1
|
Shen H, Ma Z, Hans E, Duan Y, Bi GH, Chae YC, Bonifazi A, Battiti FO, Newman AH, Xi ZX, Yang Y. Involvement of dopamine D3 receptor in impulsive choice decision-making in male rats. Neuropharmacology 2024; 257:110051. [PMID: 38917939 PMCID: PMC11401648 DOI: 10.1016/j.neuropharm.2024.110051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Impulsive decision-making has been linked to impulse control disorders and substance use disorders. However, the neural mechanisms underlying impulsive choice are not fully understood. While previous PET imaging and autoradiography studies have shown involvement of dopamine and D2/3 receptors in impulsive behavior, the roles of distinct D1, D2, and D3 receptors in impulsive decision-making remain unclear. In this study, we used a food reward delay-discounting task (DDT) to identify low- and high-impulsive rats, in which low-impulsive rats exhibited preference for large delayed reward over small immediate rewards, while high-impulsive rats showed the opposite preference. We then examined D1, D2, and D3 receptor gene expression using RNAscope in situ hybridization assays. We found that high-impulsive male rats exhibited lower levels of D2 and D3, and particularly D3, receptor expression in the nucleus accumbens (NAc), with no significant changes in the insular, prelimbic, and infralimbic cortices. Based on these findings, we further explored the role of the D3 receptor in impulsive decision-making. Systemic administration of a selective D3 receptor agonist (FOB02-04) significantly reduced impulsive choices in high-impulsive rats but had no effects in low-impulsive rats. Conversely, a selective D3 receptor antagonist (VK4-116) produced increased both impulsive and omission choices in both groups of rats. These findings suggest that impulsive decision-making is associated with a reduction in D3 receptor expression in the NAc. Selective D3 receptor agonists, but not antagonists, may hold therapeutic potentials for mitigating impulsivity in high-impulsive subjects.
Collapse
Affiliation(s)
- Hui Shen
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Zilu Ma
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Emma Hans
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Ying Duan
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Guo-Hua Bi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Yurim C Chae
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Alessandro Bonifazi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Francisco O Battiti
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA.
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
2
|
Li Z, Fang F, Li Y, Lv X, Zheng R, Jiao P, Wang Y, Zhu G, Jin Z, Xu X, Qiu Y, Zhang G, Li Z, Liu Z, Zhang L. Carbazole and tetrahydro-carboline derivatives as dopamine D 3 receptor antagonists with the multiple antipsychotic-like properties. Acta Pharm Sin B 2023; 13:4553-4577. [PMID: 37969740 PMCID: PMC10638516 DOI: 10.1016/j.apsb.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 11/17/2023] Open
Abstract
Dopamine D3 receptor (D3R) is implicated in multiple psychotic symptoms. Increasing the D3R selectivity over dopamine D2 receptor (D2R) would facilitate the antipsychotic treatments. Herein, novel carbazole and tetrahydro-carboline derivatives were reported as D3R selective ligands. Through a structure-based virtual screen, ZLG-25 (D3R Ki = 685 nmol/L; D2R Ki > 10,000 nmol/L) was identified as a novel D3R selective bitopic ligand with a carbazole scaffold. Scaffolds hopping led to the discovery of novel D3R-selective analogs with tetrahydro-β-carboline or tetrahydro-γ-carboline core. Further functional studies showed that most derivatives acted as hD3R-selective antagonists. Several lead compounds could dose-dependently inhibit the MK-801-induced hyperactivity. Additional investigation revealed that 23j and 36b could decrease the apomorphine-induced climbing without cataleptic reaction. Furthermore, 36b demonstrated unusual antidepressant-like activity in the forced swimming tests and the tail suspension tests, and alleviated the MK-801-induced disruption of novel object recognition in mice. Additionally, preliminary studies confirmed the favorable PK/PD profiles, no weight gain and limited serum prolactin levels in mice. These results revealed that 36b provided potential opportunities to new antipsychotic drugs with the multiple antipsychotic-like properties.
Collapse
Affiliation(s)
- Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fan Fang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiyan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuehui Lv
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ruqiu Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peili Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuxi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guiwang Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zefang Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangqing Xu
- Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou 221116, China
| | - Yinli Qiu
- Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou 221116, China
| | - Guisen Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Legros C, Rojas A, Dupré C, Brasseur C, Riest‐Fery I, Muller O, Ortuno J, Nosjean O, Guenin S, Ferry G, Boutin JA. Approach to the specificity and selectivity between D2 and D3 receptors by mutagenesis and binding experiments part I: Expression and characterization of D2 and D3 receptor mutants. Protein Sci 2022; 31:e4459. [PMID: 36177735 PMCID: PMC9667827 DOI: 10.1002/pro.4459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/22/2022] [Accepted: 09/25/2022] [Indexed: 12/13/2022]
Abstract
D3/D2 sub-specificity is a complex problem to solve. Indeed, in the absence of easy structural biology of the G-protein coupled receptors, and despite key progresses in this area, the systematic knowledge of the ligand/receptor relationship is difficult to obtain. Due to these structural biology limitations concerning membrane proteins, we favored the use of directed mutagenesis to document a rational towards the discovery of markedly specific D3 ligands over D2 ligands together with basic binding experiments. Using our methodology of stable expression of receptors in HEK cells, we constructed the gene encoding for 24 mutants and 4 chimeras of either D2 or D3 receptors and expressed them stably. Those cell lines, expressing a single copy of one receptor mutant each, were stably constructed, selected, amplified and the membranes from them were prepared. Binding data at those receptors were obtained using standard binding conditions for D2 and D3 dopamine receptors. We generated 26 new molecules derived from D2 or D3 ligands. Using 8 reference compounds and those 26 molecules, we characterized their binding at those mutants and chimeras, exemplifying an approach to better understand the difference at the molecular level of the D2 and D3 receptors. Although all the individual results are presented and could be used for minute analyses, the present report does not discuss the differences between D2 and D3 data. It simply shows the feasibility of the approach and its potential.
Collapse
Affiliation(s)
- Céline Legros
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Anne Rojas
- Chimie MédicinaleInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Clémence Dupré
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Chantal Brasseur
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Isabelle Riest‐Fery
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Olivier Muller
- Chimie MédicinaleInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | | | - Olivier Nosjean
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Sophie‐Pénélope Guenin
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Gilles Ferry
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Jean A. Boutin
- Pôle d'expertise Biotechnologie, Chimie, BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
- Laboratory of Neuronal and Neuroendocrine Differentiation and CommunicationUniversity of NormandyRouenFrance
| |
Collapse
|
4
|
Britto-Júnior J, Campos R, Peixoto M, Lima AT, Jacintho FF, Mónica FZ, Moreno RA, Antunes E, De Nucci G. 6-Nitrodopamine is an endogenous selective dopamine receptor antagonist in Chelonoidis carbonaria aorta. Comp Biochem Physiol C Toxicol Pharmacol 2022; 260:109403. [PMID: 35793735 DOI: 10.1016/j.cbpc.2022.109403] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/17/2022] [Accepted: 06/26/2022] [Indexed: 11/22/2022]
Abstract
Chelonoidis carbonaria aortic rings present endothelium-derived release of dopamine, noradrenaline, adrenaline and 6-nitrodopamine (6-ND). Here it was investigated whether 6-ND release is coupled to nitric oxide (NO) synthesis and its action on the vascular smooth muscle reactivity. Basal release of 6-ND from aortic rings in the absence and presence of the NO synthesis inhibitor L-NAME was quantified by LC-MS-MS. Aortic rings were suspended vertically between two metal hooks in 10-mL organ baths containing Krebs-Henseleit's solution and attached to isometric transducers. The tissues were allowed to equilibrate for 1 h before starting the experiments. The release of 6-ND was significantly reduced by previous incubation with L-NAME. 6-ND (up to 300 μM) had no contractile activity in the aortic rings. 6-ND (1, 3 and 10 μM) produced significant rightward shifts of the concentration-response curves to dopamine in endothelium-intact (pA2 6.09) and L-NAME pre-treated endothelium-intact (pA2 7.06) aortic rings. Contractions induced by noradrenaline and adrenaline were not affected by pre-incubation with 6-ND. The EFS (16 Hz)-induced aortic contractions were significantly inhibited by incubation with 6-ND (10 μM). In the thromboxane A2 mimetic U-46619 (30 nM) pre-contracted endothelium intact aortic rings, 6-ND (1 nM-1 μM) and the dopamine D2-receptor antagonist haloperidol (1 nM-1 μM) induced concentration-dependent relaxations. The relaxations were not present in endothelium-removed aortic rings but they were not affected by incubation with L-NAME in endothelium-intact aortic rings. The results indicate that the synthesis of this novel catecholamine in Chelonoidis carbonaria aortic rings is coupled to NO release and that 6-ND acts as a highly selective dopamine D2-like receptor antagonist.
