1
|
Singh R, Adhya P, Sharma SS. Redox-sensitive TRP channels: a promising pharmacological target in chemotherapy-induced peripheral neuropathy. Expert Opin Ther Targets 2021; 25:529-545. [PMID: 34289785 DOI: 10.1080/14728222.2021.1956464] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Chemotherapy-induced peripheral neuropathy (CIPN) and its related pain is a major side effect of certain chemotherapeutic agents used in cancer treatment. Available analgesics are mostly symptomatic, and on prolonged treatment, patients become refractive to them. Hence, the development of improved therapeutics that act on novel therapeutic targets is necessary. Potential targets include the redox-sensitive TRP channels [e.g. TRPA1, TRPC5, TRPC6, TRPM2, TRPM8, TRPV1, TRPV2, and TRPV4] which are activated under oxidative stress associated with CIPN. AREAS COVERED We have examined numerous neuropathy-inducing cancer chemotherapeutics and their pathophysiological mechanisms. Oxidative stress and its downstream targets, the redox-sensitive TRP channels, together with their potential pharmacological modulators, are discussed. Finally, we reflect upon the barriers to getting new therapeutic approaches into the clinic. The literature search was conducted in PubMed upto and including April 2021. EXPERT OPINION Redox-sensitive TRP channels are a promising target in CIPN. Pharmacological modulators of these channels have reduced pain in preclinical models and in clinical studies. Clinical scrutiny suggests that TRPA1, TRPM8, and TRPV1 are the most promising targets because of their pain-relieving potential. In addition to the analgesic effect, TRPV1 agonist-Capsaicin possesses a disease-modifying effect in CIPN through its restorative property in damaged sensory nerves.
Collapse
Affiliation(s)
- Ramandeep Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Pratik Adhya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| |
Collapse
|
2
|
Ottolini M, Hong K, Sonkusare SK. Calcium signals that determine vascular resistance. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1448. [PMID: 30884210 PMCID: PMC6688910 DOI: 10.1002/wsbm.1448] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Small arteries in the body control vascular resistance, and therefore, blood pressure and blood flow. Endothelial and smooth muscle cells in the arterial walls respond to various stimuli by altering the vascular resistance on a moment to moment basis. Smooth muscle cells can directly influence arterial diameter by contracting or relaxing, whereas endothelial cells that line the inner walls of the arteries modulate the contractile state of surrounding smooth muscle cells. Cytosolic calcium is a key driver of endothelial and smooth muscle cell functions. Cytosolic calcium can be increased either by calcium release from intracellular stores through IP3 or ryanodine receptors, or the influx of extracellular calcium through ion channels at the cell membrane. Depending on the cell type, spatial localization, source of a calcium signal, and the calcium-sensitive target activated, a particular calcium signal can dilate or constrict the arteries. Calcium signals in the vasculature can be classified into several types based on their source, kinetics, and spatial and temporal properties. The calcium signaling mechanisms in smooth muscle and endothelial cells have been extensively studied in the native or freshly isolated cells, therefore, this review is limited to the discussions of studies in native or freshly isolated cells. This article is categorized under: Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Mechanistic Models.
Collapse
Affiliation(s)
- Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Kwangseok Hong
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Physical Education, Chung-Ang University, Seoul, 06974, South Korea
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
3
|
North KC, Chang J, Bukiya AN, Dopico AM. Extra-endothelial TRPV1 channels participate in alcohol and caffeine actions on cerebral artery diameter. Alcohol 2018; 73:45-55. [PMID: 30268908 DOI: 10.1016/j.alcohol.2018.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022]
Abstract
Alcohol (ethyl alcohol; ethanol) and caffeine are the two most widely used psychoactive substances in the world. Caffeine and ethanol have both been reported to constrict cerebral arteries in several species, including humans. We have recently shown that application of 10-μM caffeine mixed with 50 mM ethanol to in vitro pressurized cerebral arteries of rats reduced ethanol-induced constriction. This effect was dependent on the presence of nitric oxide (NO•) and could be observed in de-endothelialized arteries supplied with the NO donor sodium nitroprusside (SNP). The molecular target(s) of ethanol-caffeine interaction in cerebral arteries has remained unknown. In the present work, we used rat and mouse middle cerebral arteries (MCA) to identify the extra-endothelial effectors of NO-mediated, caffeine-induced protection against ethanol-evoked arterial constriction. Constriction of intact MCA of rat by either 50 mM ethanol or 10 μM caffeine was ablated in the presence of a selective TRPV1 pharmacological blocker. TRPV1 pharmacological block, but not block of TRPA1, PKG, or BK channels, removed caffeine-induced protection against ethanol-evoked rat MCA constriction, whether evaluated in arteries with intact endothelium or in SNP-supplemented, de-endothelialized arteries. In mouse arteries, caffeine-induced protection against ethanol-induced MCA constriction was significantly amplified, resulting in actual vasodilation, upon pharmacological block of TRPV1, and in TRPV1 knock-out arteries. Despite some species-specific differences, our study unequivocally demonstrates the presence of functional, extra-endothelial TRPV1 that participates in both endothelium-independent MCA constriction by separate exposure to ethanol or caffeine and caffeine-induced protection against ethanol-evoked MCA constriction.
