors report that the age of exposure to ATS is crucial for the neurotoxic outcome, showing that the stage of brain maturity has a strong importance. Moreover, recent studies have been undertaken in young adults and/or consumers during adolescence that clearly indicate brain or behavioural damage, arguing for long-term neurotoxic effects in humans. There is an urgent need for more studies during the adolescence period, in order to unveil the mechanisms and the brain dysfunctions promoted by ATS.
Collapse
Affiliation(s)
- Armanda Teixeira-Gomes
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Vera Marisa Costa
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Rita Feio-Azevedo
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal.
| |
Collapse
|
6
|
Piper BJ, Henderson CS, Meyer JS. Adolescent MDMA exposure diminishes the physiological and neurotoxic consequences of an MDMA binge in female rats. Dev Psychobiol 2014; 56:924-34. [PMID: 24752593 DOI: 10.1002/dev.21169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 09/06/2013] [Indexed: 11/10/2022]
Abstract
Intermittent MDMA pretreatment blocked the reductions in serotonin transporter (SERT) binding induced by an MDMA binge in a prior study in adolescent male rats. The objective of this investigation was to determine if the physiological, behavioral, and neurochemical responses to MDMA are sexually dimorphic. Female Sprague-Dawley rats received MDMA (10 mg/kg × 2) or Saline on every fifth day from postnatal day (PD) 35-60 and an MDMA binge (5 mg/kg × 4) on PD 67. The MDMA binge induced a pronounced temperature dysregulation in MDMA-naïve, but not MDMA-pretreated, groups. Similarly, MDMA-pretreated animals were resistant to the binge-induced SERT reductions, especially in the hippocampus. Motor activity at PD 68 was not reduced by the binge, unlike the responses found in males. These results show that female rats differ from males in their responses to an MDMA binge but are similar with respect to preconditioning from prior MDMA exposure.
Collapse
Affiliation(s)
- Brian J Piper
- Neuroscience & Behavior Program, University of Massachusetts, Amherst, MA, 01003. ,
| | | | | |
Collapse
|
7
|
Harper DN, Kay C, Hunt M. Prior MDMA exposure inhibits learning and produces both tolerance and sensitization in the radial-arm maze. Pharmacol Biochem Behav 2013; 105:34-40. [PMID: 23380525 DOI: 10.1016/j.pbb.2013.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 01/09/2013] [Accepted: 01/24/2013] [Indexed: 11/26/2022]
Abstract
Recent research using the partially-baited radial arm maze with rats has shown that acute or single-session high-dose exposure to +/-3,4-methylenedioxymethaphemtamine (MDMA) impairs reference memory processes more so than working memory processes. The current study examined the effect that an initial binge exposure of MDMA had on the ability to learn this task and whether such exposure produced tolerance or sensitization to subsequent low dose acute MDMA exposure. Following either an initial binge dose (4×10mg/kg) of MDMA or saline, rats received regular weekly injections of either MDMA (4.0mg/kg) or saline during task acquisition training. Although eventually able to acquire the task at a level comparable to controls, initial binge MDMA exposure significantly impaired task acquisition. Binge-treated rats displayed evidence of a tolerance effect to subsequent acute injections of MDMA; although with continued training this tolerance effect was reduced. However, initial binge treatment also produced a sensitized response to subsequent acute MDMA exposure that manifested as a prolonged period of impairment up to 24h following administration. Consistent with the effects seen following other regimes of exposure to MDMA, the pattern of errors made was best described as an impairment to reference memory processes as opposed to working memory processes.
Collapse
Affiliation(s)
- D N Harper
- Victoria University of Wellington, New Zealand.
| | | | | |
Collapse
|
8
|
Huff C, Bhide N, Schroering A, Yamamoto BK, Gudelsky GA. Effect of repeated exposure to MDMA on the function of the 5-HT transporter as assessed by synaptosomal 5-HT uptake. Brain Res Bull 2013; 91:52-7. [PMID: 23318273 DOI: 10.1016/j.brainresbull.2013.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 11/28/2022]
Abstract
Recent studies have demonstrated that a preconditioning regimen (i.e., repeated low doses) of MDMA provides protection against the reductions in tissue concentrations of 5-HT and 5-HT transporter (SERT) density and/or expression produced by a subsequent binge regimen of MDMA. In the present study, the effects of preconditioning and binge treatment regimens of MDMA on SERT function were assessed by synaptosomal 5-HT uptake. Synaptosomal 5-HT uptake was reduced by 72% 7 days following the binge regimen (10 mg/kg, i.p. every 2 h for a total of 4 injections). In rats exposed to the preconditioning regimen of MDMA (daily treatment with 10 mg/kg for 4 days), the reduction in synaptosomal 5-HT uptake induced by a subsequent binge regimen was significantly less. Treatment with the preconditioning regimen alone resulted in a transient 46% reduction in 5-HT uptake that was evident 1 day, but not 7 days, following the last injection of MDMA. Furthermore, the preconditioning regimen of MDMA did not alter tissue concentrations of 5-HT, whereas the binge regimen of MDMA resulted in a long-term reduction of 40% of tissue 5-HT concentrations. The distribution of SERT immunoreactivity (ir) in membrane and endosomal fractions of the hippocampus also was evaluated following the preconditioning regimen of MDMA. There was no significant difference in the relative distribution of SERTir between these two compartments in control and preconditioned rats. The results demonstrate that SERT function is transiently reduced in response to a preconditioning regimen of MDMA, while long-term reductions in SERT function occur in response to a binge regimen of MDMA. Moreover, a preconditioning regimen of MDMA provides protection against the long-term reductions in SERT function evoked by a subsequent binge regimen of the drug. It is tempting to speculate that the neuroprotective effect of MDMA preconditioning results from a transient down-regulation in SERT function.