Collapse
Affiliation(s)
- José Britto-Júnior
- Faculty of Medical Sciences, Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil.
| | - Rafael Campos
- Superior Institute of Biomedical Sciences, Ceará State University (UECE), Fortaleza, Brazil; Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Matheus Peixoto
- Superior Institute of Biomedical Sciences, Ceará State University (UECE), Fortaleza, Brazil
| | - Antonio Tiago Lima
- Faculty of Medical Sciences, Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Felipe Fernandes Jacintho
- Faculty of Medical Sciences, Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabíola Z Mónica
- Faculty of Medical Sciences, Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Ronilson Agnaldo Moreno
- Faculty of Medical Sciences, Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Edson Antunes
- Faculty of Medical Sciences, Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gilberto De Nucci
- Faculty of Medical Sciences, Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil; Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, CE, Brazil; Department of Pharmacology, Institute of Biomedical Sciences, USP - University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Interaction of the preferential D3 agonist (+)PHNO with dopamine D3-D2 receptor heterodimers and diverse classes of monoamine receptors: Relevance for PET imaging. Eur J Pharmacol 2022; 925:175016. [DOI: 10.1016/j.ejphar.2022.175016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022]
|
6
|
Wang L, Zhang Y, Miao AQ, Zhang TS, Wang X, Hao WJ, Tu SJ, Jiang B. Nitrative bicyclization of 1,7-diynes for accessing skeletally diverse tricyclic pyrroles. Chem Commun (Camb) 2022; 58:4376-4379. [PMID: 35297437 DOI: 10.1039/d2cc00206j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel metal-free nitrative bicyclization of 1,7-diynes with tBuONO in the presence of H2O is reported, producing three types of skeletally diverse tricyclic pyrroles, namely pyrrolo[3,4-c]quinolines, chromeno[3,4-c]pyrroles and benzo[e]isoindoles, with moderate to good yields by simply tuning the linkers of the 1,7-diynes. This domino protocol demonstrates remarkable compatibility regarding 1,7-diynes with different linkers, such as nitrogen and oxygen atoms and a hydroxymethyl group, and tBuONO plays dual roles as a nitro precursor as well as a nitrogen atom source.
Collapse
Affiliation(s)
- Lu Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Yin Zhang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - An-Qi Miao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Tian-Shu Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China.
| | - Xiang Wang
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, People's Republic of China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| |
Collapse
|
7
|
A novel multi-target strategy to attenuate the progression of Parkinson's disease by diamine hybrid AGE/ALE inhibitor. Future Med Chem 2021; 13:2185-2200. [PMID: 34634921 DOI: 10.4155/fmc-2021-0217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Instead of a conventional 'one-drug-one-target approach', this article presents a novel multi-target approach with a concept of trapping simultaneously as many detrimental factors as possible involved in the progression of Parkinson's disease. These factors include reactive carbonyl species, reactive oxygen species, Fe3+/Cu2+ and ortho-quinones (o-quinone), in particular. Different from the known multi-target strategies for Parkinson's disease, it is a sort of 'vacuum cleaning' strategy. The new agent consists of reactive carbonyl species scavenging moiety and reactive oxygen species scavenging and metal chelating moiety linked by a spacer. Provided that the capacity of scavenging o-quinones is demonstrated, this type of agent can further broaden its potential therapeutic profile. In order to support this new hypothetical approach, a number of simple in vitro experiments are proposed.
Collapse
|
8
|
Neuronal Dopamine D3 Receptors: Translational Implications for Preclinical Research and CNS Disorders. Biomolecules 2021; 11:biom11010104. [PMID: 33466844 PMCID: PMC7830622 DOI: 10.3390/biom11010104] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Dopamine (DA), as one of the major neurotransmitters in the central nervous system (CNS) and periphery, exerts its actions through five types of receptors which belong to two major subfamilies such as D1-like (i.e., D1 and D5 receptors) and D2-like (i.e., D2, D3 and D4) receptors. Dopamine D3 receptor (D3R) was cloned 30 years ago, and its distribution in the CNS and in the periphery, molecular structure, cellular signaling mechanisms have been largely explored. Involvement of D3Rs has been recognized in several CNS functions such as movement control, cognition, learning, reward, emotional regulation and social behavior. D3Rs have become a promising target of drug research and great efforts have been made to obtain high affinity ligands (selective agonists, partial agonists and antagonists) in order to elucidate D3R functions. There has been a strong drive behind the efforts to find drug-like compounds with high affinity and selectivity and various functionality for D3Rs in the hope that they would have potential treatment options in CNS diseases such as schizophrenia, drug abuse, Parkinson’s disease, depression, and restless leg syndrome. In this review, we provide an overview and update of the major aspects of research related to D3Rs: distribution in the CNS and periphery, signaling and molecular properties, the status of ligands available for D3R research (agonists, antagonists and partial agonists), behavioral functions of D3Rs, the role in neural networks, and we provide a summary on how the D3R-related drug research has been translated to human therapy.
Collapse
|
9
|
Azmanova M, Pitto-Barry A, Barry NPE. Schizophrenia: synthetic strategies and recent advances in drug design. MEDCHEMCOMM 2018; 9:759-782. [PMID: 30108966 PMCID: PMC6072500 DOI: 10.1039/c7md00448f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/09/2018] [Indexed: 12/19/2022]
Abstract
Schizophrenia is a complex and unpredictable mental disorder which affects several domains of cognition and behaviour. It is a heterogeneous illness characterised by positive, negative, and cognitive symptoms, often accompanied by signs of depression. In this tutorial review, we discuss recent progress in understanding the target sites and mechanisms of action of second-generation antipsychotic drugs. Progress in identifying and defining target sites has been accelerated recently by advances in neuroscience, and newly developed agents that regulate signalling by the main excitatory neurotransmitters in the brain are surveyed. Examples of novel molecules for the treatment of schizophrenia in preclinical and clinical development and their industrial sponsors are highlighted.
Collapse
Affiliation(s)
- Maria Azmanova
- School of Chemistry and Biosciences , University of Bradford , Bradford BD7 1DP , UK . ;
| | - Anaïs Pitto-Barry
- School of Chemistry and Biosciences , University of Bradford , Bradford BD7 1DP , UK . ;
| | - Nicolas P E Barry
- School of Chemistry and Biosciences , University of Bradford , Bradford BD7 1DP , UK . ;
| |
Collapse
|
10
|
Fasciani I, Pietrantoni I, Rossi M, Mannoury la Cour C, Aloisi G, Marampon F, Scarselli M, Millan MJ, Maggio R. Distinctive binding properties of the negative allosteric modulator, [ 3H]SB269,652, at recombinant dopamine D 3 receptors. Eur J Pharmacol 2017; 819:181-189. [PMID: 29223348 DOI: 10.1016/j.ejphar.2017.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 01/11/2023]
Abstract
Recently, employing radioligand displacement and functional coupling studies, we demonstrated that SB269,652 (N-[(1r,4r)-4-[2-(7-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-1H-indole-2-carboxamide) interacts in an atypical manner with dopamine D3 receptor displaying a unique profile reminiscent of a negative allosteric ligand. Here, we characterized the binding of radiolabelled [3H]SB269,652 to human dopamine D3 receptor stably expressed in Chinese Hamster Ovary cells. Under saturating conditions, SB269,652 showed a KD value of ≈ 1nM. Consistent with high selectivity for human dopamine D3 receptor, [3H]SB269,652 binding was undetectable in cells expressing human dopamine D1, D2L or D4 receptors and absent in synaptosomes from dopamine D3 receptor knockout vs. wild-type mice. In contrast to saturation binding experiments, the dissociation kinetics of [3H]SB269,652 from human dopamine D3 receptors initiated with an excess of unlabelled ligand were best fitted by a bi-exponential binding model. Supporting the kinetic data, competition experiments with haloperidol, S33084 (a dopamine D3 receptor antagonist) or dopamine, were best described by a two-site model. In co-transfection experiments binding of SB269,652 to dopamine D3 receptor was able to influence the functional coupling of dopamine D2 receptor, supporting the notion that SB269,652 is a negative allosteric modulator across receptor dimers. However, because SB269,652 decreases the rate of [3H]nemonapride dissociation, the present data suggest that SB269,652 behaves as a bitopic antagonist at unoccupied dopamine D3 receptor, binding simultaneously to both orthosteric and allosteric sites, and as a pure negative allosteric modulator when receptors are occupied and it can solely bind to the allosteric site.
Collapse
Affiliation(s)
- Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Ilaria Pietrantoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | | | - Gabriella Aloisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mark J Millan
- Centre for Innovation in Neuropsychiatry, Institut de Recherches Servier, Croissy sur Seine, France
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
11
|
Design and synthesis of novel N-sulfonyl-2-indoles that behave as 5-HT6 receptor ligands with significant selectivity for D3 over D2 receptors. Bioorg Med Chem 2017; 25:38-52. [DOI: 10.1016/j.bmc.2016.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 11/30/2022]
|
12
|
Cortés A, Moreno E, Rodríguez-Ruiz M, Canela EI, Casadó V. Targeting the dopamine D3 receptor: an overview of drug design strategies. Expert Opin Drug Discov 2016; 11:641-64. [PMID: 27135354 DOI: 10.1080/17460441.2016.1185413] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Dopamine is a neurotransmitter widely distributed in both the periphery and the central nervous system (CNS). Its physiological effects are mediated by five closely related G protein-coupled receptors (GPCRs) that are divided into two major subclasses: the D1-like (D1, D5) and the D2-like (D2, D3, D4) receptors. D3 receptors (D3Rs) have the highest density in the limbic areas of the brain, which are associated with cognitive and emotional functions. These receptors are therefore attractive targets for therapeutic management. AREAS COVERED This review summarizes the functional and pharmacological characteristics of D3Rs, including the design and clinical relevance of full agonists, partial agonists and antagonists, as well as the capacity of these receptors to form active homodimers, heterodimers or higher order receptor complexes as pharmacological targets in several neurological and neurodegenerative disorders. EXPERT OPINION The high sequence homology between D3R and the D2-type challenges the development of D3R-selective compounds. The design of new D3R-preferential ligands with improved physicochemical properties should provide a better pharmacokinetic/bioavailability profile and lesser toxicity than is found with existing D3R ligands. It is also essential to optimize D3R affinity and, especially, D3R vs. D2-type binding and functional selectivity ratios. Developing allosteric and bitopic ligands should help to improve the D3R selectivity of these drugs. As most evidence points to the ability of GPCRs to form homomers and heteromers, the most promising therapeutic strategy in the future is likely to involve the application of heteromer-selective drugs. These selective ligands would display different affinities for a given receptor depending on the receptor partners within the heteromer. Therefore, designing novel compounds that specifically target and modulate D1R-D3R heteromers would be an interesting approach for the treatment of levodopa (L-DOPA)-induced dyskinesias.