Collapse
Affiliation(s)
- Kelsey C North
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Jennifer Chang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Anna N Bukiya
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Alex M Dopico
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38103, United States.
| |
Collapse
|
4
|
Pearce LV, Ann J, Jung A, Thorat SA, Herold BKA, Habtemichael AD, Blumberg PM, Lee J. Novel Radiolabeled Vanilloid with Enhanced Specificity for Human Transient Receptor Potential Vanilloid 1 (TRPV1). J Med Chem 2017; 60:8246-8252. [PMID: 28892388 DOI: 10.1021/acs.jmedchem.7b00859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) has emerged as a promising therapeutic target. While radiolabeled resiniferatoxin (RTX) has provided a powerful tool for characterization of vanilloid binding to TRPV1, TRPV1 shows 20-fold weaker binding to the human TRPV1 than to the rodent TRPV1. We now describe a tritium radiolabeled synthetic vanilloid antagonist, 1-((2-(4-(methyl-[3H])piperidin-1-yl-4-[3H])-6-(trifluoromethyl)pyridin-3-yl)methyl)-3-(3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazin-8-yl)urea ([3H]MPOU), that embodies improved absolute affinity for human TRPV1 and improved synthetic accessibility.
Collapse
Affiliation(s)
- Larry V Pearce
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH , Bethesda, Maryland 20892-4255, United States
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 08826, Republic of Korea
| | - Aeran Jung
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 08826, Republic of Korea
| | - Shivaji A Thorat
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 08826, Republic of Korea
| | - Brienna K A Herold
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH , Bethesda, Maryland 20892-4255, United States
| | - Amelework D Habtemichael
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH , Bethesda, Maryland 20892-4255, United States
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH , Bethesda, Maryland 20892-4255, United States
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Chambard JM, Tagat E, Boudeau P, Partiseti M. Transforming TRP channel drug discovery using medium-throughput electrophysiological assays. ACTA ACUST UNITED AC 2013; 19:468-77. [PMID: 23954932 DOI: 10.1177/1087057113499632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since the cloning of its first member in 1998, transient receptor potential (TRP) cation channels have become one of the most studied ion channel families in drug discovery. These channels, almost all calcium permeant, have been studied in many different (patho)-physiological and therapeutic areas as diverse as pain; neurodegenerative, cardiovascular, and inflammatory diseases; and cancer. At the same time, implementation of automated electrophysiology screening platforms has significantly increased the tractability of ion channels, mainly voltage gated, as drug targets. The work presented in this article shows the design and validation of TRP screening assays using the IonWorks Quattro platform (Molecular Devices, Sunnyvale, CA), allowing a significant increase in throughput to support drug discovery programs. This new player has a direct impact on resources and timelines by prioritizing potential candidates and reducing the number of molecules requiring final testing by manual patch-clamp, which is still today the gold standard technology for this challenging drug target class.