Collapse
Affiliation(s)
- Courtney Huff
- James Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | | | | | | | | |
Collapse
|
9
|
Kolyaduke OV, Hughes RN. Increased anxiety-related behavior in male and female adult rats following early and late adolescent exposure to 3,4-methylenedioxymethamphetamine (MDMA). Pharmacol Biochem Behav 2012; 103:742-9. [PMID: 23262299 DOI: 10.1016/j.pbb.2012.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/02/2012] [Accepted: 12/06/2012] [Indexed: 11/17/2022]
Abstract
Subsequent behavioral effects in adulthood of daily exposure to MDMA during early or late adolescence were assessed in both male and female rats. From either postnatal day (PND) 35 (early adolescence) or PND45 (late adolescence), PVG/c rats of each sex were exposed via intraperitoneal injections to saline or 10mg/kg MDMA for 10 consecutive days. They were regularly weighed during treatment and again on PND90. At this age, their anxiety-related behavior was determined from frequencies of ambulation, rearing, grooming, defecation and occupancy of the center and corners of an open field, as well as entries into and time spent in the light compartment of a light-dark box. Spatial and working memories were assessed by preferences for a novel Y-maze arm, and by recognition of a novel object. MDMA-exposed rats gained less weight during treatment than saline controls but were heavier on PND90 depending on their sex or age when treated. As shown by decreased open-field ambulation (for males only) and increased defecation plus fewer entries into the light compartment of the light-dark box and entries into both arms of a Y maze, MDMA exposure increased adult anxiety-related behavior particularly for rats treated during late adolescence. There was no evidence of any effects on either spatial or working memory.
Collapse
Affiliation(s)
- Olga V Kolyaduke
- Department of Psychology, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | | |
Collapse
|
10
|
Mayado A, Torres E, Gutierrez-Lopez MD, Colado MI, O'Shea E. Increased interleukin-1β levels following low dose MDMA induces tolerance against the 5-HT neurotoxicity produced by challenge MDMA. J Neuroinflammation 2011; 8:165. [PMID: 22114930 PMCID: PMC3283542 DOI: 10.1186/1742-2094-8-165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/24/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preconditioning is a phenomenon by which tolerance develops to injury by previous exposure to a stressor of mild severity. Previous studies have shown that single or repeated low dose MDMA can attenuate 5-HT transporter loss produced by a subsequent neurotoxic dose of the drug. We have explored the mechanism of delayed preconditioning by low dose MDMA. METHODS Male Dark Agouti rats were given low dose MDMA (3 mg/kg, i.p.) 96 h before receiving neurotoxic MDMA (12.5 mg/kg, i.p.). IL-1β and IL1ra levels and 5-HT transporter density in frontal cortex were quantified at 1 h, 3 h or 7 days. IL-1β, IL-1ra and IL-1RI were determined between 3 h and 96 h after low dose MDMA. sIL-1RI combined with low dose MDMA or IL-1β were given 96 h before neurotoxic MDMA and toxicity assessed 7 days later. RESULTS Pretreatment with low dose MDMA attenuated both the 5-HT transporter loss and elevated IL-1β levels induced by neurotoxic MDMA while producing an increase in IL-1ra levels. Low dose MDMA produced an increase in IL-1β at 3 h and in IL-1ra at 96 h. sIL-1RI expression was also increased after low dose MDMA. Coadministration of sIL-1RI (3 μg, i.c.v.) prevented the protection against neurotoxic MDMA provided by low dose MDMA. Furthermore, IL-1β (2.5 pg, intracortical) given 96 h before neurotoxic MDMA protected against the 5-HT neurotoxicity produced by the drug, thus mimicking preconditioning. CONCLUSIONS These results suggest that IL-1β plays an important role in the development of delayed preconditioning by low dose MDMA.
Collapse
Affiliation(s)
- Andrea Mayado
- Departamento de Farmacologia, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
11
|
Puerta E, Barros-Miñones L, Hervias I, Gomez-Rodriguez V, Orejana L, Pizarro N, de la Torre R, Jordán J, Aguirre N. Long-lasting neuroprotective effect of sildenafil against 3,4-methylenedioxymethamphetamine- induced 5-hydroxytryptamine deficits in the rat brain. J Neurosci Res 2011; 90:518-28. [PMID: 21948520 DOI: 10.1002/jnr.22759] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/14/2011] [Accepted: 07/03/2011] [Indexed: 11/11/2022]
Abstract
Sildenafil, given shortly before 3,4-methylenedioxymethamphetamine (MDMA), affords protection against 5-hydroxytryptamine (5-HT) depletions caused by this amphetamine derivative by an acute preconditioning-like mechanism. Because acute and delayed preconditionings do not share the same mechanisms, we investigated whether sildenafil would also protect the 5-HT system of the rat if given 24 hr before MDMA. For this, MDMA (3 × 5 mg/kg i.p., every 2 hr) was administered to rats previously treated with sildenafil (8 mg/kg p.o.). One week later, 5-HT content and 5-HT transporter density were measured in the striatum, frontal cortex, and hippocampus of the rats. Our findings indicate that sildenafil afforded significant protection against MDMA-induced 5-HT deficits without altering the acute hyperthermic response to MDMA or its metabolic disposition. Sildenafil promoted ERK1/2 activation an effect that was paralleled by an increase in MnSOD expression that persisted 24 hr later. In addition, superoxide and superoxide-derived oxidants, shown by ethidium fluorescence, increased after the last MDMA injection, an effect that was prevented by sildenafil pretreatment. Similarly, MDMA increased nitrotyrosine concentration in the hippocampus, an effect not shown by sildenafil-pretreated rats. In conclusion, our data demonstrate that sildenafil produces a significant, long-lasting neuroprotective effect against MDMA-induced 5-HT deficits. This effect is apparently mediated by an increased expression of MnSOD and a subsequent reduced susceptibility to the oxidative stress caused by MDMA.