Collapse
Affiliation(s)
- Antoni Cortés
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Estefanía Moreno
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Mar Rodríguez-Ruiz
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Enric I Canela
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Vicent Casadó
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| |
Collapse
|
13
|
Butini S, Nikolic K, Kassel S, Brückmann H, Filipic S, Agbaba D, Gemma S, Brogi S, Brindisi M, Campiani G, Stark H. Polypharmacology of dopamine receptor ligands. Prog Neurobiol 2016; 142:68-103. [PMID: 27234980 DOI: 10.1016/j.pneurobio.2016.03.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 01/26/2016] [Accepted: 03/15/2016] [Indexed: 01/11/2023]
Abstract
Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular.
Collapse
Affiliation(s)
- S Butini
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - K Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - S Kassel
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - H Brückmann
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - S Filipic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - D Agbaba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - S Gemma
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - S Brogi
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - M Brindisi
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - G Campiani
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - H Stark
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
14
|
Sun X, Gou HY, Li F, Lu GY, Song R, Yang RF, Wu N, Su RB, Cong B, Li J. Y-QA31, a novel dopamine D3 receptor antagonist, exhibits antipsychotic-like properties in preclinical animal models of schizophrenia. Acta Pharmacol Sin 2016; 37:322-33. [PMID: 26775662 PMCID: PMC4775839 DOI: 10.1038/aps.2015.105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/29/2015] [Indexed: 11/09/2022]
Abstract
AIM To investigate the potential effects of Y-QA31, a novel dopamine D3 receptor antagonist, as an antipsychotic drug. METHODS A panel of radioligand-receptor binding assays was performed to identify the affinities of Y-QA31 for different G protein-coupled receptors. [(35)S]GTPγS-binding assays and Ca(2+) imaging were used to assess its intrinsic activities. The antipsychotic profile of Y-QA31 was characterized in mouse models for the positive symptoms and cognitive deficits of schizophrenia and extrapyramidal side effects with haloperidol and clozapine as positive controls. RESULTS In vitro, Y-QA31 is a dopamine D3 receptor antagonist that is 186-fold more potent at the D3 receptor than at the D2 receptor. Y-QA31 also exhibits 5-HT1A receptor partial agonist and α1A adrenoceptor antagonist activities with medium affinity, whereas it exhibits very little affinity for other receptors (100-fold lower than for the D3 receptor). In vivo, Y-QA31 (10-40 mg/kg, po) significantly inhibited MK-801-induced hyperlocomotion and methamphetamine-induced prepulse inhibition disruption in a dose-dependent manner. Y-QA31 also inhibited the avoidance response and methamphetamine-induced hyperlocomotion with potency lower than haloperidol. Y-QA31 was effective in alleviating the MK-801-induced disruption of novel object recognition at a low dose (1 mg/kg, po). Moreover, Y-QA31 itself did not affect spontaneous locomotion or induce cataleptic response until its dose reached 120 mg/kg. CONCLUSION Y-QA31 is a selective D3R antagonist that exhibits antipsychotic effects in some animal models with positive symptoms and cognitive disorder and less extrapyramidal side effects.
Collapse
Affiliation(s)
- Xue Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hong-yan Gou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Fei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Guan-yi Lu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Rui Song
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ri-fang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ning Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Rui-bin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
15
|
Rice OV, Schonhar CA, Gaál J, Gardner EL, Ashby CR. The selective dopamine D3receptor antagonist SB-277011-A significantly decreases binge-like consumption of ethanol in C57BL/J6 mice. Synapse 2015; 69:295-8. [DOI: 10.1002/syn.21816] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 01/30/2015] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Onarae V. Rice
- Psychology Department; Furman University; Greenville South Carolina 29613
| | | | - J. Gaál
- MegaPharma Pharmaceuticals Kft; Budapest Hungary
| | - Eliot L. Gardner
- Neuropsychopharmacology Section; Intramural Research Program, National Institute on Drug Abuse; Baltimore Maryland 21224
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions; St. John's University; Jamaica New York 11439
| |
Collapse
|
16
|
Naga Siva Rao J, Raghunathan R. A facile synthesis of glyco 3-nitrochromane hybrid pyrrolidinyl spiro heterocycles via [3+2] cycloaddition of azomethine ylides. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.03.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Keck TM, Burzynski C, Shi L, Newman AH. Beyond small-molecule SAR: using the dopamine D3 receptor crystal structure to guide drug design. ADVANCES IN PHARMACOLOGY 2014; 69:267-300. [PMID: 24484980 DOI: 10.1016/b978-0-12-420118-7.00007-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The dopamine D3 receptor is a target of pharmacotherapeutic interest in a variety of neurological disorders including schizophrenia, restless leg syndrome, and drug addiction. The high protein sequence homology between the D3 and D2 receptors has posed a challenge to developing D3 receptor-selective ligands whose behavioral actions can be attributed to D3 receptor engagement, in vivo. However, through primarily small-molecule structure-activity relationship (SAR) studies, a variety of chemical scaffolds have been discovered over the past two decades that have resulted in several D3 receptor-selective ligands with high affinity and in vivo activity. Nevertheless, viable clinical candidates remain limited. The recent determination of the high-resolution crystal structure of the D3 receptor has invigorated structure-based drug design, providing refinements to the molecular dynamic models and testable predictions about receptor-ligand interactions. This chapter will highlight recent preclinical and clinical studies demonstrating potential utility of D3 receptor-selective ligands in the treatment of addiction. In addition, new structure-based rational drug design strategies for D3 receptor-selective ligands that complement traditional small-molecule SAR to improve the selectivity and directed efficacy profiles are examined.
Collapse
Affiliation(s)
- Thomas M Keck
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland, USA
| | - Caitlin Burzynski
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland, USA
| | - Lei Shi
- Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Cornell Medical College, New York, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland, USA.
| |
Collapse
|
18
|
Li Z, Huang J, Sun H, Zhou S, Guo L, Zhou Y, Zhen X, Liu H. Design, synthesis and evaluation of benzo[a]thieno[3,2-g]quinolizines as novel l-SPD derivatives possessing dopamine D1, D2 and serotonin 5-HT1A multiple action profiles. Bioorg Med Chem 2014; 22:5838-46. [PMID: 25308766 DOI: 10.1016/j.bmc.2014.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
A novel scaffold derived from l-SPD with a substituted thiophene group in the D ring were designed, synthesized, and evaluated for their binding affinities at dopamine (D1, D2 and D3) and serotonin (5-HT1A and 5-HT2A) receptors. Most of the tetracyclic compounds exhibited higher affinities for D2 and 5-HT1A receptors than l-SPD, while compound 23 e showed the highest Ki value of 7.54 nM at D2 receptor which was 14 times more potent than l-SPD. Additionally, compounds 23 d and 23 e were more potent than l-SPD at D3 receptor. According to the functional assays, 23 d and 23 e were demonstrated as full antagonists at D1 and D2 receptors and full agonists at 5-HT1A receptor. Since the combination of D2 antagonism and 5-HT1A agonism is considered effective in treating both the positive and negative symptoms of schizophrenia, these novel compounds are implicated as potential therapeutic agents.
Collapse
Affiliation(s)
- Zeng Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Jiye Huang
- Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Haifeng Sun
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Shengbin Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Lin Guo
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, PR China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Yu Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou, PR China; Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China.
| | - Hong Liu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China.
| |
Collapse
|
19
|
Takamura N, Nakagawa S, Masuda T, Boku S, Kato A, Song N, An Y, Kitaichi Y, Inoue T, Koyama T, Kusumi I. The effect of dopamine on adult hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:116-24. [PMID: 24374069 DOI: 10.1016/j.pnpbp.2013.12.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 12/10/2013] [Accepted: 12/16/2013] [Indexed: 11/30/2022]
Abstract
Cumulative studies indicated that adult hippocampal neurogenesis might be involved in the action mechanism of antidepressant drugs and/or the pathophysiology of depression. Dopamine (DA) is involved in the regulation of motivation, volition, interest/pleasure, and attention/concentration, all of which are likely to be impaired in depressed patients. Several previous reports suggest that depression may often be accompanied by a relative hypo-dopaminergic state, and some DA receptor agonists are beneficial effects in the treatment for refractory and bipolar depression. In the present study, to clarify the direct effect of DA on neural progenitor cells, we examined the effect of DA on the proliferation of adult rat dentate gyrus-derived neural precursor cells (ADPs). In addition, we examined the effect of DA receptor agonists on adult rat hippocampal neurogenesis in vivo. Results showed that DA promoted the increase of ADPs via D1-like receptor and D1-like receptor agonist promoted the survival of newborn cells in the adult hippocampus. On the contrary, D2-like receptor agonist did not affect both proliferation and survival. These results suggested that DA might play, at least in part, a role in adult hippocampal neurogenesis via D1-like receptor and the activation of D1-like receptor has a therapeutic potential for depression.
