1
|
Gómez LCG, Medina NB, Blasco SS, Gravielle MC. Diazepam-Induced Down-Regulation of The Gaba a Receptor α1 Subunit, as Mediated by the Activation of L-Type Voltage-Gated Calcium Channel/Ca 2+/Protein Kinase A Signaling Cascade. Neurosci Lett 2023:137358. [PMID: 37356564 DOI: 10.1016/j.neulet.2023.137358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Benzodiazepines are among the most prescribed drug class worldwide to treat disorders such as anxiety, insomnia, muscle spasticity, and convulsive disorders, and to induce presurgical sedation. Although benzodiazepines exhibit a high therapeutic index and low toxicity in short-term treatments, prolonged administration induces tolerance to most of their therapeutic actions. The mechanism of this tolerance remains unclear. The central actions of benzodiazepines are mediated by binding to GABAA receptors, which mediate most fast inhibitory transmission in the brain. The majority of GABAA receptors are composed of two α-(1-6), two β-(1-3) and one γ-subunits (1-3). In a previous report, we demonstrated that the prolonged exposure of cerebrocortical neurons to diazepam produces a transcriptional repression of the GABAA receptor α1 subunit gene via a mechanism dependent on the activation of L-type voltage-gated calcium channels (L-VGCCs). The results reported here confirm that the diazepam-induced downregulation of the α1 subunit is contingent upon calcium influx from extracellular space. In addition, this regulatory mechanism involves the activation of protein kinase A (PKA) and is accompanied by the activation of two transcription factors, the cAMP-response element-binding protein (CREB) and the inducible cAMP early repressor (ICER). Together, our results suggest that diazepam's activation of an L-VGCC/Ca2+/PKA/CREB-ICER signaling pathway is responsible for the regulation of GABAA receptors. This elucidation of the intracellular signaling cascade activated by a prolonged benzodiazepine exposure, itself potentially involved in the development of tolerance, may contribute to locating molecular targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Leydi Carolina González Gómez
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina
| | - Nelsy Beatriz Medina
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina
| | - Sara Sanz Blasco
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina
| | - María Clara Gravielle
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina.
| |
Collapse
|
2
|
Little HJ. L-Type Calcium Channel Blockers: A Potential Novel Therapeutic Approach to Drug Dependence. Pharmacol Rev 2021; 73:127-154. [PMID: 34663686 DOI: 10.1124/pharmrev.120.000245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review describes interactions between compounds, primarily dihydropyridines, that block L-type calcium channels and drugs that cause dependence, and the potential importance of these interactions. The main dependence-inducing drugs covered are alcohol, psychostimulants, opioids, and nicotine. In preclinical studies, L-type calcium channel blockers prevent or reduce important components of dependence on these drugs, particularly their reinforcing actions and the withdrawal syndromes. The channel blockers also reduce the development of tolerance and/or sensitization, and they have no intrinsic dependence liability. In some instances, their effects include reversal of brain changes established during drug dependence. Prolonged treatment with alcohol, opioids, psychostimulant drugs, or nicotine causes upregulation of dihydropyridine binding sites. Few clinical studies have been carried out so far, and reports are conflicting, although there is some evidence of effectiveness of L-channel blockers in opioid withdrawal. However, the doses of L-type channel blockers used clinically so far have necessarily been limited by potential cardiovascular problems and may not have provided sufficient central levels of the drugs to affect neuronal dihydropyridine binding sites. New L-type calcium channel blocking compounds are being developed with more selective actions on subtypes of L-channel. The preclinical evidence suggests that L-type calcium channels may play a crucial role in the development of dependence to different types of drugs. Mechanisms for this are proposed, including changes in the activity of mesolimbic dopamine neurons, genomic effects, and alterations in synaptic plasticity. Newly developed, more selective L-type calcium channel blockers could be of considerable value in the treatment of drug dependence. SIGNIFICANCE STATEMENT: Dependence on drugs is a very serious health problem with little effective treatment. Preclinical evidence shows drugs that block particular calcium channels, the L-type, reduce dependence-related effects of alcohol, opioids, psychostimulants, and nicotine. Clinical studies have been restricted by potential cardiovascular side effects, but new, more selective L-channel blockers are becoming available. L-channel blockers have no intrinsic dependence liability, and laboratory evidence suggests they reverse previously developed effects of dependence-inducing drugs. They could provide a novel approach to addiction treatment.