Collapse
Affiliation(s)
- Jean-Marie Chambard
- 1Lead Generation to Candidate Realization Department, Lead Identification Technologies, Sanofi, Vitry Sur Seine, France
| | | | | | | |
Collapse
|
6
|
Vay L, Gu C, McNaughton PA. Current perspectives on the modulation of thermo-TRP channels: new advances and therapeutic implications. Expert Rev Clin Pharmacol 2012; 3:687-704. [PMID: 22111750 DOI: 10.1586/ecp.10.41] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The thermo transient receptor potential (TRP) ion channels, a recently discovered family of ion channels activated by temperature, are expressed in primary sensory nerve terminals, where they provide information regarding thermal changes in the environment. Six thermo-TRPs have been characterized to date: TRPV1-4, which respond to different levels of warmth and heat, and TRPM8 and TRPA1, which respond to cool temperatures. We review the current state of knowledge of thermo-TRPs, and of the modulation of their thermal thresholds by a range of inflammatory mediators. Blockers of these channels are likely to have therapeutic uses as novel analgesics but may also cause unacceptable side effects. Controlling the modulation of thermo-TRPs by inflammatory mediators may be a useful alternative strategy in developing novel analgesics.
Collapse
Affiliation(s)
- Laura Vay
- Deptartment of Pharmacology, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1PD, UK
| | | | | |
Collapse
|
7
|
Han P, Korepanova AV, Vos MH, Pereda-Lopez A, Lake MR, Bianchi BR, Moreland RB, Faltynek CR, Chiu ML. Development of ELISA to measure TRPV1 protein in rat tissues. J Neurosci Methods 2011; 200:144-52. [DOI: 10.1016/j.jneumeth.2011.06.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/23/2011] [Accepted: 06/28/2011] [Indexed: 12/19/2022]
|
8
|
The analgesic effect and mechanism of the combination of sodium ferulate and oxymatrine. Neurochem Res 2010; 35:1368-75. [PMID: 20521101 DOI: 10.1007/s11064-010-0193-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
Abstract
Sodium ferulate (SF) and Oxymatrine (OMT) were compounds extracted from Chinese herbs, and have been used in clinical treatment of heart and hepatic diseases, respectively, in China for many years. The objective of this study was to examine the analgesic effect and the mechanism of the combined treatment of SF and OMT. Using the animal pain models by applying Acetic Acid Writhing Test and Formalin Test, the combination of SF and OMT showed significant analgesic effect in dose-dependent manner. In vitro, the combined treatment inhibited the increase in intracellular calcium concentration evoked by capsaicin in the dorsal root ganglion neurons. Importantly, a synergistic inhibitory effect of SF and OMT on the capsaicin-induced currents was demonstrated by whole-cell patch-clamp. Our results suggest that SF and OMT cause significant analgesic effect which maybe related to the synergistic inhibition of transient receptor potential vanilloid-1.
Collapse
|
9
|
Bianchi BR, El Kouhen R, Chen J, Puttfarcken PS. Binding of [3H]A-778317 to native transient receptor potential vanilloid-1 (TRPV1) channels in rat dorsal root ganglia and spinal cord. Eur J Pharmacol 2010; 633:15-23. [DOI: 10.1016/j.ejphar.2010.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 12/04/2009] [Accepted: 02/02/2010] [Indexed: 01/13/2023]
|
10
|
Abstract
Historically, drug research targeted to pain treatment has focused on trying to prevent the propagation of action potentials in the periphery from reaching the brain rather than pinpointing the molecular basis underlying the initial detection of the nociceptive stimulus: the receptor itself. This has now changed, given that many receptors of nociceptive stimuli have been identified and/or cloned. Transient Receptor Potential (TRP) channels have been implicated in several physiological processes such as mechanical, chemical and thermal stimuli detection. Ten years after the cloning of TRPV1, compelling data has been gathered on the role of this channel in inflammatory and neuropathic states. TRPV1 activation in nociceptive neurons, where it is normally expressed, triggers the release of neuropeptides and transmitters resulting in the generation of action potentials that will be sent to higher CNS areas where they will often be perceived as pain. Its activation also will evoke the peripheral release of pro-inflammatory compounds that may sensitize other neurons to physical, thermal or chemical stimuli. For these reasons as well as because its continuous activation causes analgesia, TRPV1 has become a viable drug target for clinical use in the management of pain. This review will provide a general picture of the physiological and pathophysiological roles of the TRPV1 channel and of its structural, pharmacological and biophysical properties. Finally, it will provide the reader with an overall view of the status of the discovery of potential therapeutic agents for the management of chronic and neuropathic pain.
Collapse
Affiliation(s)
- Andrés Jara-Oseguera
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | | | | |
Collapse
|
11
|
Honore P, Chandran P, Hernandez G, Gauvin DM, Mikusa JP, Zhong C, Joshi SK, Ghilardi JR, Sevcik MA, Fryer RM, Segreti JA, Banfor PN, Marsh K, Neelands T, Bayburt E, Daanen JF, Gomtsyan A, Lee CH, Kort ME, Reilly RM, Surowy CS, Kym PR, Mantyh PW, Sullivan JP, Jarvis MF, Faltynek CR. Repeated dosing of ABT-102, a potent and selective TRPV1 antagonist, enhances TRPV1-mediated analgesic activity in rodents, but attenuates antagonist-induced hyperthermia. Pain 2009; 142:27-35. [PMID: 19135797 DOI: 10.1016/j.pain.2008.11.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 11/04/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) is a ligand-gated ion channel that functions as an integrator of multiple pain stimuli including heat, acid, capsaicin and a variety of putative endogenous lipid ligands. TRPV1 antagonists have been shown to decrease inflammatory pain in animal models and to produce limited hyperthermia at analgesic doses. Here, we report that ABT-102, which is a potent and selective TRPV1 antagonist, is effective in blocking nociception in rodent models of inflammatory, post-operative, osteoarthritic, and bone cancer pain. ABT-102 decreased both spontaneous pain behaviors and those evoked by thermal and mechanical stimuli in these models. Moreover, we have found that repeated administration of ABT-102 for 5-12 days increased its analgesic activity in models of post-operative, osteoarthritic, and bone cancer pain without an associated accumulation of ABT-102 concentration in plasma or brain. Similar effects were also observed with a structurally distinct TRPV1 antagonist, A-993610. Although a single dose of ABT-102 produced a self-limiting increase in core body temperature that remained in the normal range, the hyperthermic effects of ABT-102 effectively tolerated following twice-daily dosing for 2 days. Therefore, the present data demonstrate that, following repeated administration, the analgesic activity of TRPV1 receptor antagonists is enhanced, while the associated hyperthermic effects are attenuated. The analgesic efficacy of ABT-102 supports its advancement into clinical studies.
Collapse
|
12
|
Abstract
The somatosensory effects of natural products such as capsaicin, mustard oil, and menthol have been long recognized. Over the last decade, the identification of transient receptor potential (TRP) channels in primary sensory neurons as the targets for these agents has led to an explosion of research into the roles of "thermoTRPs" TRPV1, TRPV2, TRPV3, TRPV4, TRPA1, and TRPM8 in nociception. In concert, through the efforts of many industrial and academic teams, a number of agonists and antagonists of these channels have been discovered, paving the way for a better understanding of sensory biology and, potentially, for novel treatments for diseases.
Collapse
Affiliation(s)
- S R Eid
- Department of Pain Research, Neuroscience Drug Discovery, Merck Research Laboratories, West Point, Philadelphia, USA.
| | | |
Collapse
|
13
|
Korepanova A, Pereda-Lopez A, Solomon LR, Walter KA, Lake MR, Bianchi BR, McDonald HA, Neelands TR, Shen J, Matayoshi ED, Moreland RB, Chiu ML. Expression and purification of human TRPV1 in baculovirus-infected insect cells for structural studies. Protein Expr Purif 2008; 65:38-50. [PMID: 19121396 DOI: 10.1016/j.pep.2008.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/11/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
Abstract
TRPV1 is a ligand-gated cation channel that is involved in acute thermal nociception and neurogenic inflammation. By using the GP67 signal peptide, high levels of full-length human TRPV1 was expressed in High Five insect cells using the baculovirus expression system. The functional activity of the expressed TRPV1 was confirmed by whole-cell ligand-gated ion flux recordings in the presence of capsaicin and low pH and via specific ligand binding to the isolated cellular membranes. Efficient solubilization and purification protocols have resulted in milligram amounts of detergent-solubilized channel at 80-90% purity after Ni2+ IMAC chromatography and size exclusion chromatography. Western blot analysis of amino and carboxyl terminal domains and MS of tryptic digestions of purified protein confirmed the presence of the full-length human TRPV1. Specific ligand binding experiments confirmed the protein integrity of the purified human TRPV1.
Collapse
Affiliation(s)
- Alla Korepanova
- Department of Structural Biology, R46Y, Abbott Laboratories, Bldg. AP10-LL8, 100 Abbott Park Rd., Abbott Park, IL 60064-6098, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|