Collapse
Affiliation(s)
- Naoki Takamura
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Pharmacology Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Shin Nakagawa
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Takahiro Masuda
- Pharmacology Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Shuken Boku
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akiko Kato
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ning Song
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yan An
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yuji Kitaichi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takeshi Inoue
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tsukasa Koyama
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
20
|
Le Foll B, Collo G, Rabiner EA, Boileau I, Merlo Pich E, Sokoloff P. Dopamine D3 receptor ligands for drug addiction treatment: update on recent findings. PROGRESS IN BRAIN RESEARCH 2014; 211:255-75. [PMID: 24968784 DOI: 10.1016/b978-0-444-63425-2.00011-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The dopamine D3 receptor is located in the limbic area and apparently mediates selective effects on motivation to take drugs and drug-seeking behaviors, so that there has been considerable interest on the possible use of D3 receptor ligands to treat drug addiction. However, only recently selective tools allowing studying this receptor have been developed. This chapter presents an overview of findings that were presented at a symposium on the conference Dopamine 2013 in Sardinia in May 2013. Novel neurobiological findings indicate that drugs of abuse can lead to significant structural plasticity in rodent brain and that this is dependent on the availability of functional dopamine D3 autoreceptor, whose activation increased phosphorylation in the ERK pathway and in the Akt/mTORC1 pathway indicating the parallel engagement of a series of intracellular signaling pathways all involved in cell growth and survival. Preclinical findings using animal models of drug-seeking behaviors confirm that D3 antagonists have a promising profile to treat drug addiction across drugs of abuse type. Imaging the D3 is now feasible in human subjects. Notably, the development of (+)-4-propyl-9-hydroxynaphthoxazine ligand used in positron emission tomography (PET) studies in humans allows to measure D3 and D2 receptors based on the area of the brain under study. This PET ligand has been used to confirm up-regulation of D3 sites in psychostimulant users and to reveal that tobacco smoking produces elevation of dopamine at the level of D3 sites. There are now novel antagonists being developed, but also old drugs such as buspirone, that are available to test the D3 hypothesis in humans. The first results of clinical investigations are now being provided. Overall, those recent findings support further exploration of D3 ligands to treat drug addiction.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Family and Community Medicine, Pharmacology and Toxicology, Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | - Ginetta Collo
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eugenii A Rabiner
- Imanova, Centre for Imaging Sciences, London, UK; Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College, London, UK
| | - Isabelle Boileau
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | | |
Collapse
|
21
|
Naga Siva Rao J, Raghunathan R. An expedient synthesis of pyrrolidinyl spirooxindole grafted 3-nitrochromanes through 1,3-dipolar cycloaddition reaction of azomethine ylides. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.09.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Insua I, Alvarado M, Masaguer CF, Iglesias A, Brea J, Loza MI, Carro L. Synthesis and binding affinity of new 1,4-disubstituted triazoles as potential dopamine D3 receptor ligands. Bioorg Med Chem Lett 2013; 23:5586-91. [DOI: 10.1016/j.bmcl.2013.08.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 12/11/2022]
|
23
|
Neisewander JL, Cheung THC, Pentkowski NS. Dopamine D3 and 5-HT1B receptor dysregulation as a result of psychostimulant intake and forced abstinence: Implications for medications development. Neuropharmacology 2013; 76 Pt B:301-19. [PMID: 23973315 DOI: 10.1016/j.neuropharm.2013.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
Addiction to psychostimulants, including cocaine and amphetamine, is associated with dysregulation of dopamine and serotonin (5-HT) neurotransmitter systems. Neuroadaptations in these systems vary depending on the stage of the drug taking-abstinence-relapse cycle. Consequently, the effects of potential treatments that target these systems may vary depending on whether they are given during abstinence or relapse. In this review, we discuss evidence that dopamine D3 receptors (D3Rs) and 5-HT1B receptors (5-HT1BRs) are dysregulated in response to both chronic psychostimulant use and subsequent abstinence. We then review findings from preclinical self-administration models which support targeting D3Rs and 5-HT1BRs as potential medications for psychostimulant dependence. Potential side effects of the treatments are discussed and attention is given to studies reporting positive treatment outcomes that depend on: 1) whether testing occurs during self-administration versus abstinence, 2) whether escalation of drug self-administration has occurred, 3) whether the treatments are given repeatedly, and 4) whether social factors influence treatment outcomes. We conclude that D3/D2 agonists may decrease psychostimulant intake; however, side effects of D3/D2R full agonists may limit their therapeutic potential, whereas D3/D2R partial agonists have fewer undesirable side effects. D3-selective antagonists may not reduce psychostimulant intake during relapse, but nonetheless, may decrease motivation for seeking psychostimulants with relatively few side-effects. 5-HT1BR agonists provide a striking example of treatment outcomes that are dependent on the stage of the addiction cycle. Specifically, these agonists initially increase cocaine's reinforcing effects during maintenance of self-administration, but after a period of abstinence they reduce psychostimulant seeking and the resumption of self-administration. In conclusion, we suggest that factors contributing to dysregulation of monoamine systems, including drug history, abstinence, and social context, should be considered when evaluating potential treatments to better model treatment effects in humans. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Janet L Neisewander
- School of Life Sciences, P.O. Box 874501, Arizona State University, Tempe, AZ 85287-4501, USA.
| | | | | |
Collapse
|
24
|
Micheli F, Heidbreder C. Dopamine D3 receptor antagonists: a patent review (2007 - 2012). Expert Opin Ther Pat 2013; 23:363-81. [PMID: 23282131 DOI: 10.1517/13543776.2013.757593] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The synthesis and characterization of new highly potent and selective dopamine (DA) D3 receptor antagonists has permitted to characterize the role of the DA D3 receptor in the control of drug-seeking behavior and in the pathophysiology of impulse control disorders and schizophrenia. AREAS COVERED In the present review, the authors will first describe most recent classes of DA D3 receptor antagonists by reviewing about 43 patent applications during the 2007 - 2012 period; they will then outline the biological rationale in support of the use of selective DA D3 receptor antagonists in the treatment of drug addiction, impulse control disorders and schizophrenia. EXPERT OPINION The strongest clinical application and potential for selective DA D3 receptor antagonists lies in the reduction of drug-induced incentive motivation, the attenuation of drug's rewarding efficacy and the reduction in reinstatement of drug-seeking behavior triggered either by re-exposure to the drug itself, re-exposure to environmental cues that had been previously associated with drug-taking behavior or stress. The selectivity of these antagonists together with reduced lipophilicity (minimizing unspecific binding), increased brain penetration and improved physico-chemical profile are all key factors for clinical efficacy and safety.
Collapse
Affiliation(s)
- Fabrizio Micheli
- Drug Design & Discovery, Aptuit Verona srl, Via A Fleming 4, 37135 Verona, Italy.
| | | |
Collapse
|
25
|
Dopamine D3 receptor antagonism—still a therapeutic option for the treatment of schizophrenia. Naunyn Schmiedebergs Arch Pharmacol 2012; 386:155-66. [DOI: 10.1007/s00210-012-0806-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022]
|
26
|
Heidbreder C. Rationale in support of the use of selective dopamine D₃ receptor antagonists for the pharmacotherapeutic management of substance use disorders. Naunyn Schmiedebergs Arch Pharmacol 2012; 386:167-76. [PMID: 23104235 DOI: 10.1007/s00210-012-0803-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
Growing evidence indicates that dopamine (DA) D(3) receptors are involved in the control of drug-seeking behavior and may play an important role in the pathophysiology of substance use disorders. First, DA D(3) receptors are distributed in strategic areas belonging to the mesolimbic DA system such as the ventral striatum, midbrain, and pallidum, which have been associated with behaviors controlled by the presentation of drug-associated cues. Second, repeated exposure to drugs of abuse has been shown to produce neuroadaptations in the DA D(3) system. Third, the synthesis and characterization of highly potent and selective DA D(3) receptor antagonists has permitted to further define the role of the DA D(3) receptor in drug addiction. Provided that the available preclinical and preliminary clinical evidence can be translated into clinical proof of concept in human, selective DA D(3) receptor antagonists show promise for the treatment of substance use disorders as reflected by their potential to (1) regulate the motivation to self-administered drugs under schedules of reinforcement that require an increase in work demand and (2) disrupt the responsiveness to drug-associated stimuli that play a key role in the reinstatement of drug-seeking behavior triggered by re-exposure to the drug itself, re-exposure to environmental cues that had been previously associated with drug-taking behavior, or stress.
Collapse
Affiliation(s)
- Christian Heidbreder
- Reckitt Benckiser Pharmaceuticals-Global Research and Development, 10710 Midlothian Turnpike Suite 430, Richmond, VA 23235, USA.
| |
Collapse
|
27
|
Egeland M, Zhang X, Millan MJ, Mocaer E, Svenningsson P. Pharmacological or genetic blockade of the dopamine D3 receptor increases cell proliferation in the hippocampus of adult mice. J Neurochem 2012; 123:811-23. [PMID: 22957735 DOI: 10.1111/jnc.12011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 08/26/2012] [Accepted: 08/28/2012] [Indexed: 02/02/2023]
Abstract
Dopamine plays an important role in cellular processes controlling the functional and structural plasticity of neurons, as well as their generation and proliferation, both in the developing and the adult brain. The precise roles of individual dopamine receptors subtypes in adult neurogenesis remain poorly defined, although D3 receptors are known to be involved in neurogenesis in the subventricular zone. By contrast, very few studies have addressed the influence of dopamine and D3 receptors upon neurogenesis in the subgranular zone of the hippocampus, an issue addressed herein employing constitutive D3 receptor knockout mice, or chronic exposure to the preferential D3 receptor antagonist, S33138. D3 receptor knockout mice revealed increased baseline levels of cell proliferation and ongoing neurogenesis, as measured both using Ki-67 and doublecortin, whereas there was no difference in cell survival as measured by BrdU (5-bromo-2'-deoxyuridine). Chronic administration of S33138 was shown to be functionally active in enhancing levels of the plasticity-related molecule, delta-FosB, in the D3 receptor-rich nucleus accumbens. In accordance with the stimulated neurogenesis seen in D3 receptor knockout mice, S33138 increased proliferation in wild-type mice. These observations suggest that D3 receptors exert a tonic, constitutive inhibitory influence upon adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Martin Egeland
- Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
28
|
Jin M, Min C, Zheng M, Cho DI, Cheong SJ, Kurose H, Kim KM. Multiple signaling routes involved in the regulation of adenylyl cyclase and extracellular regulated kinase by dopamine D(2) and D(3) receptors. Pharmacol Res 2012; 67:31-41. [PMID: 23059541 DOI: 10.1016/j.phrs.2012.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/28/2012] [Accepted: 09/29/2012] [Indexed: 01/06/2023]
Abstract
Most G protein coupled receptors (GPCR) regulate multiple cellular processes by coupling to more than one kind of G protein. Furthermore, recent studies have reported G protein-independent/β-arrestin-dependent signaling pathway for some GPCRs. Dopamine D(2) and D(3) receptors (D(2)R, D(3)R), the major targets of currently used antipsychotic drugs, are co-expressed in some of the same dopaminergic neurons and regulate the same overlapping effectors. However, the specific subunits of G proteins that regulate each signaling pathway are not clearly identified. In addition, the existence of β-arrestin-dependent/G protein-independent signaling is not clear for these receptors. In this study, we determined the G protein subtypes and β-arrestin dependency involved in the signaling of D(2)R and D(3)R, which was measured by inhibition of adenylyl cyclase and extracellular signal-regulated kinase (ERK) activation. For the inhibition of cAMP production in HEK-293 cells, D(2)R used the Gαo subunit but D(3)R used the βγ subunit of Gi family proteins. For the regulation of ERK activation, D(2)R used the α subunits of Gi/o proteins both in HEK-293 cells and COS-7 cells, but D(3)R used Gαo and Gβγ in HEK-293 cells and COS-7 cells, respectively. β-Arrestin-dependent/G protein-independent ERK activation was not observed for both D(2)R and D(3)R. Agonist-induced β-arrestin translocation was observed with D(2)R but not with D(3)R, and β-arrestins exerted inhibitory influences on G protein-dependent ERK activation by D(2)R, but not D(3)R. These results show that the D(2)R and D(3)R, which have overlapping cellular expressions and functional roles, employ distinct G protein subunits depending on the cell types and the effectors they control.