Collapse
Affiliation(s)
- Hilary J Little
- Section of Alcohol Research, National Addiction Centre, Institute of Psychiatry, King's College, London, United Kingdom
| |
Collapse
|
3
|
Regulation of GABA A Receptors Induced by the Activation of L-Type Voltage-Gated Calcium Channels. MEMBRANES 2021; 11:membranes11070486. [PMID: 34209589 PMCID: PMC8304739 DOI: 10.3390/membranes11070486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022]
Abstract
GABAA receptors are pentameric ion channels that mediate most synaptic and tonic extrasynaptic inhibitory transmissions in the central nervous system. There are multiple GABAA receptor subtypes constructed from 19 different subunits in mammals that exhibit different regional and subcellular distributions and distinct pharmacological properties. Dysfunctional alterations of GABAA receptors are associated with various neuropsychiatric disorders. Short- and long-term plastic changes in GABAA receptors can be induced by the activation of different intracellular signaling pathways that are triggered, under physiological and pathological conditions, by calcium entering through voltage-gated calcium channels. This review discusses several mechanisms of regulation of GABAA receptor function that result from the activation of L-type voltage gated calcium channels. Calcium influx via these channels activates different signaling cascades that lead to changes in GABAA receptor transcription, phosphorylation, trafficking, and synaptic clustering, thus regulating the inhibitory synaptic strength. These plastic mechanisms regulate the interplay of synaptic excitation and inhibition that is crucial for the normal function of neuronal circuits.
Collapse
|
4
|
Foitzick MF, Medina NB, Iglesias García LC, Gravielle MC. Benzodiazepine exposure induces transcriptional down-regulation of GABA A receptor α1 subunit gene via L-type voltage-gated calcium channel activation in rat cerebrocortical neurons. Neurosci Lett 2020; 721:134801. [PMID: 32007495 DOI: 10.1016/j.neulet.2020.134801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 01/10/2023]
Abstract
GABAA receptors are targets of different pharmacologically relevant drugs, such as barbiturates, benzodiazepines, and anesthetics. In particular, benzodiazepines are prescribed for the treatment of anxiety, sleep disorders, and seizure disorders. Benzodiazepines potentiate GABA responses by binding to GABAA receptors, which are mainly composed of α (1-3, 5), β2, and γ2 subunits. Prolonged activation of GABAA receptors by endogenous and exogenous modulators induces adaptive changes that lead to tolerance. For example, chronic administration of benzodiazepines produces tolerance to most of their pharmacological actions, limiting their usefulness. The mechanism of benzodiazepine tolerance is still unknown. To investigate the molecular basis of tolerance, we studied the effect of sustained exposure of rat cerebral cortical neurons to diazepam on the GABAA receptor. Flunitrazepam binding experiments showed that diazepam treatment induced uncoupling between GABA and benzodiazepine sites, which was blocked by co-incubation with flumazenil, picrotoxin, or nifedipine. Diazepam also produced selective transcriptional down-regulation of GABAA receptor α1 subunit gene through a mechanism dependent on the activation of L-type voltage-gated calcium channels. These findings suggest benzodiazepine-induced stimulation of calcium influx through L-type voltage-gated calcium channels triggers the activation of a signaling pathway that leads to uncoupling and an alteration of receptor subunit expression. Insights into the mechanism of benzodiazepine tolerance will contribute to the design of new drugs that can maintain their efficacies after long-term treatments.
Collapse
Affiliation(s)
- María Florencia Foitzick
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. CONICET, Buenos Aires, Argentina
| | - Nelsy Beatriz Medina
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. CONICET, Buenos Aires, Argentina
| | - Lucía Candela Iglesias García
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. CONICET, Buenos Aires, Argentina
| | - María Clara Gravielle
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. CONICET, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Microwave-Assisted, Efficient and Eco-friendly Synthesis of Novel 3H-Benzo[b][1,4]diazepine Derivatives Using Basic Alumina as a Reusable Catalyst. CHEMISTRY AFRICA 2019. [DOI: 10.1007/s42250-019-00110-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Gravielle MC. Regulation of GABAA receptors by prolonged exposure to endogenous and exogenous ligands. Neurochem Int 2018; 118:96-104. [DOI: 10.1016/j.neuint.2018.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 02/08/2023]
|
7
|
LaCorte S. How chronic administration of benzodiazepines leads to unexplained chronic illnesses: A hypothesis. Med Hypotheses 2018; 118:59-67. [PMID: 30037616 DOI: 10.1016/j.mehy.2018.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/28/2018] [Accepted: 06/19/2018] [Indexed: 11/15/2022]
Abstract
It is thought that an ill defined biochemical cascade may lead to protracted withdrawal symptoms subsequent to discontinuance of routine use of benzodiazepine class drugs and establish chronic illness in some patients. In this review, published findings are presented that support the novel concept that withdrawal from benzodiazepine class drugs can trigger elevated and sustained levels of a potent oxidant called peroxynitrite via potentiation of the L-type voltage-gated calcium channels, and in the later stages of withdrawal, via excessive N-methyl-D-aspartate receptor activity, as well. Potentiation of L-type voltage-gated calcium channels and excessive N-methyl-D-aspartate receptor activity both result in calcium influx into the cell that triggers nitric oxide synthesis. In pathophysiological conditions, such increased nitric oxide synthesis leads to peroxynitrite formation. The downstream effects of peroxynitrite formation that may occur during withdrawal ultimately lead to further peroxynitrite production in a system of overlapping vicious cycles collectively referred to as the NO/ONOO(-) cycle. Once triggered, the elements of the NO/ONOO(-) cycle perpetuate pathophysiology, perhaps including reduced GABAA receptor functioning, that may explain protracted withdrawal associated symptoms while the vicious cycle nature of the NO/ONOO(-) cycle may explain how withdrawal becomes a chronic state. Suboptimal levels of tetrahydrobiopterin may be one risk factor for the development of the protracted withdrawal syndrome as this will lead to partial nitric oxide uncoupling and resultant peroxynitrite formation. Nitric oxide uncoupling results in superoxide production as calcium-dependent nitric oxide synthases attempt to produce nitric oxide in response to L-type voltage-gated calcium channel-mediated calcium influx that is known to occur during withdrawal. The combination of nitric oxide and superoxide produced, as when partial uncoupling occurs, react together in a very rapid, diffusion limited reaction to form peroxynitrite and thereby trigger the NO/ONOO(-) cycle. The NO/ONOO(-) cycle may explain the nature of the protracted withdrawal syndrome and the related constellation of symptoms that are also common in other illnesses characterized as NO/ONOO(-) disorders such as myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia.
Collapse
Affiliation(s)
- S LaCorte
- Benzodiazepine Information Coalition, 1042 Fort Union Blvd. Suite 1030, Midvale, UT 84047, United States.
| |
Collapse
|
8
|
Gravielle MC. Activation-induced regulation of GABAA receptors: Is there a link with the molecular basis of benzodiazepine tolerance? Pharmacol Res 2015; 109:92-100. [PMID: 26733466 DOI: 10.1016/j.phrs.2015.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 12/01/2022]
Abstract
Benzodiazepines have been used clinically for more than 50 years to treat disorders such as insomnia, anxiety, and epilepsy, as well as to aid muscle relaxation and anesthesia. The therapeutic index for benzodiazepines if very high and the toxicity is low. However, their usefulness is limited by the development of either or both tolerance to most of their pharmacological actions and dependence. Tolerance develops at different rates depending on the pharmacological action, suggesting the existence of distinct mechanisms for each behavioral parameter. Alternatively, multiple mechanisms could coexist depending on the subtype of GABAA receptor expressed and the brain region involved. Because most of the pharmacological actions of benzodiazepines are mediated through GABAA receptor binding, adaptive alterations in the number, structure, and/or functions of these receptors may play an important role in the development of tolerance. This review is focused on the regulation of GABAA receptors induced by long-term benzodiazepine exposure and its relationship with the development of tolerance. Understanding the mechanisms behind benzodiazepine tolerance is critical for designing drugs that could maintain their efficacy during long-term treatments.
Collapse
Affiliation(s)
- María Clara Gravielle
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina.
| |
Collapse
|
9
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
10
|
Shibasaki M, Masukawa D, Ishii K, Yamagishi Y, Mori T, Suzuki T. Involvement of the K+-Cl- co-transporter KCC2 in the sensitization to morphine-induced hyperlocomotion under chronic treatment with zolpidem in the mesolimbic system. J Neurochem 2013; 125:747-55. [PMID: 23565710 DOI: 10.1111/jnc.12258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/14/2013] [Accepted: 03/25/2013] [Indexed: 11/30/2022]
Abstract
Benzodiazepines are commonly used as sedatives, sleeping aids, and anti-anxiety drugs. However, chronic treatment with benzodiazepines is known to induce dependence, which is considered related to neuroplastic changes in the mesolimbic system. This study investigated the involvement of K(+) -Cl(-) co-transporter 2 (KCC2) in the sensitization to morphine-induced hyperlocomotion after chronic treatment with zolpidem [a selective agonist of γ-aminobutyric acid A-type receptor (GABAA R) α1 subunit]. In this study, chronic treatment with zolpidem enhanced morphine-induced hyperlocomotion, which is accompanied by the up-regulation of KCC2 in the limbic forebrain. We also found that chronic treatment with zolpidem induced the down-regulation of protein phosphatase-1 (PP-1) as well as the up-regulation of phosphorylated protein kinase C γ (pPKCγ). Furthermore, PP-1 directly associated with KCC2 and pPKCγ, whereas pPKCγ did not associate with KCC2. On the other hand, pre-treatment with furosemide (a KCC2 inhibitor) suppressed the enhancing effects of zolpidem on morphine-induced hyperlocomotion. These results suggest that the mesolimbic dopaminergic system could be amenable to neuroplastic change through a pPKCγ-PP-1-KCC2 pathway by chronic treatment with zolpidem.
Collapse
Affiliation(s)
- Masahiro Shibasaki
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Martín V, Vale C, Bondu S, Thomas OP, Vieytes MR, Botana LM. Differential effects of crambescins and crambescidin 816 in voltage-gated sodium, potassium and calcium channels in neurons. Chem Res Toxicol 2013; 26:169-78. [PMID: 23270282 DOI: 10.1021/tx3004483] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Crambescins and crambescidins are two families of guanidine alkaloids from the marine sponge Crambe crambe. Although very little information about their biological effect has been reported, it is known that crambescidin 816 (Cramb816) blocks calcium channels in a neuroblastoma X glioma cell line. Taking this into account, and the fact that ion channels are frequent targets for natural toxins, we examined the effect of Cramb816 and three compounds from the crambescin family, norcrambescin A2 (NcrambA2), crambescin A2 (CrambA2), and crambescin C1 (CrambC1), in the main voltage-dependent ion channels in neurons: sodium, potassium, and calcium channels. Electrophysiological recordings of voltage gated sodium, potassium, and calcium currents, in the presence of these guanidine alkaloids, were performed in cortical neurons from embryonic mice. Different effects were discovered: crambescins inhibited K(+) currents with the following potency: NcrambA2 > CrambC1 > CrambA2, while Cramb816 lacked an effect. Only CrambC1 and Cramb816 partially blocked Na(+) total current. However, Cramb816 partially blocked Ca(2+) , while NcrambA2 did not. Since the blocking effect of Cramb816 on calcium currents has not been previously reported in detail, we further pharmacologically isolated the two main fractions of HVA Ca(2+) channels in neurons and investigated the Cramb816 effect on them. Here, we revealed that Cav1 or L-type calcium channels are the main target for Cramb816. These two families of guanidine alkaloids clearly showed a structure-activity relationship with the crambescins acting on voltage-gated potassium channels, while Cramb816 blocks the voltage-gated calcium channel Cav1 with higher potency than nifedipine. The novel evidence that Cramb816 partially blocked CaV and NaV channels in neurons suggests that this compound might be involved in decreasing the neurotransmitter release and synaptic transmission in the central nervous system. The findings presented here provide the first detailed approach on the different effects of crambescin and crambescidin compounds in voltage-gated sodium, potassium, and calcium channels in neurons and thus provide a basis for future studies.
Collapse
Affiliation(s)
- Víctor Martín
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela , Lugo, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Regulation of Ca²⁺/calmodulin-dependent protein kinase II signaling within hippocampal glutamatergic postsynapses during flurazepam withdrawal. Neural Plast 2012; 2012:405926. [PMID: 22830051 PMCID: PMC3399473 DOI: 10.1155/2012/405926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/19/2012] [Indexed: 11/18/2022] Open
Abstract
Cessation of one-week oral administration of the benzodiazepine flurazepam (FZP) to rats results in withdrawal anxiety after 1 day of withdrawal. FZP withdrawal is correlated with synaptic incorporation of homomeric GluA1-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) in the proximal stratum radiatum of CA1 neurons. After 2 days of withdrawal, Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylates GluA1 subunits at Ser831, increasing channel conductance. Secondary to AMPAR potentiation, GluN2B-containing N-methyl-D-aspartate receptors (NMDARs), known binding partners of CaMKII, are selectively removed from the postsynaptic density (PSD). While activation of synaptic CaMKII is known to involve translocation to the PSD, CaMKII bound to NMDARs may be removed from the PSD. To distinguish these possibilities, the current studies used postembedding immunogold electron microscopy to investigate alterations in CaMKII signaling at CA1 stratum radiatum synapses after 2 days of FZP withdrawal. These studies revealed decreased total, but not autophosphorylated (Thr286) CaMKIIα expression in CA1 PSDs. The removal of CaMKII-GluN2B complexes from the PSD during drug withdrawal may serve as a homeostatic mechanism to limit AMPAR-mediated CA1 neuron hyperexcitability and benzodiazepine withdrawal anxiety.
Collapse
|
13
|
Biffi E, Regalia G, Ghezzi D, De Ceglia R, Menegon A, Ferrigno G, Fiore GB, Pedrocchi A. A novel environmental chamber for neuronal network multisite recordings. Biotechnol Bioeng 2012; 109:2553-66. [PMID: 22510865 DOI: 10.1002/bit.24526] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/29/2012] [Accepted: 04/02/2012] [Indexed: 11/08/2022]
Abstract
Environmental stability is a critical issue for neuronal networks in vitro. Hence, the ability to control the physical and chemical environment of cell cultures during electrophysiological measurements is an important requirement in the experimental design. In this work, we describe the development and the experimental verification of a closed chamber for multisite electrophysiology and optical monitoring. The chamber provides stable temperature, pH and humidity and guarantees cell viability comparable to standard incubators. Besides, it integrates the electronics for long-term neuronal activity recording. The system is portable and adaptable for multiple network housings, which allows performing parallel experiments in the same environment. Our results show that this device can be a solution for long-term electrophysiology, for dual network experiments and for coupled optical and electrical measurements.
Collapse
Affiliation(s)
- E Biffi
- Politecnico di Milano, Bioengineering Department, Neuroengineering and Medical Robotics Laboratory, p.zza Leonardo da Vinci 32, 20133 Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Tuckwell HC. Quantitative aspects of L-type Ca2+ currents. Prog Neurobiol 2012; 96:1-31. [DOI: 10.1016/j.pneurobio.2011.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 09/16/2011] [Accepted: 09/23/2011] [Indexed: 12/24/2022]
|
15
|
Earl DE, Tietz EI. Inhibition of recombinant L-type voltage-gated calcium channels by positive allosteric modulators of GABAA receptors. J Pharmacol Exp Ther 2011; 337:301-11. [PMID: 21262851 PMCID: PMC3063747 DOI: 10.1124/jpet.110.178244] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 01/21/2011] [Indexed: 11/22/2022] Open
Abstract
Benzodiazepines (BDZs) depress neuronal excitability via positive allosteric modulation of inhibitory GABA(A) receptors (GABA(A)R). BDZs and other positive GABA(A)R modulators, including barbiturates, ethanol, and neurosteroids, can also inhibit L-type voltage-gated calcium channels (L-VGCCs), which could contribute to reduced neuronal excitability. Because neuronal L-VGCC function is up-regulated after long-term GABA(A)R modulator exposure, an interaction with L-VGCCs may also play a role in physical dependence. The current studies assessed the effects of BDZs (diazepam, flurazepam, and desalkylflurazepam), allopregnanolone, pentobarbital, and ethanol on whole-cell Ba(2+) currents through recombinant neuronal Ca(v)1.2 and Ca(v)1.3 L-VGCCs expressed with β(3) and α(2)δ-1 in HEK293T cells. Allopregnanolone was the most potent inhibitor (IC(50), ∼10 μM), followed by BDZs (IC(50), ∼50 μM), pentobarbital (IC(50), 0.3-1 mM), and ethanol (IC(50), ∼300 mM). Ca(v)1.3 channels were less sensitive to pentobarbital inhibition than Ca(v)1.2 channels, similar to dihydropyridine (DHP) L-VGCC antagonists. All GABA(A)R modulators induced a negative shift in the steady-state inactivation curve of Ca(v)1.3 channels, but only BDZs and pentobarbital induced a negative shift in Ca(v)1.2 channel inactivation. Mutation of the high-affinity DHP binding site (T1039Y and Q1043M) in Ca(v)1.2 channels reduced pentobarbital potency. Despite the structural similarity between benzothiazepines and BDZs, mutation of an amino acid important for diltiazem potency (I1150A) did not affect diazepam potency. Although L-VGCC inhibition by BDZs occurred at concentrations that are possibly too high to be clinically relevant and is not likely to play a role in the up-regulation of L-VGCCs during long-term treatment, pentobarbital and ethanol inhibited L-VGCCs at clinically relevant concentrations.
Collapse
Affiliation(s)
- Damien E Earl
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Health Science Campus, Toledo, OH 43614, USA
| | | |
Collapse
|
16
|
Das P, Zerda R, Alvarez FJ, Tietz EI. Immunogold electron microscopic evidence of differential regulation of GluN1, GluN2A, and GluN2B, NMDA-type glutamate receptor subunits in rat hippocampal CA1 synapses during benzodiazepine withdrawal. J Comp Neurol 2011; 518:4311-28. [PMID: 20853509 DOI: 10.1002/cne.22458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Benzodiazepine withdrawal-anxiety is associated with enhanced α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR)-mediated glutamatergic transmission in rat hippocampal CA1 synapses due to enhanced synaptic insertion and phosphorylation of GluA1 homomers. Interestingly, attenuation of withdrawal-anxiety is associated with a reduction in N-methyl-D-aspartate receptor (NMDAR)-mediated currents and subunit expression, secondary to AMPA receptor potentiation. Therefore, in this study ultrastructural evidence for possible reductions in NMDAR GluN1, GluN2A, and GluN2B subunits was sought at CA1 stratum radiatum synapses in proximal dendrites using postembedding immunogold labeling of tissues from rats withdrawn for 2 days from 1-week daily oral administration of the benzodiazepine, flurazepam (FZP). GluN1-immunogold density and the percentage of immunopositive synapses were significantly decreased in tissues from FZP-withdrawn rats. Similar decreases were observed for GluN2B subunits; however, the relative lateral distribution of GluN2B-immunolabeling within the postsynaptic density did not change after BZ withdrawal. In contrast to the GluN2B subunit, the percentage of synapses labeled with the GluN2A subunit antibody and the density of immunogold labeling for this subunit was unchanged. The spatial localization of immunogold particles associated with each NMDAR subunit was consistent with a predominantly postsynaptic localization. The data therefore provide direct evidence for reduced synaptic GluN1/GluN2B receptors and preservation of GluN1/GluN2A receptors in the CA1 stratum radiatum region during BZ withdrawal. Based on collective findings in this benzodiazepine withdrawal-anxiety model, we propose a functional model illustrating the changes in glutamate receptor populations at excitatory synapses during benzodiazepine withdrawal.
Collapse
Affiliation(s)
- Paromita Das
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Health Science Campus, Toledo, Ohio 43614, USA
| | | | | | | |
Collapse
|
17
|
Shen G, Tietz EI. Down-regulation of synaptic GluN2B subunit-containing N-methyl-D-aspartate receptors: a physiological brake on CA1 neuron α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid hyperexcitability during benzodiazepine withdrawal. J Pharmacol Exp Ther 2011; 336:265-73. [PMID: 20935233 PMCID: PMC3014299 DOI: 10.1124/jpet.110.174235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 10/07/2010] [Indexed: 11/22/2022] Open
Abstract
A significant link was previously established between benzodiazepine withdrawal anxiety and a progressive increase in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) potentiation in hippocampal CA1 neurons from rats withdrawn up to 2 days from 1-week oral administration of the benzodiazepine flurazepam (FZP). Despite AMPAR current potentiation, withdrawal anxiety was masked by a 2-fold reduction in CA1 neuron N-methyl-D-aspartate receptor (NMDAR) currents since preinjection of an NMDA antagonist restored NMDAR currents and unmasked anxiety in 2-day FZP-withdrawn rats. In the current study, GluN subunit levels in postsynaptic density (PSD)-enriched subfractions of CA1 minislices were compared with GluN2B-mediated whole-cell currents evoked in CA1 neurons in hippocampal slices from 1- and 2-day FZP-withdrawn rats. GluN1 and GluN2B, although not the phosphoSer1303-GluN2B ratio or GluN2A subunit levels, were decreased in PSD subfractions from 2-day, but not 1-day, FZP-withdrawn rats. Consistent with immunoblot analyses, GluN2B-mediated NMDAR currents evoked in slices from 2-day FZP-withdrawn rats were decreased in the absence, but not the presence, of the GluN2B subunit-selective antagonist ifenprodil. In contrast, ifenprodil-sensitive NMDAR currents were unchanged in slices from 1-day withdrawn rats. Because AMPA (1 μM) preincubation of slices from 1-day FZP-withdrawn rats induced depression of GluN2B subunit-mediated currents, depression of NMDAR currents was probably secondary to AMPAR potentiation. CA1 neuron NMDAR currents were depressed ∼50% after 2-day withdrawal and offset potentiation of AMPAR-mediated currents, leaving total charge transfer unchanged between groups. Collectively, these findings suggest that a reduction of GluN2B-containing NMDAR may serve as a homeostatic feedback mechanism to modulate glutamatergic synaptic strength during FZP withdrawal to alleviate benzodiazepine withdrawal symptoms.
Collapse
Affiliation(s)
- Guofu Shen
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | | |
Collapse
|
18
|
Casamassima F, Hay AC, Benedetti A, Lattanzi L, Cassano GB, Perlis RH. L-type calcium channels and psychiatric disorders: A brief review. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1373-90. [PMID: 20886543 DOI: 10.1002/ajmg.b.31122] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 07/28/2010] [Indexed: 01/11/2023]
Abstract
Emerging evidence from genome-wide association studies (GWAS) support the association of polymorphisms in the alpha 1C subunit of the L-type voltage-gated calcium channel gene (CACNA1C) with bipolar disorder. These studies extend a rich prior literature implicating dysfunction of L-type calcium channels (LTCCs) in the pathophysiology of neuropsychiatric disorders. Moreover, calcium channel blockers reduce Ca(2+) flux by binding to the α1 subunit of the LTCC and are used extensively for treating hypertension, preventing angina, cardiac arrhythmias and stroke. Calcium channel blockers have also been studied clinically in psychiatric conditions such as mood disorders and substance abuse/dependence, yielding conflicting results. In this review, we begin with a summary of LTCC pharmacology. For each category of disorder, this article then provides a review of animal and human data. In particular, we extensively focus on animal models of depression and clinical trials in mood disorders and substance abuse/dependence. Through examining rationale and study design of published clinical trials, we provide some of the possible reasons why we still do not have definitive evidence of efficacy of calcium-channel antagonists for mood disorders. Refinement of genetic results and target phenotypes, enrollment of adequate sample sizes in clinical trials and progress in physiologic and pharmacologic studies to synthesize tissue and isoform specific calcium channel antagonists, are all future challenges of research in this promising field. © 2010 Wiley-Liss, Inc.
Collapse
|
19
|
Calcium/calmodulin-dependent protein kinase II mediates hippocampal glutamatergic plasticity during benzodiazepine withdrawal. Neuropsychopharmacology 2010; 35:1897-909. [PMID: 20445501 PMCID: PMC2904841 DOI: 10.1038/npp.2010.61] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Benzodiazepine withdrawal anxiety is associated with potentiation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) currents in hippocampal CA1 pyramidal neurons attributable to increased synaptic incorporation of GluA1-containing AMPARs. The contribution of calcium/calmodulin-dependent protein kinase II (CaMKII) to enhanced glutamatergic synaptic strength during withdrawal from 1-week oral flurazepam (FZP) administration was further examined in hippocampal slices. As earlier reported, AMPAR-mediated miniature excitatory postsynaptic current (mEPSC) amplitude increased in CA1 neurons from 1- and 2-day FZP-withdrawn rats, along with increased single-channel conductance in neurons from 2-day rats, estimated by non-stationary noise analysis. Input-output curve slope was increased without a change in paired-pulse facilitation, suggesting increased AMPAR postsynaptic efficacy rather than altered glutamate release. The increased mEPSC amplitude and AMPAR conductance were related to CaMKII activity, as intracellular inclusion of CaMKIINtide or autocamtide-2-related inhibitory peptide, but not scrambled peptide, prevented both AMPAR amplitude and conductance changes. mEPSC inhibition by 1-naphthyl acetyl spermine and the negative shift in rectification index at both withdrawal time points were consistent with functional incorporation of GluA2-lacking AMPARs. GluA1 but not GluA2 or GluA3 levels were increased in immunoblots of postsynaptic density (PSD)-enriched subcellular fractions of CA1 minislices from 1-day FZP-withdrawn rats, when mEPSC amplitude, but not conductance, was increased. Both GluA1 expression levels and CaMKII alpha-mediated GluA1 Ser(831) phosphorylation were increased in PSD-subfractions from 2-day FZP-withdrawn rats. As phospho-Thr(286)CaMKII alpha was unchanged, CaMKII alpha may be activated through an alternative signaling pathway. Synaptic insertion and subsequent CaMKII alpha-mediated Ser(831) phosphorylation of GluA1 homomers contribute to benzodiazepine withdrawal-induced AMPAR potentiation and may represent an important hippocampal pathway mediating both drug-induced and activity-dependent plasticity.
Collapse
|
20
|
Uusi-Oukari M, Korpi ER. Regulation of GABA(A) receptor subunit expression by pharmacological agents. Pharmacol Rev 2010; 62:97-135. [PMID: 20123953 DOI: 10.1124/pr.109.002063] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The gamma-aminobutyric acid (GABA) type A receptor system, the main fast-acting inhibitory neurotransmitter system in the brain, is the pharmacological target for many drugs used clinically to treat, for example, anxiety disorders and epilepsy, and to induce and maintain sedation, sleep, and anesthesia. These drugs facilitate the function of pentameric GABA(A) receptors that exhibit widespread expression in all brain regions and large structural and pharmacological heterogeneity as a result of composition from a repertoire of 19 subunit variants. One of the main problems in clinical use of GABA(A) receptor agonists is the development of tolerance. