1
|
Utpal BK, Al Amin M, Zehravi M, Sweilam SH, Arjun UVNV, Madhuri YB, Gupta JK, Yaidikar L, Tummala T, Suseela R, Durairaj A, Reddy KTK, Al Fahaid AAF, Rab SO, Almahjari MS, Emran TB. Alkaloids as neuroprotectors: targeting signaling pathways in neurodegenerative diseases. Mol Cell Biochem 2025. [DOI: 10.1007/s11010-025-05258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/16/2025] [Indexed: 05/04/2025]
|
2
|
Parsa D, Aden LA, Pitzer A, Ding T, Yu C, Diedrich A, Milne GL, Kirabo A, Shibao CA. Enhanced parasympathetic cholinergic activity with galantamine inhibited lipid-induced oxidative stress in obese African Americans. Mol Med 2022; 28:60. [PMID: 35659521 PMCID: PMC9164360 DOI: 10.1186/s10020-022-00486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND African Americans (AAs) are disproportionately affected by cardiovascular disease (CVD), they are 20% more likely to die from CVD than whites, chronic exposure to inflammation and oxidative stress contributes to CVD. In previous studies, enhancing parasympathetic cholinergic activity has been shown to decrease inflammation. Considering that AAs have decreased parasympathetic activity compared to whites, we hypothesize that stimulating it with a central acetylcholinesterase (AChE) inhibitor, galantamine, would prevent lipid-induced oxidative stress. OBJECTIVE To test the hypothesis that acute dose of galantamine, an AChE inhibitor, decreases lipid-induced oxidative stress in obese AAs. METHODS Proof-of-concept, double-blind, randomized, placebo-controlled, crossover study that tested the effect of a single dose of 16 mg of galantamine versus placebo on lipid-induced oxidative stress in obese AAs. Subjects were studied on two separate days, one week apart. In each study day, 16 mg or matching placebo was administered before 20% intralipids infusion at doses of 0.8 mL/m2/min with heparin at doses of 200 U/h for 4 h. Outcomes were assessed at baseline, 2 and 4 h during the infusion. MAIN OUTCOME MEASURES Changes in F2-isoprostane (F2-IsoPs), marker of oxidative stress, measured in peripheral blood mononuclear cells (PBMC) and in plasma at baseline, 2, and 4-h post-lipid infusion. Secondary outcomes include changes in inflammatory cytokines (IL-6, TNF alpha). RESULTS A total of 32 obese AA women were screened and fourteen completed the study (age 37.8 ± 10.70 years old, BMI 38.7 ± 3.40 kg/m2). Compared to placebo, 16 mg of galantamine significantly inhibited the increase in F2-IsoPs in PBMC (0.007 ± 0.008 vs. - 0.002 ± 0.006 ng/sample, P = 0.016), and plasma (0.01 ± 0.02 vs. - 0.003 ± 0.01 ng/mL, P = 0.023). Galantamine also decreased IL-6 (11.4 ± 18.45 vs. 7.7 ± 15.10 pg/mL, P = 0.021) and TNFα levels (18.6 ± 16.33 vs. 12.9 ± 6.16 pg/mL, P = 0.021, 4-h post lipid infusion) compared with placebo. These changes were associated with an increased plasma acetylcholine levels induced by galantamine (50.5 ± 10.49 vs. 43.6 ± 13.38 during placebo pg/uL, P = 0.025). CONCLUSIONS In this pilot, proof-of-concept study, enhancing parasympathetic nervous system (PNS) cholinergic activity with galantamine inhibited lipid-induced oxidative stress and inflammation induced by lipid infusion in obese AAs. TRIAL REGISTRATION ClinicalTrials.gov identifiers NCT02365285.
Collapse
Affiliation(s)
- Dena Parsa
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 506 Robinson Research Building, Nashville, TN, 37232, USA
| | - Luul A Aden
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 506 Robinson Research Building, Nashville, TN, 37232, USA
| | - Ashley Pitzer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 506 Robinson Research Building, Nashville, TN, 37232, USA
| | - Tan Ding
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chang Yu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andre Diedrich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 506 Robinson Research Building, Nashville, TN, 37232, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ginger L Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 506 Robinson Research Building, Nashville, TN, 37232, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 506 Robinson Research Building, Nashville, TN, 37232, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Cyndya A Shibao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 506 Robinson Research Building, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Galantamine beyond Alzheimer's disease-a fact or artefact? CNS Spectr 2022; 27:268-271. [PMID: 33308343 DOI: 10.1017/s1092852920002229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Galantamine is US-Food and Drug Administration FDA-approved for mild-to-moderate Alzheimer's disease. However, its unique pharmacological portfolio speaks to the idea of a pluripotent agent with a broad therapeutic potential. Here, authors briefly discuss these off-label clinical indications synthesizing the extant evidence.
Collapse
|
4
|
Goncalves DF, Guzman MS, Gros R, Massensini AR, Bartha R, Prado VF, Prado MAM. Striatal Acetylcholine Helps to Preserve Functional Outcomes in a Mouse Model of Stroke. ASN Neuro 2020; 12:1759091420961612. [PMID: 32967452 PMCID: PMC7521057 DOI: 10.1177/1759091420961612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Acetylcholine (ACh) has been suggested to facilitate plasticity and
improve functional recovery after different types of brain lesions.
Interestingly, numerous studies have shown that striatal cholinergic
interneurons are relatively resistant to acute ischemic insults, but
whether ACh released by these neurons enhances functional recovery
after stroke is unknown. We investigated the role of endogenous
striatal ACh in stroke lesion volume and functional outcomes following
middle cerebral artery occlusion to induce focal ischemia in
striatum-selective vesicular acetylcholine transporter-deficient mice
(stVAChT-KO). As transporter expression is almost completely
eliminated in the striatum of stVAChT-KO mice, ACh release is nearly
abolished in this area. Conversely, in other brain areas, VAChT
expression and ACh release are preserved. Our results demonstrate a
larger infarct size after ischemic insult in stVAChT-KO mice, with
more pronounced functional impairments and increased mortality than in
littermate controls. These changes are associated with increased
activation of GSK-3, decreased levels of β-catenin, and a higher
permeability of the blood–brain barrier in mice with loss of VAChT in
striatum neurons. These results support a framework in which
endogenous ACh secretion originating from cholinergic interneurons in
the striatum helps to protect brain tissue against ischemia-induced
damage and facilitates brain recovery by supporting blood–brain
barrier function.
Collapse
Affiliation(s)
- Daniela F Goncalves
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Neuroscience Centre, Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Monica S Guzman
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada
| | - Robert Gros
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada
| | - André R Massensini
- Neuroscience Centre, Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert Bartha
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Canada
| | - Vania F Prado
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| |
Collapse
|
5
|
Nourbakhsh F, Read MI, Barreto GE, Sahebkar A. Boosting the autophagy-lysosomal pathway by phytochemicals: A potential therapeutic strategy against Alzheimer's disease. IUBMB Life 2020; 72:2360-2281. [PMID: 32894821 DOI: 10.1002/iub.2369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 01/14/2023]
Abstract
The lysosome is a membrane-enclosed organelle in eukaryotic cells, which has basic pattern recognition for nutrient-dependent signal transduction. In Alzheimer's disease, the already declining autophagy-lysosomal function is exacerbated by an increased need for clearance of damaged proteins and organelles in aged cells. Recent evidence suggests that numerous diseases are linked to impaired autophagy upstream of lysosomes. In this way, a comprehensive survey on the pathophysiology of the disease seems necessary. Hence, in the first section of this review, we will discuss the ultimate findings in lysosomal signaling functions and how they affect cellular metabolism and trafficking under neurodegenerative conditions, specifically Alzheimer's disease. In the second section, we focus on how natural products and their derivatives are involved in the regulation of inflammation and lysosomal dysfunction pathways, including how these should be considered a crucial target for Alzheimer's disease therapeutics.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morgayn I Read
- Department of Pharmacology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
6
|
Sperling LE, Pires Reis K, Nicola F, Euzebio Teixeira C, Gulielmin Didó G, Garrido dos Santos M, Konrath E, Netto CA, Pranke P. Galantamine improves functional recovery and reduces lesion size in a rat model of spinal cord injury. Brain Res 2019; 1724:146424. [DOI: 10.1016/j.brainres.2019.146424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
|
7
|
Lee JC, Shin BN, Cho JH, Lee TK, Kim IH, Noh Y, Kim SS, Lee HA, Kim YM, Kim H, Cho JH, Park JH, Ahn JH, Kang IJ, Hwang IK, Won MH, Shin MC. Brain ischemic preconditioning protects against moderate, not severe, transient global cerebral ischemic injury. Metab Brain Dis 2018; 33:1193-1201. [PMID: 29644488 DOI: 10.1007/s11011-018-0231-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
Ischemic preconditioning (IPC) in the brain increases ischemic tolerance to subsequent ischemic insults. In this study, we examined whether IPC protects neurons and attenuates microgliosis or not in the hippocampus following severe transient global cerebral ischemia (TCI) in gerbils. Gerbils were assigned to 8 groups; 5- and 15-min sham operated groups, 5-min and 15-min TCI operated groups, IPC plus 5- and 15-min sham operated groups, and IPC plus 5- and 15-min TCI operated groups. IPC was induced by subjecting animals to 2-min transient ischemia 1 day before 5-min TCI for a typical transient ischemia and 15-min TCI for severe transient ischemia. Neuronal damage was examined by cresyl violet staining and Fluoro-Jade B histofluorescence staining. In addition, microglial activation was examined using immunohistochemistry for Iba-1 (a marker for microglia). Delayed neuronal death and microgliosis was found in the CA1 alone in the 5-min TCI operated group at 5 days post-ischemia, and, in the 15-min TCI operated group, neuronal death and microgliosis was shown in all CA areas (CA1-3) and the dentate gyrus. IPC displayed neuroprotection and attenuated microglial activation in the 5-min TCI operated group. However, in the 15-min TCI operated group, IPC did not show neuroprotection and not attenuate microglial activation. Our present findings indicate that IPC hardly protect against severe transient cerebral ischemic injury.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Bich-Na Shin
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - In Hye Kim
- Famenity Company, Gwacheon, 13837, Republic of Korea
| | - YooHun Noh
- Famenity Company, Gwacheon, 13837, Republic of Korea
| | - Sung-Su Kim
- Famenity Company, Gwacheon, 13837, Republic of Korea
| | - Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyeyoung Kim
- Department of Anesthesiology and Pain Medicine, Chungju Hospital, Konkuk University School of Medicine, Chungju, 27376, Republic of Korea
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Myoung Cheol Shin
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
8
|
de la Tremblaye PB, Wellcome JL, de Witt BW, Cheng JP, Skidmore ER, Bondi CO, Kline AE. Rehabilitative Success After Brain Trauma by Augmenting a Subtherapeutic Dose of Environmental Enrichment With Galantamine. Neurorehabil Neural Repair 2017; 31:977-985. [PMID: 29130805 DOI: 10.1177/1545968317739999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Environmental enrichment (EE) confers benefits after traumatic brain injury (TBI) when provided daily for > 6 hours, but not 2 or 4 hours, which more accurately reflects the daily amount of clinical rehabilitation. The lack of benefit with sub-therapeutic EE suggests that augmentation with galantamine (GAL), which enhances cognition after TBI, may be indicated to confer benefits. OBJECTIVE To test the hypothesis that 2 and 4 hours of EE paired with GAL will provide benefits comparable to 24 hours of EE alone. Moreover, all EE groups will perform better than the standard (STD)-housed GAL group. METHODS Anesthetized rats received a TBI or sham injury and then were randomized to receive intraperitoneal injections of GAL (2 mg/kg) or saline vehicle (VEH; 1 mL/kg) beginning 24 hours after surgery and once daily while receiving EE for 2, 4, or 24 hours. Motor and cognitive assessments were conducted on postoperative days 1-5 and 14-19, respectively. RESULTS Motor function was significantly improved in the TBI + 24-hour EE group versus the TBI + STD + VEH and TBI + STD + GAL groups ( P < .05). Cognitive performance was enhanced in all EE groups as well as in the TBI + STD + GAL versus TBI + STD + VEH ( P < .05). Moreover, the 2- and 4-hour EE groups receiving GAL did not differ from the 24-hour EE group ( P > .05) and performed better than GAL alone ( P < .05). CONCLUSIONS The findings support the hypothesis and have clinical relevance because, often, only brief rehabilitation may be available in the clinic and, thus, augmenting with a pharmacotherapy such as GAL may lead to outcomes that are significantly better than either therapy alone.
Collapse
Affiliation(s)
| | | | - Benjamin Wells de Witt
- 1 University of Pittsburgh, Pittsburgh, PA, USA.,2 Allegheny General Hospital, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
9
|
de la Tremblaye PB, Bondi CO, Lajud N, Cheng JP, Radabaugh HL, Kline AE. Galantamine and Environmental Enrichment Enhance Cognitive Recovery after Experimental Traumatic Brain Injury But Do Not Confer Additional Benefits When Combined. J Neurotrauma 2016; 34:1610-1622. [PMID: 27806662 DOI: 10.1089/neu.2016.4790] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Environmental enrichment (EE) enhances cognition after traumatic brain injury (TBI). Galantamine (GAL) is an acetylcholinesterase inhibitor that also may promote benefits. Hence, the aims of this study were to assess the efficacy of GAL alone (standard [STD] housing) and in combination with EE in adult male rats after TBI. The hypothesis was that both therapies would confer motor, cognitive, and histological benefits when provided singly, but that their combination would be more efficacious. Anesthetized rats received a controlled cortical impact or sham injury, then were randomly assigned to receive GAL (1, 2, or 3 mg/kg; intraperitoneally [i.p.]) or saline vehicle (VEH; 1 mL/kg; i.p.) beginning 24 h after surgery and once daily for 21 days (experiment 1). Motor (beam-balance/walk) and cognitive (Morris water maze [MWM]) assessments were conducted on post-operative Days 1-5 and 14-19, respectively. Cortical lesion volumes were quantified on Day 21. Sham controls were better versus all TBI groups. No differences in motor function or lesion volumes were observed among the TBI groups (p > 0.05). In contrast, GAL (2 mg/kg) enhanced MWM performance versus VEH and GAL (1 and 3 mg/kg; p < 0.05). In experiment 2, GAL (2 mg/kg) or VEH was combined with EE and the data were compared with the STD-housed groups from experiment 1. EE alone enhanced motor performance over the VEH-treated and GAL-treated (2 mg/kg) STD-housed groups (p < 0.05). Moreover, both EE groups (VEH or GAL) facilitated spatial learning and reduced lesion size versus STD + VEH controls (p < 0.05). No additional benefits were observed with the combination paradigm, which does not support the hypothesis. Overall, the data demonstrate that EE and once daily GAL (2 mg/kg) promote cognitive recovery after TBI. Importantly, the combined therapies did not negatively affect outcome and thus this therapeutic protocol may have clinical utility.