Collapse
Affiliation(s)
- Mingli Jin
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang C, Yang X, Raabe G, Enders D. A Short Asymmetric Synthesis of the Benzopyrano[3,4-c]pyrrolidine Coreviaan Organocatalytic Domino Oxa-Michael/Michael Reaction. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201200472] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Rice OV, Patrick J, Schonhar CD, Ning H, Ashby CR. The effects of the preferential dopamine D(3) receptor antagonist S33138 on ethanol binge drinking in C57BL/6J mice. Synapse 2012; 66:975-8. [PMID: 22623285 DOI: 10.1002/syn.21575] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/17/2012] [Indexed: 11/06/2022]
Abstract
The mesolimbic dopamine (DA) pathway plays an integral role in the reinforcing properties of many drugs of abuse, including alcohol (ethanol/EtOH). It has been reported that selective and acute blockade of the DA D3 receptor by SB-277011A will attenuate EtOH preference, intake, and lick responses in EtOH preferring rats. However, alcohol consumption that leads to abuse is often marked by binge drinking-which is characterized as bringing ones blood EtOH levels to ≥80 mg/dL within 2 hours of the initial drink. It is unclear if brain mechanisms implicated in EtOH reward are equally implicated in EtOH binge consumption and abuse. Therefore, in this study, we examined the effect of the preferential D3 receptor antagonist S33138 on ethanol (6% v/v) and water consumption in male C57BL/6J mice using a restricted-access binge-drinking model. Ethanol drinking was not significantly altered by the intraperitoneal (i.p.) administration of 0.16 mg/kg of S33138. In contrast, the i.p. administration of 0.64 or 2.5 mg/kg i.p. of S33138 produced a significant decrease in ethanol consumption on days 1 and 7 and days 7-14 compared to vehicle treated animals. However, the mean water consumption was significantly decreased by (1) 0.16 and 0.64 mg/kg i.p. of S33138 on Day 1 and (2) 2.5 mg/kg i.p. of S33138 at Days 1, 7, and 7-14. Our studies indicate that a low dose of S33138 significantly decreases binge drinking, and that it does not significantly alter the consumption of water. In addition, S33138 alone is not appetitive.
Collapse
Affiliation(s)
- Onarae V Rice
- Department of Psychology, Furman University, Greenville, South Carolina 29613, USA.
| | | | | | | | | |
Collapse
|
31
|
Blockade of dopamine D₃ but not D₂ receptors reverses the novel object discrimination impairment produced by post-weaning social isolation: implications for schizophrenia and its treatment. Int J Neuropsychopharmacol 2012; 15:471-84. [PMID: 21414250 DOI: 10.1017/s1461145711000435] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dopamine D₃ receptors are densely expressed in mesolimbic projection areas, and selective antagonists enhance cognition, consistent with their potential therapeutic use in the treatment of schizophrenia. This study examines the effect of dopamine D₃ vs. D₂ receptor antagonists on the cognitive impairment and hyperactivity produced by social isolation of rat pups, in a neurodevelopmental model of certain deficits of schizophrenia. Three separate groups of male Lister hooded rats were group-housed or isolation-reared from weaning. Six weeks later rats received either vehicle or the dopamine D₃ selective antagonist, S33084 (0.04 and 0.16 mg/kg), the preferential D₃ antagonist, S33138 (0.16 and 0.63 mg/kg) or the preferential D₂ antagonist, L-741,626 (0.63 mg/kg) s.c. 30 min prior to recording; horizontal locomotor activity in a novel arena for 60 min and, the following day, novel object discrimination using a 2-h inter-trial interval. Isolation rearing induced locomotor hyperactivity in a novel arena and impaired novel object discrimination compared to that in group-housed littermates. Both S33084 and S33138 restored novel object discrimination deficits in isolation-reared rats without affecting discrimination in group-housed controls. By contrast, L-741,626 impaired novel object discrimination in group-housed rats, without affecting impairment in isolates. S33084 (0.16 mg/kg), S33138 and, less markedly, L741,626 reduced the locomotor hyperactivity in isolates without attenuating activity in group-housed controls. Selective blockade of dopamine D₃ receptors reverses the visual recognition memory deficit and hyperactivity produced by isolation rearing. These data support further investigation of the potential use of dopamine D₃ receptor antagonists to treat schizophrenia.
Collapse
|
32
|
Lyon L, Saksida LM, Bussey TJ. Spontaneous object recognition and its relevance to schizophrenia: a review of findings from pharmacological, genetic, lesion and developmental rodent models. Psychopharmacology (Berl) 2012; 220:647-72. [PMID: 22068459 DOI: 10.1007/s00213-011-2536-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/06/2011] [Indexed: 12/12/2022]
Abstract
RATIONALE Spontaneous (novel) object recognition (SOR) is one of the most widely used rodent behavioural tests. The opportunity for rapid data collection has made SOR a popular choice in studies that explore cognitive impairment in rodent models of schizophrenia, and that test the efficacy of drugs intended to reverse these deficits. OBJECTIVES We provide an overview of the many recent studies that have used SOR to explore the mnemonic effects of manipulation of the key transmitter systems relevant to schizophrenia-the dopamine, glutamate, GABA, acetylcholine, serotonin and cannabinoid systems-alone or in combination. We also review the use of SOR in studying memory in genetically modified mouse models of schizophrenia, as well as in neurodevelopmental and lesion models. We end by discussing the construct and predictive validity, and translational relevance, of SOR with respect to cognitive impairment in schizophrenia. RESULTS Perturbation of the dopamine or glutamate systems can generate robust and reliable impairment in SOR. Impaired performance is also seen following antagonism of the muscarinic acetylcholine system, or exposure to cannabinoid agonists. Cognitive enhancement has been reported using alpha7-nicotinic acetylcholine receptor agonists and 5-HT(6) antagonists. Among non-pharmacological models, neonatal ventral hippocampal lesions and maternal immune activation can impair SOR, while mixed results have been obtained with mice carrying mutations in schizophrenia risk-associated genes, including neuregulin and COMT. CONCLUSIONS While SOR is not without its limitations, the task represents a useful method for studying manipulations with relevance to cognitive impairment in schizophrenia, as well as the interactions between them.
Collapse
Affiliation(s)
- L Lyon
- Department of Experimental Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | | | | |
Collapse
|
33
|
Psychopharmacological treatment of schizophrenia: What do we have, and what could we get? Neuropharmacology 2012; 62:1371-80. [DOI: 10.1016/j.neuropharm.2011.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/07/2011] [Accepted: 03/10/2011] [Indexed: 12/20/2022]
|
34
|
Selective blockade of dopamine D3 receptors enhances while D2 receptor antagonism impairs social novelty discrimination and novel object recognition in rats: a key role for the prefrontal cortex. Neuropsychopharmacology 2012; 37:770-86. [PMID: 22030711 PMCID: PMC3261029 DOI: 10.1038/npp.2011.254] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dopamine D(3) receptor antagonists exert pro-cognitive effects in both rodents and primates. Accordingly, this study compared the roles of dopamine D(3) vs D(2) receptors in social novelty discrimination (SND), which relies on olfactory cues, and novel object recognition (NOR), a visual-recognition task. The dopamine D(3) receptor antagonist, S33084 (0.04-0.63 mg/kg), caused a dose-related reversal of delay-dependent impairment in both SND and NOR procedures in adult rats. Furthermore, mice genetically deficient in dopamine D(3) receptors displayed enhanced discrimination in the SND task compared with wild-type controls. In contrast, acute treatment with the preferential dopamine D(2) receptor antagonist, L741,626 (0.16-5.0 mg/kg), or with the dopamine D(3) agonist, PD128,907 (0.63-40 μg/kg), caused a dose-related impairment in performance in rats in both tasks after a short inter-trial delay. Bilateral microinjection of S33084 (2.5 μg/side) into the prefrontal cortex (PFC) of rats increased SND and caused a dose-related (0.63-2.5 μg/side) improvement in NOR, while intra-striatal injection (2.5 μg/side) had no effect on either. In contrast, bilateral microinjection of L741,626 into the PFC (but not striatum) caused a dose-related (0.63-2.5 μg/side) impairment of NOR. These observations suggest that blockade of dopamine D(3) receptors enhances both SND and NOR, whereas D(3) receptor activation or antagonism of dopamine D(2) receptor impairs cognition in these paradigms. Furthermore, these actions are mediated, at least partly, by the PFC. These data have important implications for exploitation of dopaminergic mechanisms in the treatment of schizophrenia and other CNS disorders, and support the potential therapeutic utility of dopamine D(3) receptor antagonism.