Collapse
Affiliation(s)
- Elena Puerta
- Department of Pharmacology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Albaugh DL, Rinker JA, Baumann MH, Sink JR, Riley AL. Rats preexposed to MDMA display attenuated responses to its aversive effects in the absence of persistent monoamine depletions. Psychopharmacology (Berl) 2011; 216:441-9. [PMID: 21373786 DOI: 10.1007/s00213-011-2241-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/17/2011] [Indexed: 11/24/2022]
Abstract
RATIONALE The abuse potential of a given drug may be mediated by both its rewarding and aversive effects, the latter of which are often far less characterized. OBJECTIVES Using the conditioned taste-aversion (CTA) preparation, the present experiments examined changes in the aversive effects of the commonly used recreational drug MDMA following repeated drug exposures. METHODS Experiment 1 used three varying doses of MDMA (1.0, 1.8, and 3.2 mg/kg) to determine a dose that produced taste aversions of intermediate strength. Experiments 2 and 3 characterized the effects of repeated preexposures to MDMA (1.8 or 3.2 mg/kg) on taste aversions induced by MDMA (1.8 mg/kg). Additionally, levels of several monoamines and metabolites were analyzed in frontal cortex and caudate-putamen from subjects in Experiment 3 to assess for persistent monoamine depletions. RESULTS MDMA induced dose-dependent taste aversions. Preexposure to MDMA (at both doses) resulted in an attenuation of MDMA-induced taste aversions. These effects were not likely due to persistent monoamine depletions, as subjects preexposed to the higher MDMA dose did not differ from controls in levels of monoamines or metabolites in either brain region examined. CONCLUSIONS Prior MDMA experience weakened the ability of MDMA to induce taste aversions. This attenuation of MDMA's aversive effects may occur with low doses that do not persistently alter monoamine levels.
Collapse
Affiliation(s)
- Daniel L Albaugh
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, DC 20016, USA.
| | | | | | | | | |
Collapse
|
13
|
Methylenedioxymethamphetamine (MDMA, 'Ecstasy'): Neurodegeneration versus Neuromodulation. Pharmaceuticals (Basel) 2011. [PMCID: PMC4058674 DOI: 10.3390/ph4070992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The amphetamine analogue 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) is widely abused as a recreational drug due to its unique psychological effects. Of interest, MDMA causes long-lasting deficits in neurochemical and histological markers of the serotonergic neurons in the brain of different animal species. Such deficits include the decline in the activity of tryptophan hydroxylase in parallel with the loss of 5-HT and its main metabolite 5-hydoxyindoleacetic acid (5-HIAA) along with a lower binding of specific ligands to the 5-HT transporters (SERT). Of concern, reduced 5-HIAA levels in the CSF and SERT density have also been reported in human ecstasy users, what has been interpreted to reflect the loss of serotonergic fibers and terminals. The neurotoxic potential of MDMA has been questioned in recent years based on studies that failed to show the loss of the SERT protein by western blot or the lack of reactive astrogliosis after MDMA exposure. In addition, MDMA produces a long-lasting down-regulation of SERT gene expression; which, on the whole, has been used to invoke neuromodulatory mechanisms as an explanation to MDMA-induced 5-HT deficits. While decreased protein levels do not necessarily reflect neurodegeneration, the opposite is also true, that is, neuroregulatory mechanisms do not preclude the existence of 5-HT terminal degeneration.
Collapse
|
14
|
Ádori C, Andó RD, Szekeres M, Gutknecht L, Kovács GG, Hunyady L, Lesch KP, Bagdy G. Recovery and aging of serotonergic fibers after single and intermittent MDMA treatment in dark agouti rat. J Comp Neurol 2011; 519:2353-78. [DOI: 10.1002/cne.22631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Kay C, Harper D, Hunt M. The effects of binge MDMA on acquisition and reversal learning in a radial-arm maze task. Neurobiol Learn Mem 2011; 95:473-83. [DOI: 10.1016/j.nlm.2011.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/10/2011] [Accepted: 02/22/2011] [Indexed: 12/01/2022]
|
16
|
Contributions of serotonin in addiction vulnerability. Neuropharmacology 2011; 61:421-32. [PMID: 21466815 DOI: 10.1016/j.neuropharm.2011.03.022] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 12/29/2022]
Abstract
The serotonin (5-hydroxytryptamine; 5-HT) system has long been associated with mood and its dysregulation implicated in the pathophysiology of mood and anxiety disorders. While modulation of 5-HT neurotransmission by drugs of abuse is also recognized, its role in drug addiction and vulnerability to drug relapse is a more recent focus of investigation. First, we review preclinical data supporting the serotonergic raphe nuclei and their forebrain projections as targets of drugs of abuse, with emphasis on the effects of psychostimulants, opioids and ethanol. Next, we examine the role of 5-HT receptors in impulsivity, a core behavior that contributes to the vulnerability to addiction and relapse. Finally, we discuss evidence for serotonergic dysregulation in comorbid mood and addictive disorders and suggest novel serotonergic targets for the treatment of addiction and the prevention of drug relapse.