Collapse
Affiliation(s)
- Patricia B de la Tremblaye
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Corina O Bondi
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Department of Neurobiology, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Center for the Neural Basis of Cognition, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Naima Lajud
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,6 Division of Neuroscience, Biomedical Research Center of Michoacán, Mexican Social Security Institute , Morelia, Mexico
| | - Jeffrey P Cheng
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Hannah L Radabaugh
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Anthony E Kline
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Center for the Neural Basis of Cognition, University of Pittsburgh , Pittsburgh, Pennsylvania.,7 Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,8 Department of Psychology, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Hye Kim I, Lee JC, Ha Park J, Hyeon Ahn J, Cho JH, Hui Chen B, Na Shin B, Chun Yan B, Rueol Ryu D, Hong S, Hwi Cho J, Lyul Lee Y, Kim YM, Cho BR, Won MH. Time interval after ischaemic preconditioning affects neuroprotection and gliosis in the gerbil hippocampal CA1 region induced by transient cerebral ischaemia. Neurol Res 2016; 38:210-9. [DOI: 10.1179/1743132815y.0000000098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Impact of Plant-Derived Flavonoids on Neurodegenerative Diseases. Neurotox Res 2016; 30:41-52. [PMID: 26951456 DOI: 10.1007/s12640-016-9600-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/24/2015] [Accepted: 01/21/2016] [Indexed: 12/27/2022]
Abstract
Neurodegenerative disorders have a common characteristic that is the involvement of different cell types, typically the reactivity of astrocytes and microglia, characterizing gliosis, which in turn contributes to the neuronal dysfunction and or death. Flavonoids are secondary metabolites of plant origin widely investigated at present and represent one of the most important and diversified among natural products phenolic groups. Several biological activities are attributed to this class of polyphenols, such as antitumor activity, antioxidant, antiviral, and anti-inflammatory, among others, which give significant pharmacological importance. Our group have observed that flavonoids derived from Brazilian plants Dimorphandra mollis Bent., Croton betulaster Müll. Arg., e Poincianella pyramidalis Tul., botanical synonymous Caesalpinia pyramidalis Tul. also elicit a broad spectrum of responses in astrocytes and neurons in culture as activation of astrocytes and microglia, astrocyte associated protection of neuronal progenitor cells, neuronal differentiation and neuritogenesis. It was observed the flavonoids also induced neuronal differentiation of mouse embryonic stem cells and human pluripotent stem cells. Moreover, with the objective of seeking preclinical pharmacological evidence of these molecules, in order to assess its future use in the treatment of neurodegenerative disorders, we have evaluated the effects of flavonoids in preclinical in vitro models of neuroinflammation associated with Parkinson's disease and glutamate toxicity associated with ischemia. In particular, our efforts have been directed to identify mechanisms involved in the changes in viability, morphology, and glial cell function induced by flavonoids in cultures of glial cells and neuronal cells alone or in interactions and clarify the relation with their neuroprotective and morphogetic effects.
Collapse
|
12
|
Neuroprotection of Ischemic Preconditioning is Mediated by Anti-inflammatory, Not Pro-inflammatory, Cytokines in the Gerbil Hippocampus Induced by a Subsequent Lethal Transient Cerebral Ischemia. Neurochem Res 2015; 40:1984-95. [PMID: 26290267 DOI: 10.1007/s11064-015-1694-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/04/2015] [Accepted: 08/08/2015] [Indexed: 12/31/2022]
Abstract
Ischemic preconditioning (IPC) induced by sublethal transient cerebral ischemia could reduce neuronal damage/death following a subsequent lethal transient cerebral ischemia. We, in this study, compared expressions of interleukin (IL)-2 and tumor necrosis factor (TNF)-α as pro-inflammatory cytokines, and IL-4 and IL-13 as anti-inflammatory cytokines in the gerbil hippocampal CA1 region between animals with lethal ischemia and ones with IPC followed by lethal ischemia. In the animals with lethal ischemia, pyramidal neurons in the stratum pyramidale (SP) of the hippocampal CA1 region were dead at 5 days post-ischemia; however, IPC protected the CA1 pyramidal neurons from lethal ischemic injury. Expressions of all cytokines were significantly decreased in the SP after lethal ischemia and hardly detected in the SP at 5 days post-ischemia because the CA1 pyramidal neurons were dead. IPC increased expressions of anti-inflammatory cytokines (IL-4 and IL-13) in the stratum pyramidale of the CA1 region following no lethal ischemia (sham-operation), and the increased expressions of IL-4 and IL-13 by IPC were continuously maintained is the SP of the CA1 region after lethal ischemia. However, pro-inflammatory cytokines (IL-2 and TNF-α) in the SP of the CA1 region were similar those in the sham-operated animals with IPC, and the IL-4 and IL-13 expressions in the SP were maintained after lethal ischemia. In conclusion, this study shows that anti-inflammatory cytokines significantly increased and longer maintained by IPC and this might be closely associated with neuroprotection after lethal transient cerebral ischemia.
Collapse
|
13
|
Subthreshold Concentrations of Melatonin and Galantamine Improves Pathological AD-Hallmarks in Hippocampal Organotypic Cultures. Mol Neurobiol 2015; 53:3338-3348. [PMID: 26081146 DOI: 10.1007/s12035-015-9272-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/28/2015] [Indexed: 12/16/2022]
Abstract
Melatonin is a neurohormone whose levels are significantly reduced or absent in Alzheimer's disease (AD) patients. In these patients, acetylcholinesterase inhibitors (AChEI) are the major drug class used for their treatment; however, they present unwanted cholinergic side effects and have provided limited efficacy in clinic. Because combination therapy is being extensively used to treat different pathological diseases such as cancer or acquired immune deficiency syndrome, we posed this study to evaluate if melatonin in combination with an AChEI, galantamine, could provide beneficial properties in a novel in vitro model of AD. Thus, we subjected organotypic hippocampal cultures (OHCs) to subtoxic concentrations of β-amyloid (0.5 μM βA) plus okadaic acid (1 nM OA), for 4 days. This treatment increased by 95 % cell death, which was mainly apoptotic as shown by positive TUNEL staining. In addition, the combination of βA/OA increased Thioflavin S aggregates, hyperphosphorylation of Tau, oxidative stress (increased DCFDA fluorescence), and neuroinflammation (increased IL-1β and TNFα). Under these experimental conditions, melatonin (1-1000 nM) and galantamine (10-1000 nM), co-incubated with the toxic stimuli, caused a concentration-dependent neuroprotection; maximal neuroprotective effect was achieved at 1 μM of melatonin and galantamine. Most effective was the finding that combination of sub-effective concentrations of melatonin (1 nM) and galantamine (10 nM) provided a synergic anti-apoptotic effect and reduction of most of the AD-related pathological hallmarks observed in the βA/OA model. Therefore, we suggest that supplementation of melatonin in combination with lower doses of AChEIs could be an interesting strategy for AD patients.