Collapse
|
35
|
Jin ZL, Gao N, Zhou D, Chi MG, Yang XM, Xu JP. The extracts of Fructus Akebiae, a preparation containing 90% of the active ingredient hederagenin: serotonin, norepinephrine and dopamine reuptake inhibitor. Pharmacol Biochem Behav 2011; 100:431-9. [PMID: 22005599 DOI: 10.1016/j.pbb.2011.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/28/2011] [Accepted: 10/02/2011] [Indexed: 11/30/2022]
Abstract
Fructus Akebiae is a traditional Chinese herbal extract that has been used for the treatment of depressive disorders in China. Previous studies demonstrated that Fructus Akebiae extracts (FAE) displayed a potent antidepressant-like activity in animal behavior tests and found that the specific active ingredient from the extracts of Fructus Akebiae is hederagenin. However, the underlying mechanism is unknown. Here we provide evidences that FAE enhances the signaling of central monoamines via inhibition of the reuptake of the extracellular monoamines including serotonin (5-HT), norepinephrine (NE) and dopamine (DA). In rat brain membrane preparations and HEK293 cells transfected with human serotonin transporter (SERT), NE transporter (NET) and DA transporter (DAT), we found that FAE displayed marked affinity to rat and cloned human monoamine transporters in ex vivo and in vitro experiments, using competitive radio ligand binding assay. In uptake assays using rat synaptosomes and transfected cells, FAE was found to significantly inhibit all three monoamine transporters in a dose- and time-dependent manner, with a comparable or better potency to their corresponding specific inhibitors. In contrast, FAE (10 μM), showed no significant affinity to a variety array of receptors tested from CNS. In support of our uptake data, in vivo microdialysis studies showed that administration of FAE (12.6, 25, 50 mg/kg) significantly increased extracellular concentrations of 5-HT, NE and DA in frontal cortex of freely moving rats. Taken together, our current study showed for the first time that FAE is a novel triple inhibitor of monoamine transporters, which may be one the mechanisms of its antidepressant activity.
Collapse
Affiliation(s)
- Zeng-Liang Jin
- Department of Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | | | | | | | | | | |
Collapse
|
36
|
Cariprazine (RGH-188), a potent D3/D2 dopamine receptor partial agonist, binds to dopamine D3 receptors in vivo and shows antipsychotic-like and procognitive effects in rodents. Neurochem Int 2011; 59:925-35. [PMID: 21767587 DOI: 10.1016/j.neuint.2011.07.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/24/2011] [Accepted: 07/01/2011] [Indexed: 11/22/2022]
Abstract
We investigated the in vivo effects of orally administered cariprazine (RGH-188; trans-N-{4-[2-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-ethyl]-cyclohexyl}-N',N'-dimethyl-urea), a D(3)/D(2) dopamine receptor partial agonist with ∼10-fold preference for the D(3) receptor. Oral bioavailability of cariprazine at a dose of 1mg/kg in rats was 52% with peak plasma concentrations of 91ng/mL. Cariprazine 10mg/kg had good blood-brain barrier penetration, with a brain/plasma AUC ratio of 7.6:1. In rats, cariprazine showed dose-dependent in vivo displacement of [(3)H](+)-PHNO, a dopamine D(3) receptor-preferring radiotracer, in the D(3) receptor-rich region of cerebellar lobules 9 and 10. Its potent inhibition of apomorphine-induced climbing in mice (ED(50)=0.27mg/kg) was sustained for 8h. Cariprazine blocked amphetamine-induced hyperactivity (ED(50)=0.12mg/kg) and conditioned avoidance response (CAR) (ED(50)=0.84mg/kg) in rats, and inhibited the locomotor-stimulating effects of the noncompetitive NMDA antagonists MK-801 (ED(50)=0.049mg/kg) and phencyclidine (ED(50)=0.09mg/kg) in mice and rats, respectively. It reduced novelty-induced motor activity of mice (ED(50)=0.11mg/kg) and rats (ED(50)=0.18mg/kg) with a maximal effect of 70% in both species. Cariprazine produced no catalepsy in rats at up to 100-fold dose of its CAR inhibitory ED(50) value. Cariprazine 0.02-0.08mg/kg significantly improved the learning performance of scopolamine-treated rats in a water-labyrinth learning paradigm. Though risperidone, olanzapine, and aripiprazole showed antipsychotic-like activity in many of these assays, they were less active against phencyclidine and more cataleptogenic than cariprazine, and had no significant effect in the learning task. The distinct in vivo profile of cariprazine may be due to its higher affinity and in vivo binding to D(3) receptors versus currently marketed typical and atypical antipsychotics.
Collapse
|
37
|
Silvano E, Millan MJ, Mannoury la Cour C, Han Y, Duan L, Griffin SA, Luedtke RR, Aloisi G, Rossi M, Zazzeroni F, Javitch JA, Maggio R. The tetrahydroisoquinoline derivative SB269,652 is an allosteric antagonist at dopamine D3 and D2 receptors. Mol Pharmacol 2010; 78:925-34. [PMID: 20702763 PMCID: PMC2981362 DOI: 10.1124/mol.110.065755] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 07/27/2010] [Indexed: 11/22/2022] Open
Abstract
In view of the therapeutic importance of dopamine D(3) and D(2) receptors, there remains considerable interest in novel ligands. Herein, we show that the tetrahydroisoquinoline 1H-indole-2-carboxylic acid {4-[2-(cyano-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-cyclohexyl}-amide (SB269,652) behaves as an atypical, allosteric antagonist at D(3) and D(2) receptors. Accordingly, SB269,652 potently (low nanomolar range) abolished specific binding of [(3)H]nemanopride and [(3)H]spiperone to Chinese hamster ovary-transfected D(3) receptors when radioligands were used at 0.2 and 0.5 nM, respectively. However, even at high concentrations (5 μM), SB269,652 only submaximally inhibited the specific binding of these radioligands when they were employed at 10-fold higher concentrations. By analogy, although SB269,652 potently blocked D(3) receptor-mediated activation of Gα(i3) and phosphorylation of extracellular-signal-regulated kinase (ERK)1/2, when concentrations of dopamine were increased by 10-fold, from 1 μM to 10 μM, SB269,652 only submaximally inhibited dopamine-induced stimulation of Gα(i3). SB269,652 (up to 10 μM) only weakly and partially (by approximately 20-30%) inhibited radioligand binding to D(2) receptors. Likewise, SB269,652 only submaximally suppressed D(2) receptor-mediated stimulation of Gα(i3) and Gα(qi5) (detected with the aequorin assay) and phosphorylation of ERK1/2 and Akt. Furthermore, SB269,652 only partially (35%) inhibited the dopamine-induced recruitment of β-arrestin2 to D(2) receptors. Finally, Schild analysis using Gα(i3) assays, and studies of radioligand association and dissociation kinetics, supported allosteric actions of SB269,652 at D(3) and D(2) receptors.
Collapse
Affiliation(s)
- Elena Silvano
- Department of Experimental Medicine, University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The dopamine D3 receptor antagonist, S33138, counters cognitive impairment in a range of rodent and primate procedures. Int J Neuropsychopharmacol 2010; 13:1035-51. [PMID: 20663270 DOI: 10.1017/s1461145710000775] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Although dopamine D(3) receptor antagonists have been shown to enhance frontocortical cholinergic transmission and improve cognitive performance in rodents, data are limited and their effects have never been examined in primates. Accordingly, we characterized the actions of the D(3) receptor antagonist, S33138, in rats and rhesus monkeys using a suite of procedures in which cognitive performance was disrupted by several contrasting manipulations. S33138 dose-dependently (0.01-0.63 mg/kg s.c.) blocked a delay-induced impairment of novel object recognition in rats, a model of visual learning and memory. Further, S33138 (0.16-2.5 mg/kg s.c.) similarly reduced a delay-induced deficit in social novelty discrimination in rats, a procedure principally based on olfactory cues. Adult rhesus monkeys were trained to perform cognitive procedures, then chronically exposed to low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine which produced cognitive impairment without motor disruption. In an attentional set-shifting task of cognitive flexibility involving an extra-dimensional shift, deficits were reversed by S33138 (0.04 and 0.16 mg/kg p.o.). S33138 also significantly improved accuracy (0.04 and 0.16 mg/kg p.o.) at short (but not long) delays in a variable delayed-response task of attention and working memory. Finally, in a separate set of experiments performed in monkeys displaying age-related deficits, S33138 significantly (0.16 and 0.63 mg/kg p.o.) improved task accuracies for long delay intervals in a delayed matching-to-sample task of working memory. In conclusion, S33138 improved performance in several rat and primate procedures of cognitive impairment. These data underpin interest in D(3) receptor blockade as a strategy for improving cognitive performance in CNS disorders like schizophrenia and Parkinson's disease.