Collapse
|
17
|
Piper BJ, Ali SF, Daniels LG, Meyer JS. Repeated intermittent methylenedioxymethamphetamine exposure protects against the behavioral and neurotoxic, but not hyperthermic, effects of an MDMA binge in adult rats. Synapse 2010; 64:421-31. [PMID: 20169574 DOI: 10.1002/syn.20744] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have recently shown that chronic intermittent exposure of adolescent rats to 3,4-methylenedioxymethamphetamine (MDMA or Ecstasy) completely blocks the reduction in serotonin transporter (SERT) binding and the hypoactivity seen following a subsequent MDMA binge treatment. The present study determined whether a similar neuroprotective effect also occurs in rats given the same intermittent MDMA exposure in adulthood. Adult male Sprague-Dawley rats were given either MDMA (10 mg/kg x 2) or saline, every fifth day, from postnatal day (PD) 60 to PD 85. The MDMA-induced latency until seminal plug production was reduced over the course of intermittent treatments. After a 1-week wash-out period, animals received either a low- or high-dose MDMA binge (2.5 or 5.0 mg/kg x 4). Core body temperature was measured during and after the binge to determine the effects of MDMA pretreatment on MDMA-induced hyperthermia. Spontaneous motor activity was determined the next day, and cortical and hippocampal samples were collected at 1 week postbinge to measure serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) concentrations as well as [3H]citalopram binding to SERT. Hyperthermia occurred more rapidly and seminal discharge was more common in the MDMA-pretreated group compared to the MDMA-naïve group in animals given the low-dose binge. MDMA preexposure protected animals from the reductions in cortical 5-HT levels and SERT binding produced by the high-dose binge and blocked the postbinge hypoactivity. These findings indicate that chronic, intermittent MDMA exposure in adulthood induces neuroprotective effects similar to those seen with adolescent treatment. However, there was also evidence for drug-induced sensitization in adults that was not observed in adolescents. Thus, altered drug sensitivity in chronic Ecstasy users may depend not only on the frequency and pattern of use but also on the age of the user.
Collapse
Affiliation(s)
- Brian J Piper
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
18
|
Puerta E, Pastor F, Dvoracek J, De Saavedra MDM, Goñi-Allo B, Jordán J, Hervias I, Aguirre N. Delayed pre-conditioning by 3-nitropropionic acid prevents 3,4-methylenedioxymetamphetamine-induced 5-HT deficits. J Neurochem 2010; 114:843-52. [DOI: 10.1111/j.1471-4159.2010.06808.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
von Ameln N, von Ameln-Mayerhofer A. Atypical development of behavioural sensitization to 3,4-methylenedioxymethamphetamine (MDMA, 'Ecstasy') in adolescent rats and its expression in adulthood: role of the MDMA chirality. Addict Biol 2010; 15:35-44. [PMID: 20002021 DOI: 10.1111/j.1369-1600.2009.00187.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Despite the great popularity of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) as a drug of abuse, not much is known about the detailed mechanisms of the acute and subchronic effects of the drug. There is especially a lack of information about the distinct behavioural effects of its optical isomers (enantiomers) R- and S-MDMA compared with the racemic RS-MDMA. For this purpose, adolescent rats were repetitively treated during two treatment stages (stage 1: days 1-10; stage 2: days 15, 17, 19) with RS-MDMA (5 or 10 mg/kg) or each of the respective enantiomers (5 mg/kg). The repeated treatment started on postnatal day (PND) 32 and locomotor activity was measured on each day by means of a photobeam-equipped activity box system. RS-MDMA or S-MDMA administration led acutely to massive hyperlocomotion and subchronically, to the development of behavioural sensitization after a short habituation period. R-MDMA was free of hyperactivating effects and even decreased locomotor behaviour upon repeated treatment. Nevertheless, co-administration of R-MDMA increased the hyperactivity of S-MDMA and made the S-MDMA induced behavioural sensitization state-dependent. The animals pre-treated with R-MDMA showed a sensitized response in adulthood when tested with RS-MDMA. Our results indicated that even in the absence of substantial neurotoxicity, both MDMA enantiomers can lead to long-term changes in brain circuitry and concomitant behavioural changes when repeatedly administered in adolescence. The sensitization development was most pronounced in the animals treated with S- and RS-MDMA; the animals with R-MDMA did not develop sensitization under repeated treatment but expressed a sensitized response when challenged with RS-MDMA.
Collapse
Affiliation(s)
- Nora von Ameln
- University of Tuebingen, Neuropharmacology, Auf der Morgenstelle 28E, Tuebingen, Germany.
| | | |
Collapse
|
20
|
Xu A, Sakurai E, Kuramasu A, Zhang J, Li J, Okamura N, Zhang D, Yoshikawa T, Watanabe T, Yanai K. Roles of Hypothalamic Subgroup Histamine and Orexin Neurons on Behavioral Responses to Sleep Deprivation Induced by the Treadmill Method in Adolescent Rats. J Pharmacol Sci 2010; 114:444-53. [DOI: 10.1254/jphs.10177fp] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
21
|
Biezonski DK, Meyer JS. Effects of 3,4-methylenedioxymethamphetamine (MDMA) on serotonin transporter and vesicular monoamine transporter 2 protein and gene expression in rats: implications for MDMA neurotoxicity. J Neurochem 2009; 112:951-62. [PMID: 20002520 DOI: 10.1111/j.1471-4159.2009.06515.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA; 'Ecstasy') is a popular recreational drug used worldwide. This study aimed to determine the effects of this compound on the expression of nerve terminal serotonergic markers in rats. Experiment 1 investigated MDMA-induced changes in levels of the serotonin transporter (SERT) and the vesicular monoamine transporter 2 (VMAT-2) in the hippocampus, a region with sparse dopaminergic innervation, after lesioning noradrenergic input with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4). Adult male Sprague-Dawley rats were administered 100 mg/kg DSP-4 or saline 1 week prior to either an MDMA (10 mg/kg x 4) or saline binge. Two weeks following the binge treatment, the DSP-4/MDMA group unexpectedly showed little change in hippocampal VMAT-2 protein expression compared with DSP-4/Saline controls, despite large reductions in SERT levels in all regions examined in the MDMA-treated animals. Furthermore, animals treated with binge MDMA (Experiment 2) showed a striking decrease in SERT gene expression (and a lesser effect on VMAT-2) measured by quantitative RT-PCR in pooled dorsal and median raphe tissue punches, when compared with saline-treated controls. These results demonstrate that MDMA causes substantial regulatory changes in the expression of serotonergic markers, thus questioning the need to invoke distal axotomy as an explanation of MDMA-related serotonergic deficits.
Collapse
Affiliation(s)
- Dominik K Biezonski
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Massachusetts, USA
| | | |
Collapse
|
22
|
Bhide NS, Lipton JW, Cunningham JI, Yamamoto BK, Gudelsky GA. Repeated exposure to MDMA provides neuroprotection against subsequent MDMA-induced serotonin depletion in brain. Brain Res 2009; 1286:32-41. [PMID: 19555677 DOI: 10.1016/j.brainres.2009.06.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 06/12/2009] [Accepted: 06/15/2009] [Indexed: 11/26/2022]
Abstract
Repeated exposure to sub-lethal insults has been reported to result in neuroprotection against a subsequent deleterious insult. The purpose of this study was to evaluate whether repeated exposure (preconditioning) to a non-5-HT depleting dose of MDMA in adult rats provides neuroprotection against subsequent MDMA-induced 5-HT depletion. Treatment of rats with MDMA (10 mg/kg, ip every 2 h for 4 injections) resulted in a 50-65% depletion of 5-HT in the striatum, hippocampus and cortex, and these depletions were significantly attenuated in rats that received a preconditioning regimen of MDMA (10 mg/kg, ip daily for 4 days). The 5-HT depleting regimen of MDMA also resulted in a 40-80% reduction in 5-HT transporter immunoreactivity (SERT(ir)), and the reduction in SERT(ir) also was completely attenuated in MDMA-preconditioned animals. Preconditioning with MDMA (10 mg/kg, ip) daily for 4 days provided neuroprotection against methamphetamine-induced 5-HT depletion, but not dopamine depletion, in the striatum. Additional studies were conducted to exclude the possibility that alterations in MDMA pharmacokinetics or MDMA-induced hyperthermia in rats previously exposed to MDMA contribute towards neuroprotection. During the administration of the 5-HT depleting regimen of MDMA, there was no difference in the extracellular concentration of the drug in the striatum of rats that had received 4 prior, daily injections of vehicle or MDMA. Moreover, there was no difference in the hyperthermic response to the 5-HT depleting regimen of MDMA in rats that had earlier received 4 daily injections of vehicle or MDMA. Furthermore, hyperthermia induced by MDMA during preconditioning appears not to contribute towards neuroprotection, inasmuch as preconditioning with MDMA at a low ambient temperature at which hyperthermia was absent did not alter the neuroprotection provided by the preconditioning regimen. Thus, prior exposure to MDMA affords protection against the long-term depletion of brain 5-HT produced by subsequent MDMA administration. The mechanisms underlying preconditioning-induced neuroprotection for MDMA remain to be determined.
Collapse
Affiliation(s)
- Nirmal S Bhide
- College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | |
Collapse
|
23
|
Khorana N, Young R, Glennon RA. Effect of 8-hydroxy-2-(N,N-di-n-propylamino)tetralin and MDMA on the discriminative stimulus effects of the classical hallucinogen DOM in rats. Pharmacol Biochem Behav 2009; 91:385-92. [PMID: 18778728 PMCID: PMC3236028 DOI: 10.1016/j.pbb.2008.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 08/04/2008] [Accepted: 08/09/2008] [Indexed: 10/21/2022]
Abstract
Co-administration of the 5-HT1A serotonin receptor agonist (+/-)8-hydroxy-2-(N,N-di-n-propylamino)tetralin [(+/-)8-OH DPAT] enhances the discriminative stimulus effects of the classical hallucinogen 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM) in rats. In the present investigation, using Sprague-Dawley rats trained to discriminate DOM (1.0 mg/kg) from saline vehicle under a VI-15 s schedule of reinforcement, it was shown that the stimulus-enhancing actions of 8-OH DPAT are related more to its R(+)-isomer than to its S(-)-enantiomer, and that the (+/-)- and R(+)8-OH DPAT-induced effects are antagonized by the 5-HT1A receptor antagonist NAN-190. (+/-)8-OH DPAT and its isomers substitute in rats trained to discriminate the designer drug N-methyl-1-(3,4-methylenedioxyphenyl)-2-aminopropane (MDMA; methylenedioxymethamphetamine) from vehicle indicating some similarity of effect. On this basis, it was hypothesized that MDMA might be capable of enhancing the DOM stimulus. Co-administration of MDMA with low (i.e., 0.1 and 0.3 mg/kg) doses of DOM resulted in greater DOM-appropriate responding than engendered by administration of DOM alone. As such, the present findings are the first to demonstrate an MDMA-induced enhancing effect on the discriminative stimulus actions of a classical hallucinogen. The results also suggest that a 5-HT1A serotonin receptor mechanism might contribute to this phenomenon.
Collapse
Affiliation(s)
- Nantaka Khorana
- Department of Medicinal Chemistry, School of Pharmacy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0540, USA
| | | | | |
Collapse
|
24
|
Biezonski DK, Courtemanche AB, Hong SB, Piper BJ, Meyer JS. Repeated adolescent MDMA ("Ecstasy") exposure in rats increases behavioral and neuroendocrine responses to a 5-HT2A/2C agonist. Brain Res 2008; 1252:87-93. [PMID: 19059385 DOI: 10.1016/j.brainres.2008.11.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/20/2008] [Accepted: 11/13/2008] [Indexed: 11/28/2022]
Abstract
MDMA (3,4-methylenedioxymethamphetamine) is a popular recreational drug among adolescents. The present study aimed to determine the effects of repeated intermittent administration of 10 mg/kg MDMA during adolescence on behavioral (Experiment 1) and neuroendocrine (Experiment 2) responses of rats to the 5-HT(2A/2C) agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and on [(3)H]ketanserin binding to 5-HT(2A) receptors. In the first experiment, MDMA pretreatment increased the frequency of head twitches and back muscle contractions, but not wet-dog shakes, to a high-dose DOI challenge. In the second experiment, both the prolactin and corticosterone responses to DOI were potentiated in MDMA-pretreated animals. No changes were found in 5-HT(2A) receptor binding in the hypothalamus or other forebrain areas that were examined. These results indicate that intermittent adolescent MDMA exposure enhances sensitivity of 5-HT(2A/2C) receptors in the CNS, possibly through changes in downstream signaling mechanisms.
Collapse
Affiliation(s)
- Dominik K Biezonski
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003-7710, USA
| | | | | | | | | |
Collapse
|
25
|
Meyer JS, Piper BJ, Vancollie VE. Development and Characterization of a Novel Animal Model of Intermittent MDMA (“Ecstasy”) Exposure during Adolescence. Ann N Y Acad Sci 2008; 1139:151-63. [DOI: 10.1196/annals.1432.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Abstract
+/-3,4-Methylenedioxymethamphetamine (MDMA) is a chemical derivative of amphetamine that has become a popular drug of abuse and has been shown to deplete serotonin in the brains of users and animals exposed to it. To date, most studies have investigated the effects of MDMA on adult animals. With a majority of users of MDMA being young adults, the chances of the users becoming pregnant and exposing the fetuses to MDMA are also a concern. Evidence to date has shown that developmental exposure to MDMA results in learning and memory impairments in the Morris water maze, a task known to be sensitive to hippocampal disruption, when the animals are tested as adults. Developmental MDMA exposure leads to hypoactivity in the offspring as adults but does not affect outcome on tests of anxiety. MDMA administration decreases pup weight, increases corticosterone and brain-derived neurotrophic factor levels during treatment while decreasing brain levels of serotonin; a decrease that initially dissipates and then reappears in adulthood. Neonatal MDMA exposure increases the sensitivity of the serotonin 1A receptor, a possible mechanism underlying the learning and memory deficits seen. Taken together, the evidence shows that MDMA exposure has adverse effects on the developing brain and behavior. The animal and human data on developmental MDMA exposure are reviewed and their public health implications discussed.
Collapse
|
27
|
Thompson MR, Callaghan PD, Hunt GE, McGregor IS. Reduced sensitivity to MDMA-induced facilitation of social behaviour in MDMA pre-exposed rats. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1013-21. [PMID: 18302974 DOI: 10.1016/j.pnpbp.2008.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 01/24/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
The acute effects of the party drug 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") in humans include feelings of love, closeness towards other people and an increased acceptance of others views and feelings. Some evidence suggests that regular MDMA users develop a subsensitivity to the positive effects of the drug and escalate their intake of the drug over time as a result. The current study investigated whether brief exposure to relatively high doses of MDMA in rats produces a subsequent attenuation in the ability of MDMA to enhance social interaction. Male Wistar rats were exposed to either MDMA (4 x 5 mg/kg over 4 h) or vehicle on two consecutive days. Twelve weeks later, MDMA pre-exposed rats displayed a significantly shorter period of time spent in social interaction than controls when tested in the drug-free state. MDMA pre-exposed rats also showed a blunted prosocial response to MDMA (2.5 mg/kg) relative to controls. This difference was overcome by increasing the MDMA dose to 5 mg/kg. The 5-HT(1A) agonist 8-OH-DPAT (250 microg/kg but not 125 microg/kg) increased social interaction and this effect did not differ in MDMA and vehicle pre-exposed rats. HPLC analysis showed a small but significant depletion of prefrontal 5-HT and 5-HIAA in MDMA pre-exposed rats. Prefrontal 5-HIAA concentrations were also reduced in the subset of vehicle and MDMA pre-exposed rats that received additional testing with MDMA. These results indicate that treatment with MDMA not only causes lasting reductions in social interaction in rats but causes an attenuation of the prosocial effects of subsequent MDMA administration. The lack of a differential response to 8-OH-DPAT agrees with other findings that the 5-HT(1A) receptor system remains functionally intact following MDMA pre-exposure and suggests that other neuroadaptations may underlie the lasting social deficits caused by MDMA.