Collapse
|
14
|
Galantamine prevents long-lasting suppression of excitatory synaptic transmission in CA1 pyramidal neurons of soman-challenged guinea pigs. Neurotoxicology 2014; 44:270-8. [PMID: 25064080 DOI: 10.1016/j.neuro.2014.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 12/27/2022]
Abstract
Galantamine, a drug currently approved for the treatment of Alzheimer's disease, has recently emerged as an effective pretreatment against the acute toxicity and delayed cognitive deficits induced by organophosphorus (OP) nerve agents, including soman. Since cognitive deficits can result from impaired glutamatergic transmission in the hippocampus, the present study was designed to test the hypothesis that hippocampal glutamatergic transmission declines following an acute exposure to soman and that this effect can be prevented by galantamine. To test this hypothesis, spontaneous excitatory postsynaptic currents (EPSCs) were recorded from CA1 pyramidal neurons in hippocampal slices obtained at 1h, 24h, or 6-9 days after guinea pigs were injected with: (i) 1×LD50 soman (26.3μg/kg, s.c.); (ii) galantamine (8mg/kg, i.m.) followed 30min later by 1×LD50 soman, (iii) galantamine (8mg/kg, i.m.), or (iv) saline (0.5ml/kg, i.m.). In soman-injected guinea pigs that were not pretreated with galantamine, the frequency of EPSCs was significantly lower than that recorded from saline-injected animals. There was no correlation between the severity of soman-induced acute toxicity and the magnitude of soman-induced reduction of EPSC frequency. Pretreatment with galantamine prevented the reduction of EPSC frequency observed at 6-9 days after the soman challenge. Prevention of soman-induced long-lasting reduction of hippocampal glutamatergic synaptic transmission may be an important determinant of the ability of galantamine to counter cognitive deficits that develop long after an acute exposure to the nerve agent.
Collapse
|
15
|
Pera M, Camps P, Muñoz-Torrero D, Perez B, Badia A, Clos Guillen MV. Undifferentiated and differentiated PC12 cells protected by huprines against injury induced by hydrogen peroxide. PLoS One 2013; 8:e74344. [PMID: 24086337 PMCID: PMC3781080 DOI: 10.1371/journal.pone.0074344] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/01/2013] [Indexed: 11/18/2022] Open
Abstract
Oxidative stress is implicated in the pathogenesis of neurodegenerative disorders and hydrogen peroxide (H2O2) plays a central role in the stress. Huprines, a group of potent acetylcholinesterase inhibitors (AChEIs), have shown a broad cholinergic pharmacological profile. Recently, it has been observed that huprine X (HX) improves cognition in non transgenic middle aged mice and shows a neuroprotective activity (increased synaptophysin expression) in 3xTg-AD mice. Consequently, in the present experiments the potential neuroprotective effect of huprines (HX, HY, HZ) has been analyzed in two different in vitro conditions: undifferentiated and NGF-differentiated PC12 cells. Cells were subjected to oxidative insult (H2O2, 200 µM) and the protective effects of HX, HY and HZ (0.01 µM–1 µM) were analyzed after a pre-incubation period of 24 and 48 hours. All huprines showed protective effects in both undifferentiated and NGF-differentiated cells, however only in differentiated cells the effect was dependent on cholinergic receptors as atropine (muscarinic antagonist, 0.1 µM) and mecamylamine (nicotinic antagonist, 100 µM) reverted the neuroprotection action of huprines. The decrease in SOD activity observed after oxidative insult was overcome in the presence of huprines and this effect was not mediated by muscarinic or nicotinic receptors. In conclusion, huprines displayed neuroprotective properties as previously observed in in vivo studies. In addition, these effects were mediated by cholinergic receptors only in differentiated cells. However, a non-cholinergic mechanism, probably through an increase in SOD activity, seems to be also involved in the neuroprotective effects of huprines.
Collapse
Affiliation(s)
- Marta Pera
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Lorrio S, Romero A, González-Lafuente L, Lajarín-Cuesta R, Martínez-Sanz FJ, Estrada M, Samadi A, Marco-Contelles J, Rodríguez-Franco MI, Villarroya M, López MG, de los Ríos C. PP2A ligand ITH12246 protects against memory impairment and focal cerebral ischemia in mice. ACS Chem Neurosci 2013; 4:1267-77. [PMID: 23763493 DOI: 10.1021/cn400050p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ITH12246 (ethyl 5-amino-2-methyl-6,7,8,9-tetrahydrobenzo[b][1,8]naphthyridine-3-carboxylate) is a 1,8-naphthyridine described to feature an interesting neuroprotective profile in in vitro models of Alzheimer's disease. These effects were proposed to be due in part to a regulatory action on protein phosphatase 2A inhibition, as it prevented binding of its inhibitor okadaic acid. We decided to investigate the pharmacological properties of ITH12246, evaluating its ability to counteract the memory impairment evoked by scopolamine, a muscarinic antagonist described to promote memory loss, as well as to reduce the infarct volume in mice suffering phototrombosis. Prior to conducting these experiments, we confirmed its in vitro neuroprotective activity against both oxidative stress and Ca(2+) overload-derived excitotoxicity, using SH-SY5Y neuroblastoma cells and rat hippocampal slices. Using a predictive model of blood-brain barrier crossing, it seems that the passage of ITH12246 is not hindered. Its potential hepatotoxicity was observed only at very high concentrations, from 0.1 mM. ITH12246, at the concentration of 10 mg/kg i.p., was able to improve the memory index of mice treated with scopolamine, from 0.22 to 0.35, in a similar fashion to the well-known Alzheimer's disease drug galantamine 2.5 mg/kg. On the other hand, ITH12246, at the concentration of 2.5 mg/kg, reduced the phototrombosis-triggered infarct volume by 67%. In the same experimental conditions, 15 mg/kg melatonin, used as control standard, reduced the infarct volume by 30%. All of these findings allow us to consider ITH12246 as a new potential drug for the treatment of neurodegenerative diseases, which would act as a multifactorial neuroprotectant.