Collapse
|
39
|
Millan MJ, Dekeyne A, Gobert A, Mannoury la Cour C, Brocco M, Rivet JM, Di Cara B, Lejeune F, Cremers TI, Flik G, de Jong TR, Olivier B, de Nanteuil G. S41744, a dual neurokinin (NK)1 receptor antagonist and serotonin (5-HT) reuptake inhibitor with potential antidepressant properties: a comparison to aprepitant (MK869) and paroxetine. Eur Neuropsychopharmacol 2010; 20:599-621. [PMID: 20483567 DOI: 10.1016/j.euroneuro.2010.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 03/23/2010] [Accepted: 04/09/2010] [Indexed: 12/19/2022]
Abstract
Though neurokinin(1) (NK(1)) receptors are implicated in depressed states and their treatment, selective antagonists have disappointed in clinical trials. Accordingly, we designed a novel ligand, S41744 (2-piperazin-1-yl-indan-2-carboxylic-acid-(3-chloro-5-fluoro-benzyl)-methyl-amide), which both blocks NK(1) receptors and interferes with serotonin (5-HT) reuptake. S41744 mimicked the selective antagonist aprepitant in binding human (h)NK(1) receptors and in antagonising Substance-P-mediated Extracellular-Regulated-Kinase phosphorylation (pK(B), 7.7). Further, it dose-dependently (0.63-40.0 mg/kg, i.p.) displaced ex vivo [(3)H]-[Sar(9),Met(O(2))(11)]-Substance P binding to gerbil striatum, attenuated formalin-induced hind-paw licking in gerbils, and antagonised locomotion induced by i.c.v. administration of the NK(1) agonist GR73632 to guinea pigs. Like paroxetine, S41744 recognised h5-HT transporters, reduced synaptosomal uptake of 5-HT (pK(B), 7.9), and dose-dependently (0.63-10.0 mg/kg) elevated dialysis levels of 5-HT in the hippocampus and frontal cortex of freely-moving guinea pigs. Further, S41744 increased extracellular levels of 5-HT in frontal cortex and hippocampus of rats to a greater extent than paroxetine, and its inhibitory influence upon serotonergic perikarya was blunted relative to its affinity for 5-HT transporters. S41744 more potently blocked stress-induced vocalizations in guinea pigs than aprepitant and paroxetine, and it was active in forced-swim and marble-burying procedures of putative antidepressant properties in mice. While aprepitant displayed anxiolytic actions in stress-induced foot-tapping and social interaction tests in gerbils, paroxetine was anxiogenic and S41744 "neutral", reflecting balanced NK(1) antagonism and suppression of 5-HT reuptake. Moreover, S41744 shared anxiolytic actions of aprepitant in the rat Vogel Conflict Test. In conclusion, S41744 is an innovative NK(1) antagonist/5-HT reuptake inhibitor justifying further evaluation for treatment of stress-related disorders.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rea K, Folgering J, Westerink BH, Cremers TI. α1-Adrenoceptors modulate citalopram-induced serotonin release. Neuropharmacology 2010; 58:962-71. [DOI: 10.1016/j.neuropharm.2009.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 12/12/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
|
41
|
Heidbreder CA, Newman AH. Current perspectives on selective dopamine D(3) receptor antagonists as pharmacotherapeutics for addictions and related disorders. Ann N Y Acad Sci 2010; 1187:4-34. [PMID: 20201845 PMCID: PMC3148950 DOI: 10.1111/j.1749-6632.2009.05149.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Repeated exposure to drugs of abuse produces long-term molecular and neurochemical changes that may explain the core features of addiction, such as the compulsive seeking and taking of the drug, as well as the risk of relapse. A growing number of new molecular and cellular targets of addictive drugs have been identified, and rapid advances are being made in relating those targets to specific behavioral phenotypes in animal models of addiction. In this context, the pattern of expression of the dopamine (DA) D(3) receptor in the rodent and human brain and changes in this pattern in response to drugs of abuse have contributed primarily to direct research efforts toward the development of selective DA D(3) receptor antagonists. Growing preclinical evidence indicates that these compounds may actually regulate the motivation to self-administer drugs and disrupt drug-associated cue-induced craving. This report will be divided into three parts. First, preclinical evidence in support of the efficacy of selective DA D(3) receptor antagonists in animal models of drug addiction will be reviewed. The effects of mixed DA D(2)/D(3) receptor antagonists will not be discussed here because most of these compounds have low selectivity at the D(3) versus D(2) receptor, and their efficacy profile is related primarily to functional antagonism at D(2) receptors and possibly interactions with other neurotransmitter systems. Second, major advances in medicinal chemistry for the identification and optimization of selective DA D(3) receptor antagonists and partial agonists will be analyzed. Third, translational research from preclinical efficacy studies to so-called proof-of-concept studies for drug addiction indications will be discussed.
Collapse
Affiliation(s)
- Christian A Heidbreder
- Reckitt Benckiser Pharmaceuticals, Global Research & Development, Richmond, Virginia 23235, USA.
| | | |
Collapse
|
42
|
Abstract
Schizophrenia typically manifests itself with a wide array of symptoms--positive, negative, cognitive, and affective--and may also involve neurodevelopmental and neurodegenerative aspects. Each of these symptom dimensions may be derived from pathology at one or more receptor types, localized in different regions of the brain. The absence of a single therapeutic target for schizophrenia has therefore prompted the de-emphasis of selective "magic bullets" and a critical re-examination of the intramolecular polypharmacy afforded by antipsychotics. In this chapter, we present a review of some of the receptor targets that are currently thought to mediate symptoms of schizophrenia, and discuss their possible implications for future antipsychotic drug development. Therapeutic strategies for schizophrenia that successfully exploit the multifunctionality of antipsychotics will take into account the entire receptor activity "portfolio" of the agent and provide a total therapeutic response that, like the elephant of the Buddhist parable, is greater than the sum of its parts.
Collapse
Affiliation(s)
- Dennis H Kim
- Arbor Scientia, 1930 Palomar Point Way, Suite 103, Carlsbad, CA 92008, USA.
| | | |
Collapse
|
43
|
A decade of progress in the discovery and development of 'atypical' antipsychotics. PROGRESS IN MEDICINAL CHEMISTRY 2010; 49:37-80. [PMID: 20855038 DOI: 10.1016/s0079-6468(10)49002-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Hwang R, Zai C, Tiwari A, Müller DJ, Arranz MJ, Morris AG, McKenna PJ, Munro J, Potkin SG, Lieberman JA, Meltzer HY, Kennedy JL. Effect of dopamine D3 receptor gene polymorphisms and clozapine treatment response: exploratory analysis of nine polymorphisms and meta-analysis of the Ser9Gly variant. THE PHARMACOGENOMICS JOURNAL 2009; 10:200-18. [PMID: 20029384 DOI: 10.1038/tpj.2009.65] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
D2 blockade has been implicated in having a central role in antipsychotic response. However, treatment refractoriness, in spite of complete D2 blockade, as well as the efficacy of clozapine (CLZ) in a portion of this patient population, indicates the involvement of other factors as well. Several lines of evidence suggest a role for D3. Furthermore, an earlier meta-analysis by Jönsson et al. (2003) (n=233) suggested a role for genetic variation in the D3 gene. Relevant to this study, Jönsson et al. found the Ser allele of the D3 serine-to-glycine substitution at amino acid position 9 (Ser9Gly) polymorphism to be associated with worse CLZ response compared with the Gly allele. In this study, we attempt to validate these findings by performing a meta-analysis in a much larger sample (n=758). Eight other variants were also tested in our own sample to explore the possible effect of other regions of the gene. We report a negative but consistent trend across individual studies in our meta-analysis for the DRD3 Ser allele and poor CLZ response. A possible minor role for this single-nucleotide polymorphism cannot be disregarded, as our sample size may have been insufficient. Other DRD3 variants and haplotypes of possible interest were also identified for replication in future studies.
Collapse
Affiliation(s)
- R Hwang
- Neurogenetics Section, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Xi ZX, Gardner EL. Hypothesis-driven medication discovery for the treatment of psychostimulant addiction. ACTA ACUST UNITED AC 2009; 1:303-27. [PMID: 19430578 DOI: 10.2174/1874473710801030303] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Psychostimulant abuse is a serious social and health problem, for which no effective treatments currently exist. A number of review articles have described predominantly 'clinic'-based pharmacotherapies for the treatment of psychostimulant addiction, but none have yet been shown to be definitively effective for use in humans. In the present article, we review various 'hypothesis'- or 'mechanism'-based pharmacological agents that have been studied at the preclinical level and evaluate their potential use in the treatment of psychostimulant addiction in humans. These compounds target brain neurotransmitter or neuromodulator systems, including dopamine (DA), gamma-aminobutyric acid (GABA), endocannabinoid, glutamate, opioid and serotonin, which have been shown to be critically involved in drug reward and addiction. For drugs in each category, we first briefly review the role of each neurotransmitter system in psychostimulant actions, and then discuss the mechanistic rationale for each drug's potential anti-addiction efficacy, major findings with each drug in animal models of psychostimulant addiction, abuse liability and potential problems, and future research directions. We conclude that hypothesis-based medication development strategies could significantly promote medication discovery for the effective treatment of psychostimulant addiction.