Collapse
Affiliation(s)
- Murray R Thompson
- School of Psychology, University of Sydney, A18, Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
28
|
Piper BJ, Fraiman JB, Owens CB, Ali SF, Meyer JS. Dissociation of the neurochemical and behavioral toxicology of MDMA ('Ecstasy') by citalopram. Neuropsychopharmacology 2008; 33:1192-205. [PMID: 17609680 DOI: 10.1038/sj.npp.1301491] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High or repeated doses of the recreational drug 3,4-methylenedioxymethamphetamine (MDMA, or 'Ecstasy') produce long-lasting deficits in several markers of serotonin (5-HT) system integrity and also alter behavioral function. However, it is not yet clear whether MDMA-induced serotonergic neurotoxicity is responsible for these behavioral changes or whether other mechanisms are involved. The present experiment tested the hypothesis that blocking serotonergic neurotoxicity by pretreatment with the selective 5-HT reuptake inhibitor citalopram will also prevent the behavioral and physiological consequences of an MDMA binge administration. Male, Sprague-Dawley rats (N=67) received MDMA (4 x 10 mg/kg) with or without citalopram (10 mg/kg) pretreatment. Core temperature, ejaculatory response, and body weight were monitored during and immediately following drug treatments. A battery of tests assessing motor, cognitive, exploratory, anxiety, and social behaviors was completed during a 10-week period following MDMA administration. Brain tissue was collected at 1 and 10 weeks after drug treatments for measurement of regional 5-HT transporter binding and (for the 1-week samples) 5-HT and 5-HIAA concentrations. Citalopram pretreatment blocked MDMA-related reductions in aggressive and exploratory behavior measured in the social interaction and hole-board tests respectively. Such pretreatment also had the expected protective effect against MDMA-induced 5-HT neurotoxicity at 1 week following the binge. In contrast, citalopram did not prevent most of the acute effects of MDMA (eg hyperthermia and weight loss), nor did it block the decreased motor activity seen in the binge-treated animals 1 day after dosing. These results suggest that some of the behavioral and physiological consequences of a high-dose MDMA regimen in rats are mediated by mechanisms other than the drug's effects on the serotonergic system. Elucidation of these mechanisms requires further study of the influence of MDMA on other neurotransmitter systems.
Collapse
Affiliation(s)
- Brian J Piper
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, USA
| | | | | | | | | |
Collapse
|
29
|
Baumann MH, Clark RD, Franken FH, Rutter JJ, Rothman RB. Tolerance to 3,4-methylenedioxymethamphetamine in rats exposed to single high-dose binges. Neuroscience 2008; 152:773-84. [PMID: 18313226 PMCID: PMC2390896 DOI: 10.1016/j.neuroscience.2008.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/02/2008] [Accepted: 01/18/2008] [Indexed: 11/16/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) stimulates the transporter-mediated release of monoamines, including 5-HT. High-dose exposure to MDMA causes persistent 5-HT deficits (e.g. depletion of brain 5-HT) in animals, yet the functional and clinical relevance of such deficits are poorly defined. Here we examine functional consequences of MDMA-induced 5-HT depletions in rats. Male rats received binges of three i.p. injections of MDMA or saline, one injection every 2 h; MDMA was given at a threshold pharmacological dose (1.5 mg/kgx3, low dose) or at a fivefold higher amount (7.5 mg/kgx3, high dose). One week later, jugular catheters and intracerebral guide cannulae were implanted. Two weeks after binges, rats received acute i.v. challenge injections of 1 and 3 mg/kg MDMA. Neuroendocrine effects evoked by i.v. MDMA (prolactin and corticosterone secretion) were assessed via serial blood sampling, while neurochemical effects (5-HT and dopamine release) were assessed via microdialysis in brain. MDMA binges elevated core temperatures only in the high-dose group, with these same rats exhibiting approximately 50% loss of forebrain 5-HT 2 weeks later. Prior exposure to MDMA did not alter baseline plasma hormones or dialysate monoamines, and effects of i.v. MDMA were similar in saline and low-dose groups. By contrast, rats pretreated with high-dose MDMA displayed significant reductions in evoked hormone secretion and 5-HT release when challenged with i.v. MDMA. As tolerance developed only in rats exposed to high-dose binges, hyperthermia and 5-HT depletion are implicated in this phenomenon. Our results suggest that MDMA tolerance in humans may reflect 5-HT deficits which could contribute to further dose escalation.
Collapse
Affiliation(s)
- M H Baumann
- Clinical Psychopharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, DHHS, 333 Cassell Drive, Suite 4500, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
30
|
Ludwig V, Mihov Y, Schwarting RKW. Behavioral and neurochemical consequences of multiple MDMA administrations in the rat: role of individual differences in anxiety-related behavior. Behav Brain Res 2007; 189:52-64. [PMID: 18241937 DOI: 10.1016/j.bbr.2007.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 12/10/2007] [Indexed: 11/28/2022]
Abstract
Using the elevated plus-maze (EPM), Wistar rats can be distinguished into high (HA) or low anxiety (LA) subjects. These differences seem to reflect traits, since HA and LA rats vary also in other anxiety-dependent tasks, neurochemical mechanisms, and psychopharmacological reactivity, including lasting consequences after single treatment with 3,4-methylenedioxymethamphetamine (MDMA). Here, we tested whether multiple MDMA treatments also have subject-dependent effects. Based on routine EPM screening, male Wistar rats were divided into HA and LA sub-groups, which received five (i.e. multiple) daily injections of MDMA (5 mg/kg) or saline, followed by a test battery, including a challenge test with MDMA, a retest in the EPM, a novel-object test, and a final neurochemical analysis. Acutely, MDMA led to comparable hyperactivity in HA and LA rats. After multiple MDMA, behavioral sensitization was observed, especially in LA rats. Open arm time during the EPM retest (min 0-5) correlated with that of the initial one only in those rats, which had received a single injection of MDMA. Rats with multiple MDMA, especially LA-rats, showed more open-arm time and locomotion during the subsequent 5-10 min of the retest. In a novel-object test, rats with multiple MDMA, again especially LA subjects, showed more exploratory bouts towards the novel object. Neurochemically, multiple MDMA led to moderately lower serotonin in the ventral striatum, and higher dopamine levels in the frontal cortex as compared to single MDMA; these effects were also moderated by subject-dependent factors. Our data show that low-dosed multiple MDMA can lead to behavioral sensitization and outlasting consequences, which affect behavior in the EPM and a novel object task. Detecting such sequels partly requires consideration of individual differences.
Collapse
Affiliation(s)
- V Ludwig
- Experimental and Physiological Psychology, Philipps-University of Marburg, Gutenbergstr. 18, 35037 Marburg, Germany
| | | | | |
Collapse
|
31
|
Squires LN, Talbot KN, Rubakhin SS, Sweedler JV. Serotonin catabolism in the central and enteric nervous systems of rats upon induction of serotonin syndrome. J Neurochem 2007; 103:174-80. [PMID: 17877637 DOI: 10.1111/j.1471-4159.2007.04739.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Serotonin, a well-known neurotransmitter in mammals, has been linked to a number of neurological and gastrointestinal disorders. One of these disorders, serotonin syndrome, is a potentially deadly condition caused by increased levels of serotonin in the extracellular space. Information on the neurochemical effects of serotonin syndrome on serotonin catabolism is lacking, particularly in relation to the enteric system of the gastrointestinal tract. Here the catabolism of serotonin is monitored in rats with pharmacologically induced serotonin syndrome, with the catabolites characterized using a specialized capillary electrophoresis system with laser-induced native fluorescence detection. Animals induced with serotonin syndrome demonstrate striking increases in the levels of serotonin and its metabolites. In the brain, levels of serotonin increased 2- to 3-fold in animals induced with serotonin syndrome. A major serotonin metabolite, 5-hydroxyindole acetic acid, increased 10- to 100-fold in experimental animals. Similar results were observed in the gastrointestinal tissues; in the small intestines, serotonin levels increased 4- to 5-fold. Concentrations of 5-hydroxyindole acetic acid increased 32- to 100-fold in the intestinal tissues of experimental animals. Serotonin sulfate showed surprisingly large increases, marking what may be the first time the compound has been reported in rat intestinal tissues.
Collapse
Affiliation(s)
- Leah N Squires
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | |
Collapse
|
32
|
Ben Hamida S, Plute E, Bach S, Lazarus C, Tracqui A, Kelche C, de Vasconcelos AP, Jones BC, Cassel JC. Ethanol-MDMA interactions in rats: the importance of interval between repeated treatments in biobehavioral tolerance and sensitization to the combination. Psychopharmacology (Berl) 2007; 192:555-69. [PMID: 17345065 DOI: 10.1007/s00213-007-0752-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE In our previous work, we showed that ethanol (EtOH) potentiates 3,4-methylenedioxymethamphetamine (MDMA)-induced hyperlocomotion while protecting against its hyperthermic effects. Whereas the effect on activity were found on all days (although declining over the three first days), the protection against hyperthermia completely disappeared on the second day. The latter effect was previously thought to reflect tolerance to ethanol or the combination, per se. OBJECTIVE In the present study, we changed the treatment regimen to irregular and longer intervals between treatments (48, 120, and again 48 h) to check if tolerance was still observed. RESULTS We found progressive sensitization of locomotor activity to EtOH (1.5 g/kg, i.p.)+MDMA (6.6 mg/kg, i.p.), and a partial EtOH protection against MDMA-induced hyperthermia that persisted after the first drug challenge day. When the monoamine neurotransmitters, dopamine, and serotonin were assessed 2 weeks after treatment, we found no consistent effect on the concentration of any of these neurotransmitters, whatever the treatment. Similarly, we found that regional brain concentrations of MDMA were not significantly affected by EtOH at a 45-min post-treatment delay; however, the overall ratio of the metabolite 3,4-methylenedioxyamphetamine (MDA) to MDMA was lower (overall, -16%) in animals treated with the combination compared to MDMA alone, indicating possible contribution of pharmacokinetic factors. This difference was especially marked in the striatum (-25%). CONCLUSIONS These findings shed new light on the consequences of EtOH-MDMA, taken together at a nearly normal ambient temperature, both in terms of motivation and potential risks for recreational drug users.
Collapse
Affiliation(s)
- Sami Ben Hamida
- LINC-UMR 7191, Université Louis Pasteur-CNRS, Institut Fédérératif de Recherche 37, GDR CNRS 2905, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Piper BJ. A developmental comparison of the neurobehavioral effects of ecstasy (MDMA). Neurotoxicol Teratol 2006; 29:288-300. [PMID: 17174068 PMCID: PMC1896315 DOI: 10.1016/j.ntt.2006.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 09/07/2006] [Accepted: 10/06/2006] [Indexed: 11/16/2022]
Abstract
The entactogen +/-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a popular recreational drug among college, high school, and, occasionally, middle school students. Preclinical research examining the acute and long-term effects of MDMA has predominately been conducted in reproductively mature subjects but there has been increasing interest in adolescent and in utero exposure. This review examines the acute and long-term responses to MDMA during perinatal, adolescent, and adult periods. The ability of MDMA to alter core body temperature emerges gradually during ontogeny while a reduction in body weight is evident at all ages. Learning and working-memory are also altered independent of the developmental stage of exposure. Current evidence suggests adults are more sensitive to the long-term serotonin depletions following MDMA but younger ages also exhibit substantial and rapid neuroplasticity. Sexually dimorphic MDMA responses have been identified for the acute hyperthermic and motoric effects of MDMA with pubescent males being especially susceptible. Several physiological, behavioral, and neurochemical MDMA issues requiring further study are also outlined.
Collapse
Affiliation(s)
- Brian J Piper
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003-7710, USA.
| |
Collapse
|