Collapse
Affiliation(s)
- Silvia Lorrio
- Instituto Teófilo Hernando and Departamento de Farmacología
y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4,
28029 Madrid, Spain
| | - Alejandro Romero
- Departamento de Toxicología y Farmacología,
Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta del Hierro, s/n, 28040 Madrid, Spain
| | - Laura González-Lafuente
- Instituto de Investigación Sanitaria,
Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, C/Diego de León,
62, 28006 Madrid, Spain
- Instituto Teófilo Hernando and Departamento de Farmacología
y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4,
28029 Madrid, Spain
| | - Rocío Lajarín-Cuesta
- Instituto Teófilo Hernando and Departamento de Farmacología
y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4,
28029 Madrid, Spain
| | - Francisco J. Martínez-Sanz
- Instituto Teófilo Hernando and Departamento de Farmacología
y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4,
28029 Madrid, Spain
| | - Martín Estrada
- Instituto de Química Médica (IQM, CSIC),
C/Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Abdelouahid Samadi
- Laboratorio de Química Médica (IQOG, CSIC), C/Juan de la Cierva, 3,
28006 Madrid, Spain
| | - Jose Marco-Contelles
- Laboratorio de Química Médica (IQOG, CSIC), C/Juan de la Cierva, 3,
28006 Madrid, Spain
| | | | - Mercedes Villarroya
- Instituto de Investigación Sanitaria,
Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, C/Diego de León,
62, 28006 Madrid, Spain
- Instituto Teófilo Hernando and Departamento de Farmacología
y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4,
28029 Madrid, Spain
| | - Manuela G. López
- Instituto de Investigación Sanitaria,
Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, C/Diego de León,
62, 28006 Madrid, Spain
- Instituto Teófilo Hernando and Departamento de Farmacología
y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4,
28029 Madrid, Spain
| | - Cristóbal de los Ríos
- Instituto de Investigación Sanitaria,
Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, C/Diego de León,
62, 28006 Madrid, Spain
- Instituto Teófilo Hernando and Departamento de Farmacología
y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4,
28029 Madrid, Spain
| |
Collapse
|
17
|
Towards a molecular understanding of the biosynthesis of amaryllidaceae alkaloids in support of their expanding medical use. Int J Mol Sci 2013; 14:11713-41. [PMID: 23727937 PMCID: PMC3709753 DOI: 10.3390/ijms140611713] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 05/26/2013] [Accepted: 05/27/2013] [Indexed: 12/28/2022] Open
Abstract
The alkaloids characteristically produced by the subfamily Amaryllidoideae of the Amaryllidaceae, bulbous plant species that include well know genera such as Narcissus (daffodils) and Galanthus (snowdrops), are a source of new pharmaceutical compounds. Presently, only the Amaryllidaceae alkaloid galanthamine, an acetylcholinesterase inhibitor used to treat symptoms of Alzheimer's disease, is produced commercially as a drug from cultivated plants. However, several Amaryllidaceae alkaloids have shown great promise as anti-cancer drugs, but their further clinical development is restricted by their limited commercial availability. Amaryllidaceae species have a long history of cultivation and breeding as ornamental bulbs, and phytochemical research has focussed on the diversity in alkaloid content and composition. In contrast to the available pharmacological and phytochemical data, ecological, physiological and molecular aspects of the Amaryllidaceae and their alkaloids are much less explored and the identity of the alkaloid biosynthetic genes is presently unknown. An improved molecular understanding of Amaryllidaceae alkaloid biosynthesis would greatly benefit the rational design of breeding programs to produce cultivars optimised for the production of pharmaceutical compounds and enable biotechnology based approaches.
Collapse
|
18
|
Novel multitarget ligand ITH33/IQM9.21 provides neuroprotection in in vitro and in vivo models related to brain ischemia. Neuropharmacology 2013; 67:403-11. [DOI: 10.1016/j.neuropharm.2012.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/27/2012] [Accepted: 12/03/2012] [Indexed: 01/05/2023]
|
19
|
Lopes JP, Tarozzo G, Reggiani A, Piomelli D, Cavalli A. Galantamine potentiates the neuroprotective effect of memantine against NMDA-induced excitotoxicity. Brain Behav 2013; 3:67-74. [PMID: 23532860 PMCID: PMC3607148 DOI: 10.1002/brb3.118] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/10/2012] [Accepted: 12/16/2012] [Indexed: 11/15/2022] Open
Abstract
The combination of memantine, an N-methyl-d-aspartate (NMDA) receptor antagonist, with an acetylcholinesterase inhibitor (AChEI) is the current standard of care in Alzheimer's disease (AD). Galantamine, an AChEI currently marketed for the treatment of AD, exerts memory-enhancing and neuroprotective effects via activation of nicotinic acetylcholine receptors (nAChRs). Here, we investigated the neuroprotective properties of galantamine in primary cultures of rat cortical neurons when given alone or in combination with memantine. In agreement with previous findings, we found that memantine was fully effective in reversing NMDA toxicity at concentrations of 2.5 and 5 μmol/L. Galantamine also completely reversed NMDA toxicity at a concentration of 5 μmol/L. The α7 and α4β2 nAChR antagonists, methyllycaconitine, and dihydro-β-erythroidine blocked the neuroprotective effect of galantamine, demonstrating the involvement of nAChRs. The combination of memantine with galantamine produced synergistic actions, such that full neuroprotective efficacy, was obtained at inactive concentrations of memantine (0.1 μmol/L) and galantamine (1 μmol/L). A similar potentiation was also observed when memantine was replaced with ifenprodil, suggesting a possible involvement of the NR2B subunit of the NMDA receptor. In summary, our study reports for the first time at a cellular level that memantine and galantamine interact on the same excitotoxic cascade and that the combination of these two drugs can result in a remarkable neuroprotective effect.
Collapse
Affiliation(s)
- João P Lopes
- D3 – Drug Discovery and Development Department, Istituto Italiano di TecnologiaVia Morego, 16163, Genova, Italy
| | - Glauco Tarozzo
- D3 – Drug Discovery and Development Department, Istituto Italiano di TecnologiaVia Morego, 16163, Genova, Italy
| | - Angelo Reggiani
- D3 – Drug Discovery and Development Department, Istituto Italiano di TecnologiaVia Morego, 16163, Genova, Italy
| | - Daniele Piomelli
- D3 – Drug Discovery and Development Department, Istituto Italiano di TecnologiaVia Morego, 16163, Genova, Italy
- Departments of Anatomy and Neurobiology and Biological Chemistry, University of CaliforniaIrvine, CA, 92697-4621
| | - Andrea Cavalli
- D3 – Drug Discovery and Development Department, Istituto Italiano di TecnologiaVia Morego, 16163, Genova, Italy
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum, Bologna UniversityVia Belmeloro, 40126, Bologna, Italy
| |
Collapse
|
20
|
Egea J, Martín-de-Saavedra MD, Parada E, Romero A, Del Barrio L, Rosa AO, García AG, López MG. Galantamine elicits neuroprotection by inhibiting iNOS, NADPH oxidase and ROS in hippocampal slices stressed with anoxia/reoxygenation. Neuropharmacology 2011; 62:1082-90. [PMID: 22085833 DOI: 10.1016/j.neuropharm.2011.10.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 10/25/2011] [Accepted: 10/31/2011] [Indexed: 01/24/2023]
Abstract
Galantamine is a drug currently used to treat Alzheimer's disease (AD); in this group of patients it has been observed that concomitant ischemic brain injury can accelerate their cognitive deficit. We have previously shown that galantamine can afford neuroprotection on in vitro and in vivo models related to brain ischemia. In this context, this study was planned to investigate the intracellular signaling pathways implicated in the protective effect of galantamine on an in vitro brain ischemia-reperfusion model, namely rat hippocampal slices subjected to oxygen and glucose deprivation (OGD) followed by reoxygenation. Galantamine protected hippocampal slices subjected to OGD in a concentration-dependent manner; at 15 μM, cell death was reduced to almost control levels. The neuroprotective effects of galantamine were reverted by mecamylamine and AG490, but not by atropine, indicating that nicotinic receptors and Jak2 participated in this action. Galantamine also prevented p65 translocation into the nucleus induced by OGD; this effect was also linked to nicotinic receptors and Jak2. Furthermore, galantamine reduced iNOS induction and production of NO caused by OGD via Jak2. ROS production by NADPH oxidase (NOX) activation was also inhibited by galantamine. In conclusion, galantamine afforded neuroprotection under OGD-reoxygenation conditions by activating a signaling pathway that involves nicotinic receptors, Jak2 and the consequent inhibition of NOX and NFκB/iNOS. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- J Egea
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rocher MN, Carré D, Spinnewyn B, Schulz J, Delaflotte S, Pignol B, Chabrier PE, Auguet M. Long-term treatment with standardized Ginkgo biloba Extract (EGb 761) attenuates cognitive deficits and hippocampal neuron loss in a gerbil model of vascular dementia. Fitoterapia 2011; 82:1075-80. [DOI: 10.1016/j.fitote.2011.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/30/2011] [Accepted: 06/30/2011] [Indexed: 11/26/2022]
|
22
|
Kumar A, Prakash A, Pahwa D. Galantamine potentiates the protective effect of rofecoxib and caffeic acid against intrahippocampal Kainic acid-induced cognitive dysfunction in rat. Brain Res Bull 2011; 85:158-68. [PMID: 21439356 DOI: 10.1016/j.brainresbull.2011.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 03/12/2011] [Accepted: 03/14/2011] [Indexed: 01/12/2023]
Abstract
Role of neuroinflammatory mediators particularly cyclooxygenase (COX), lipoxygenase (LOX), have been well suggested in the pathophysiology of neurodegenerative disorders. Rofecoxib is a selective cyclooxygenase 2 enzymes belongs to non-steroidal anti-inflammatory drug, commonly called as coxibs. Whereas, caffeic acid (3,4-dihydroxycinnamic acid) is one of the natural phenolic compounds and reported to inhibit 5-lipoxygenase (5-LOX) activity as one of mechanisms. Present study has been designed to investigate the effects of rofecoxib, caffeic acid and its potentiation by galantamine against intrahippocampal kainic acid-induced cognitive impairment, oxidative damage and mitochondrial respiratory enzyme alterations in rats. Kainic acid (KA) was administrated in the hippocampus region of rat brain. Various behavioral (locomotor activity and memory performances were assessed by using actophotometer and Morris water maze respectively) followed by oxidative stress, mitochondrial enzyme complex were assessed. Intrahippocampal administration of KA significantly impaired locomotor activity, memory performance, mitochondrial enzyme complexes and caused oxidative stress as compared to sham treatment. Rofecoxib (5 and 10mg/kg), caffeic acid (5 and 10mg/kg), Gal (2.5 and 5mg/kg) treatment for 14 days significantly improved locomotor activity, memory retention and oxidative defense (as evidenced by decrease lipid peroxidation, nitrite, increased superoxide dismutase activity and redox ratio) in hippocampus. Besides, alterations in the levels of mitochondrial enzymes and acetylcholine esterase enzyme were significantly restored by rofecoxib and caffeic acid as compared to control. Further, combination of rofecoxib (5mg/kg) with caffeic acid (5mg/kg) and lower dose of gal (2.5mg/kg) with rofecoxib (5mg/kg) treatments significantly potentiated their protective effect which was significant as compared to their effect per se. The results of the present study suggest that galantamine potentiates the protective effect of rofecoxib and caffeic acid against kainic acid induced cognitive impairment and associated oxidative damage.
Collapse
Affiliation(s)
- Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study, Panjab University, Chandigarh 160014, India.
| | | | | |
Collapse
|
23
|
Romero A, Egea J, García AG, López MG. Synergistic neuroprotective effect of combined low concentrations of galantamine and melatonin against oxidative stress in SH-SY5Y neuroblastoma cells. J Pineal Res 2010; 49:141-8. [PMID: 20536682 DOI: 10.1111/j.1600-079x.2010.00778.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melatonin is a potent free radical scavenger, antioxidant and neuroprotective drug. On the other hand, galantamine is a cholinergic drug with antioxidant and neuroprotective properties linked to inhibition of acetylcholinesterase and allosteric modulation of nicotinic receptors. This investigation evaluated a possible synergistic neuroprotective effect of subeffective concentrations of combined galantamine and melatonin. Human neuroblastoma SH-SY5Y cells were subjected to a mitochondrial oxidative stress, by blockade of mitochondrial complexes I and V with rotenone and oligomycin-A (R/O); cells were treated for 24 hr with R/O. This caused 40% of the cell to die as measured by lactate dehydrogenase (LDH) release. Cell incubation with increasing concentrations of galantamine (10-300 nm) or melatonin (0.3-10 nm) for 24 hr, followed by a 24-hr period with R/O, caused a concentration-dependent protection; maximum protection was achieved with 300 nm galantamine (56% protection) and 10 nm melatonin (50% protection). Combination of subeffective concentrations of melatonin (0.3 nm) and galantamine (30 nm) caused a synergistic and significant protection that was similar to the maximum protection afforded by effective concentrations of melatonin or galantamine alone. This protective effect was completely reversed when nicotinic and melatonin receptors were blocked respectively by mecamylamine and luzindole. The neuroprotective effect was prevented by chelerythrine, LY294002, and Sn (IV) protoporphyrin IX dichloride (SnPP), indicating the participation of the PKC/PI3K/Akt activation and induction of the antioxidant enzyme heme oxygenase-1. The synthesis of novel multitarget compounds having in a single molecule the combined neuroprotective properties of galantamine and melatonin could be a new strategy for potential therapeutic agents in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alejandro Romero
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | |
Collapse
|
24
|
de Los Ríos C, Egea J, Marco-Contelles J, León R, Samadi A, Iriepa I, Moraleda I, Gálvez E, García AG, López MG, Villarroya M, Romero A. Synthesis, inhibitory activity of cholinesterases, and neuroprotective profile of novel 1,8-naphthyridine derivatives. J Med Chem 2010; 53:5129-43. [PMID: 20575555 DOI: 10.1021/jm901902w] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1,8-Naphthyridine derivatives related to 17 (ITH4012), a neuroprotective compound reported by our research group, have been synthesized. In general, they have shown better inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) than most tacrine derivatives previously synthesized in our laboratory. The compounds presented an interesting neuroprotective profile in SH-SY5Y neuroblastoma cells stressed with rotenone/oligomycin A. Moreover, compound 14 (ethyl 5-amino-2-methyl-6,7,8,9-tetrahydrobenzo[b][1,8]naphthyridine-3-carboxylate) also caused protection in cells stressed with okadaic acid (OA) or amyloid beta 1-42 peptide (Abeta(1-42)). Interestingly, compound 14 prevented the OA-induced PP2A inhibition, one of the enzymes implicated in tau dephosphorylation. This compound also exhibited neuroprotection against neurotoxicity elicited by oxygen and glucose deprivation in hippocampal slices. Because these stressors caused neuronal damage related to physiopathological hallmarks found in the brain of Alzheimer's disease (AD) patients, we conclude that compound 14 deserves further in vivo studies in AD models to test its therapeutic potential in this disease.
Collapse
Affiliation(s)
- Cristóbal de Los Ríos
- Departamento de Farmacologia y Terapeutica, Facultad de Medicina, Instituto Teofilo Hernando, Universidad Autonoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu X, Xu K, Yan M, Wang Y, Zheng X. Protective effects of galantamine against Abeta-induced PC12 cell apoptosis by preventing mitochondrial dysfunction and endoplasmic reticulum stress. Neurochem Int 2010; 57:588-99. [PMID: 20655346 DOI: 10.1016/j.neuint.2010.07.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/08/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
Amyloid beta (Abeta) is considered to be responsible for the pathogenesis of Alzheimer's disease (AD). Mitochondrial and ER apoptotic pathways are considered to be involved in this process. Galantamine is an acetylcholinesterase (AChE) inhibitor widely used for patients with AD. In this study, we investigated the neuroprotective effects of galantamine on Abeta(25-35)-induced apoptosis in PC12 cells and the underlying mechanisms. Exposure of PC12 cells to 20 microM Abeta(25-35) caused significant cell viability loss and apoptosis, Abeta aggregation, mitochondrial and ER morphological changes, as well as mitochondrial membrane potential dissipation, reactive oxygen species (ROS) production, intracellular calcium elevation, and cytochrome c release from mitochondria. Pretreatment with 10 microM galantamine for 24 h prior to Abeta(25-35) exposure significantly reduced Abeta(25-35)-induced apoptosis not only by preventing Abeta aggregation, mitochondrial and ER morphological changes, mitochondrial membrane potential dissipation, ROS production, intracellular calcium elevation, and cytochrome c release, but also via reversing Bcl-2/Bax ratio and suppressing the activity of GADD153, Grp78/94, caspase-9, caspase-12, and caspase-3. All these data indicate that galantamine protects PC12 cells against Abeta(25-35)-induced apoptosis by preventing mitochondrial dysfunction and endoplasmic reticulum (ER) stress.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Biomedical Engineering, Zhejiang University, Key Laboratory of Biomedical Engineering of Ministry of Education, Hangzhou, Zhejiang, China
| | | | | | | | | |
Collapse
|
26
|
Abstract
Stem cells have emerged as a key element of regenerative medicine therapies due to their inherent ability to differentiate into a variety of cell phenotypes, thereby providing numerous potential cell therapies to treat an array of degenerative diseases and traumatic injuries. A recent paradigm shift has emerged suggesting that the beneficial effects of stem cells may not be restricted to cell restoration alone, but also due to their transient paracrine actions. Stem cells can secrete potent combinations of trophic factors that modulate the molecular composition of the environment to evoke responses from resident cells. Based on this new insight, current research directions include efforts to elucidate, augment and harness stem cell paracrine mechanisms for tissue regeneration. This article discusses the existing studies on stem/progenitor cell trophic factor production, implications for tissue regeneration and cancer therapies, and development of novel strategies to use stem cell paracrine delivery for regenerative medicine.
Collapse
Affiliation(s)
- Priya R Baraniak
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | |
Collapse
|
27
|
Almasieh M, Zhou Y, Kelly ME, Casanova C, Di Polo A. Structural and functional neuroprotection in glaucoma: role of galantamine-mediated activation of muscarinic acetylcholine receptors. Cell Death Dis 2010; 1:e27. [PMID: 21364635 PMCID: PMC3032334 DOI: 10.1038/cddis.2009.23] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/07/2009] [Accepted: 12/09/2009] [Indexed: 01/15/2023]
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. Loss of vision due to glaucoma is caused by the selective death of retinal ganglion cells (RGCs). Treatments for glaucoma, limited to drugs or surgery to lower intraocular pressure (IOP), are insufficient. Therefore, a pressing medical need exists for more effective therapies to prevent vision loss in glaucoma patients. In this in vivo study, we demonstrate that systemic administration of galantamine, an acetylcholinesterase inhibitor, promotes protection of RGC soma and axons in a rat glaucoma model. Functional deficits caused by high IOP, assessed by recording visual evoked potentials from the superior colliculus, were improved by galantamine. These effects were not related to a reduction in IOP because galantamine did not change the pressure in glaucomatous eyes and it promoted neuronal survival after optic nerve axotomy, a pressure-independent model of RGC death. Importantly, we demonstrate that galantamine-induced ganglion cell survival occurred by activation of types M1 and M4 muscarinic acetylcholine receptors, while nicotinic receptors were not involved. These data provide the first evidence of the clinical potential of galantamine as neuroprotectant for glaucoma and other optic neuropathies, and identify muscarinic receptors as potential therapeutic targets for preventing vision loss in these blinding diseases.
Collapse
Affiliation(s)
- M Almasieh
- Department of Pathology and Cell Biology and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montreal, Quebec, Canada
| | - Y Zhou
- Department of Pathology and Cell Biology and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montreal, Quebec, Canada
| | - M E Kelly
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - C Casanova
- School of Optometry, Université de Montréal, Montreal, Quebec, Canada
| | - A Di Polo
- Department of Pathology and Cell Biology and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Wang J, Zhang HY, Tang XC. Cholinergic deficiency involved in vascular dementia: possible mechanism and strategy of treatment. Acta Pharmacol Sin 2009; 30:879-88. [PMID: 19574993 PMCID: PMC4006646 DOI: 10.1038/aps.2009.82] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 04/29/2009] [Indexed: 01/08/2023]
Abstract
Vascular dementia (VaD) is a progressive neurodegenerative disease with a high prevalence. Several studies have recently reported that VaD patients present cholinergic deficits in the brain and cerebrospinal fluid (CSF) that may be closely related to the pathophysiology of cognitive impairment. Moreover, cholinergic therapies have shown promising effects on cognitive improvement in VaD patients. The precise mechanisms of these cholinergic agents are currently not fully understood; however, accumulating evidence indicates that these drugs may act through the cholinergic anti-inflammatory pathway, in which the efferent vagus nerve signals suppress pro-inflammatory cytokine release and inhibit inflammation, although regulation of oxidative stress and energy metabolism, alleviation of apoptosis may also be involved. In this paper, we provide a brief overview of the cholinergic treatment strategy for VaD and its relevant mechanisms of anti-inflammation.Acta Pharmacologica Sinica (2009) 30: 879-888; doi: 10.1038/aps.2009.82.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hai-yan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xi-can Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
29
|
Melo JB, Sousa C, Garção P, Oliveira CR, Agostinho P. Galantamine protects against oxidative stress induced by amyloid-beta peptide in cortical neurons. Eur J Neurosci 2009; 29:455-64. [PMID: 19222556 DOI: 10.1111/j.1460-9568.2009.06612.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Galantamine is currently used in the treatment of patients with mild-to-moderate Alzheimer's disease (AD). Although its action is mostly directed at the regulation of cholinergic transmission, galantamine can also afford neuroprotection against amyloid-beta peptide (Abeta), which is involved in AD pathogenesis. In this study, we used cultured rat cortical neurons treated with two forms of Abeta(1-40), fresh and previously aged (enriched in fibrils). First, we confirmed that galantamine prevented neurodegeneration induced by both peptide forms in a concentration-dependent manner. Moreover, we observed that when neurons were co-incubated with fresh Abeta(1-40) plus galantamine, the amount of amyloid aggregates was reduced. As oxidative conditions influence Abeta aggregation, we investigated whether galantamine prevents oxidative stress induced by this peptide. The data show that either fresh or aged Abeta(1-40) significantly increased the amount of reactive oxygen species and lipoperoxidation, these effects being prevented by galantamine. In Abeta(1-40)-treated neurons, the depletion of reduced glutathione (GSH) seems to be related to the decrease in glutathione peroxidase and glutathione reductase activities(.) These alterations in the GSH antioxidant system were prevented by galantamine. Overall, these results constitute the first evidence that galantamine can prevent the neuronal oxidative damage induced by Abeta, providing an in vitro basis for the beneficial actions of galantamine in the AD neurodegenerative process.
Collapse
Affiliation(s)
- Joana B Melo
- Center for Neurosciences and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
30
|
Bencherif M. Neuronal nicotinic receptors as novel targets for inflammation and neuroprotection: mechanistic considerations and clinical relevance. Acta Pharmacol Sin 2009; 30:702-14. [PMID: 19498416 PMCID: PMC4002381 DOI: 10.1038/aps.2009.37] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 03/09/2009] [Indexed: 01/18/2023]
Abstract
A number of studies have confirmed the potential for neuronal nicotinic acetylcholine receptor (NNR)-mediated neuroprotection and, more recently, its anti-inflammatory effects. The mechanistic overlap between these pathways and the ubiquitous effects observed following diverse insults suggest that NNRs modulate fundamental pathways involved in cell survival. These results have wide-reaching implications for the design of experimental therapeutics that regulate inflammatory and anti-apoptotic responses through NNRs and represent an initial step toward understanding the benefits of novel therapeutic strategies for the management of central nervous system disorders that target neuronal survival and associated inflammatory processes.
Collapse
|
31
|
Wappler EA, Szilágyi G, Gál A, Skopál J, Nyakas C, Nagy Z, Felszeghy K. Adopted cognitive tests for gerbils: validation by studying ageing and ischemia. Physiol Behav 2009; 97:107-14. [PMID: 19223005 DOI: 10.1016/j.physbeh.2009.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 02/04/2009] [Accepted: 02/10/2009] [Indexed: 01/20/2023]
Abstract
Transient occlusion of common carotid arteries in gerbils is a simple and widely used model for assessing histological and functional consequences of transient forebrain ischemia and neuroprotective action of pharmaceuticals. In the present study we aimed to introduce additional behavioural tests as novel object recognition and food-motivated hole-board learning in order to measure attention and learning capacity in gerbils. For validating these cognitive tests the effects of ageing (4, 9 and 18 months) and those of transient forebrain ischemia induced by bilateral carotid occlusion at 9 months of age were investigated. Neuronal cell death was estimated in the hippocampus using TUNEL and caspase-3 double fluorescence labelling and confocal microscopy. Ageing within the selected range although influenced ambulatory activity, did not considerably change attention and memory functions of gerbils. As a result of transient ischemia a selective neuronal damage in CA1 and CA2 regions of the hippocampus has been observed and tested 4 days after the insult. Ischemic gerbils became hyperactive, but showed decreased attention and impaired spatial memory functions as compared to sham-operated controls. According to our results the novel object recognition paradigm and the hole-board spatial learning test could reliably be added to the battery of conventional behavioural tests applied previously in this species. The novel tests can be performed within a wide interval of adult age and provide useful additional methods for assessing ischemia-induced cognitive impairment in gerbils.
Collapse
Affiliation(s)
- Edina A Wappler
- Department Section of Vascular Neurology, Semmelweis University, Budapest 1122, Hungary
| | | | | | | | | | | | | |
Collapse
|
32
|
Lorrio S, Negredo P, Roda JM, García AG, López MG. Effects of memantine and galantamine given separately or in association, on memory and hippocampal neuronal loss after transient global cerebral ischemia in gerbils. Brain Res 2009; 1254:128-37. [DOI: 10.1016/j.brainres.2008.11.095] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/24/2008] [Accepted: 11/26/2008] [Indexed: 11/29/2022]
|
33
|
Bueters TJ, Hoogstraate J, Visser SA. Correct assessment of new compounds using in vivo screening models can reduce false positives. Drug Discov Today 2009; 14:89-94. [DOI: 10.1016/j.drudis.2008.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 09/03/2008] [Accepted: 09/08/2008] [Indexed: 11/17/2022]
|
34
|
Park JE, Lee ST, Im WS, Chu K, Kim M. Galantamine reduces striatal degeneration in 3-nitropropionic acid model of Huntington's disease. Neurosci Lett 2008; 448:143-7. [DOI: 10.1016/j.neulet.2008.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 10/01/2008] [Indexed: 01/17/2023]
|
35
|
Zheng CY, Zhang HY, Tang XC. Huperzine A attenuates mitochondrial dysfunction after middle cerebral artery occlusion in rats. J Neurosci Res 2008; 86:2432-40. [DOI: 10.1002/jnr.21681] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Abstract
Postischemic neurogenesis has been identified as a compensatory mechanism to repair the damaged brain after stroke. Several factors are released by the ischemic tissue that are responsible for proliferation, differentiation, and migration of neural stem cells. An understanding of their roles may allow future therapies based on treatment with such factors. Although damaged cells release a variety of factors, some of them are stimulatory whereas some are inhibitory for neurogenesis. It is interesting to note that factors like insulin-like growth factor-I can induce proliferation in the presence of fibroblast growth factor-2 (FGF-2), and promote differentiation in the absence of FGF-2. Meanwhile, factors like transforming growth factor-beta can induce the differentiation of neurons while inhibiting the proliferation of neural stem cells. Therefore, understanding the role of each factor in the process of neurogenesis will help physicians to enhance the endogenous response and improve the clinical outcome after stroke. In this article the authors discuss the role of growth factors and stem cells following stroke.
Collapse
Affiliation(s)
- Haviryaji S G Kalluri
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | |
Collapse
|
37
|
Villarroya M, García AG, Marco-Contelles J, López MG. An update on the pharmacology of galantamine. Expert Opin Investig Drugs 2007; 16:1987-98. [DOI: 10.1517/13543784.16.12.1987] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|