Collapse
Affiliation(s)
- Zheng-Xiong Xi
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | | |
Collapse
|
46
|
Etievant A, Bétry C, Arnt J, Haddjeri N. Bifeprunox and aripiprazole suppress in vivo VTA dopaminergic neuronal activity via D2 and not D3 dopamine autoreceptor activation. Neurosci Lett 2009; 460:82-6. [PMID: 19450663 DOI: 10.1016/j.neulet.2009.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/10/2009] [Accepted: 05/11/2009] [Indexed: 11/26/2022]
Abstract
Bifeprunox and aripiprazole are two novel antipsychotics presenting partial agonistic activity for the D(2) and D(3) dopamine (DA) receptors. Using in vivo electrophysiological paradigms in anaesthetized rats, we have previously shown that both drugs independently inhibit the spontaneous firing and bursting activity of ventral tegmental area (VTA) dopaminergic neurons and partially reverse the suppressing effect of the full DA receptor agonist apomorphine. Moreover, we have also shown that the D(2/3) receptor antagonist haloperidol prevents the inhibitory effects of these antipsychotics, confirming their partial D(2)-like agonistic activities [L. Dahan, H. Husum, O. Mnie-Filali, J. Arnt, P. Hertel, N. Haddjeri, Effects of bifeprunox and aripiprazole on rat serotonin and dopamine neuronal activity and anxiolytic behaviour, J. Psychopharmacol. (2009)]. In the present electrophysiological study, selective antagonists of D(2) and D(3) receptors were used to further characterize the inhibitory role of bifeprunox and aripiprazole on the D(2) and D(3) receptors in vivo. Administration of bifeprunox (250 microg/kg, i.v.) or aripiprazole (300 microg/kg, i.v.) reduced the firing activity of VTA DA neurons by 40-50%. The bursting activity was reduced by 95% and 77% by bifeprunox and aripiprazole, respectively. Systemic administration of the preferential D(3) receptor antagonist GR218,231 (200 microg/kg, i.v.) did not modify the inhibitory effect of bifeprunox or aripiprazole, either on the firing or on the bursting activity. On the other hand, the preferential D(2) receptor antagonist L741,626 (500 microg/kg, i.v.) completely blocked the inhibitory effect of both bifeprunox and aripiprazole on the VTA DA neuronal activity. The present study shows that bifeprunox and aripiprazole behave as partial D(2), but not D(3), receptor agonists in vivo, inhibiting the firing activity (preferentially the phasic activity) of VTA DA cells.
Collapse
Affiliation(s)
- Adeline Etievant
- Laboratory of Neuropharmacology, Faculty of Pharmacy, University of Claude Bernard Lyon I, FRE CNRS 3006, 8 Avenue Rockefeller, 69373 Lyon Cedex 08, France
| | | | | | | |
Collapse
|
47
|
Newman AH, Grundt P, Cyriac G, Deschamps JR, Taylor M, Kumar R, Ho D, Luedtke RR. N-(4-(4-(2,3-dichloro- or 2-methoxyphenyl)piperazin-1-yl)butyl)heterobiarylcarboxamides with functionalized linking chains as high affinity and enantioselective D3 receptor antagonists. J Med Chem 2009; 52:2559-70. [PMID: 19331412 PMCID: PMC2760932 DOI: 10.1021/jm900095y] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present report, the D3 receptor pharmacophore is modified in the 2,3-diCl- and 2-OCH(3)-phenylpiperazine class of compounds with the goal to improve D3 receptor affinity and selectivity. This extension of structure-activity relationships (SAR) has resulted in the identification of the first enantioselective D3 antagonists (R- and S-22) to be reported, wherein enantioselectivity is more pronounced at D3 than at D2, and that a binding region on the second extracellular loop (E2) may play a role in both enantioselectivity and D3 receptor selectivity. Moreover, we have discovered some of the most D3-selective compounds reported to date that show high affinity (K(i) = 1 nM) for D3 and approximately 400-fold selectivity over the D2 receptor subtype. Several of these analogues showed exquisite selectivity for D3 receptors over >60 other receptors, further underscoring their value as in vivo research tools. These lead compounds also have appropriate physical characteristics for in vivo exploration and therefore will be useful in determining how intrinsic activity at D3 receptors tested in vitro is related to behaviors in animal models of addiction and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Amy Hauck Newman
- Medicinal Chemistry Section, National Institute on Drug AbuseIntramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Peng XQ, Ashby CR, Spiller K, Li X, Li J, Thomasson N, Millan MJ, Mocaër E, Muńoz C, Gardner EL, Xi ZX. The preferential dopamine D3 receptor antagonist S33138 inhibits cocaine reward and cocaine-triggered relapse to drug-seeking behavior in rats. Neuropharmacology 2009; 56:752-60. [PMID: 19136017 PMCID: PMC3726045 DOI: 10.1016/j.neuropharm.2008.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 11/30/2008] [Accepted: 12/15/2008] [Indexed: 10/21/2022]
Abstract
We have previously reported that selective dopamine (DA) D3 receptor antagonists are effective in a number of animal models of drug addiction, but not in intravenous drug self-administration, suggesting a limited ability to modify drug reward. In the present study, we evaluated the actions ofS33138, a novel partially selective D3 receptor antagonist, in animal models relevant to drug addiction. S33138, at doses of 0.156 or 0.625 mg/kg (i.p.), attenuated cocaine-enhanced brain-stimulation reward (BSR), and the highest dose tested (2.5 mg/kg) produced a significant aversive-like rightward shift in BSR rate-frequency reward functions. Further, S33138 produced biphasic effects on cocaine self-administration, i.e., a moderate dose (2.5 mg/kg, p.o.) increased, while a higher dose (5 mg/kg, p.o.) inhibited, cocaine self-administration. The increase in cocaine self-administration likely reflects a compensatory response to a partial reduction in drug reward after S33138. In addition, S33138 (0.156-2.5 mg/kg, p.o.) also dose-dependently inhibited cocaine-induced reinstatement of drug-seeking behavior. The reduction in cocaine-enhanced BSR and cocaine-triggered reinstatement produced by lower effective doses (e.g., 0.156 or 0.625 mg/kg) of 533138 is unlikely due to impaired locomotion, as lower effective doses of S33138 decreased neither Ymax levels in the BSR paradigm, rotarod performance, nor locomotion. However, the higher doses (2.5 or 5 mg/kg) of S33138 also significantly inhibited sucrose self-administration and rotarod performance, suggesting non-D3 receptor-mediated effects on non-drug reward and locomotion. These data suggest that lower doses of S33138 interacting essentially with D3 receptors have pharmacotherapeutic potential in treatment of cocaine addiction, while higher doses occupying D2 receptors may influence locomotion and non-drug reward.
Collapse
Affiliation(s)
- Xiao-Qing Peng
- National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John’s University, Jamaica, NY 11439, USA
| | - Krista Spiller
- National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Xia Li
- National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Jie Li
- National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Nitza Thomasson
- Neuropsychiatry Department, Institut de Recherches Internationales Servier, 92615 Courbevoie, France
| | - Mark J. Millan
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, 78290 Croissy-sur-Seine, France
| | - Elisabeth Mocaër
- Neuropsychiatry Department, Institut de Recherches Internationales Servier, 92615 Courbevoie, France
| | - Carmen Muńoz
- Neuropsychiatry Department, Institut de Recherches Internationales Servier, 92615 Courbevoie, France
| | - Eliot L. Gardner
- National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Zheng-Xiong Xi
- National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
49
|
Loiseau F, Millan MJ. Blockade of dopamine D(3) receptors in frontal cortex, but not in sub-cortical structures, enhances social recognition in rats: similar actions of D(1) receptor agonists, but not of D(2) antagonists. Eur Neuropsychopharmacol 2009; 19:23-33. [PMID: 18793829 DOI: 10.1016/j.euroneuro.2008.07.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 07/25/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
Abstract
Though D(3) receptor antagonists can enhance cognitive function, their sites of action remain unexplored. This issue was addressed employing a model of social recognition in rats, and the actions of D(3) antagonists were compared to D(1) agonists that likewise possess pro-cognitive properties. Infusion of the highly selective D(3) antagonists, S33084 and SB277,011 (0.04-2.5 microg/side), into the frontal cortex (FCX) dose-dependently reversed the deficit in recognition induced by a delay. By contrast, the preferential D(2) antagonist, L741,626 (0.63-5.0) had no effect. The action of S33084 was regionally specific inasmuch as its injection into the nucleus accumbens or striatum was ineffective. A similar increase of recognition was obtained upon injection of the D(1) agonist, SKF81297 (0.04-0.63), into the FCX though it was also active (0.63) in the nucleus accumbens. These data suggest that D(3) receptors modulating social recognition are localized in FCX, and underpin their pertinence as targets for antipsychotic agents.
Collapse
Affiliation(s)
- Florence Loiseau
- Institut de Recherches Servier, Department of Psychopharmacology, 125 Chemin de ronde, 78290 Croissy-sur-Seine, Paris, France.
| | | |
Collapse
|
50
|
Paul NM, Taylor M, Kumar R, Deschamps JR, Luedtke RR, Newman AH. Structure-activity relationships for a novel series of dopamine D2-like receptor ligands based on N-substituted 3-aryl-8-azabicyclo[3.2.1]octan-3-ol. J Med Chem 2008; 51:6095-109. [PMID: 18774793 DOI: 10.1021/jm800532x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Discovering dopamine D2-like receptor subtype-selective ligands has been a focus of significant investigation. The D2R-selective antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidinyl]methylindole (1, L741,626; K(i)(D2R/D3R) = 11.2:163 nM) has previously provided a lead template for chemical modification. Herein, analogues have been synthesized where the piperidine was replaced by a tropane ring that reversed the selectivity seen in the parent compound, in human hD2(L)R- or hD3R-transfected HEK 293 cells (31, K(i)(D2R/D3R) = 33.4:15.5 nM). Further exploration of both N-substituted and aryl ring-substituted analogues resulted in the discovery of several high affinity D2R/D3R ligands with 3-benzofurylmethyl-substituents (e.g., 45, K(i)(D2R/D3R) = 1.7:0.34 nM) that induced high affinity not achieved in similarly N-substituted piperidine analogues and significantly (470-fold) improved D3R binding affinity compared to the parent ligand 1. X-ray crystallographic data revealed a distinctive spatial arrangement of pharmacophoric elements in the piperidinol vs tropine analogues, providing clues for the diversity in SAR at the D2 and D3 receptor subtypes.
Collapse
Affiliation(s)
- Noel M Paul
- Medicinal Chemistry Section, National Institute on Drug Abuses, Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|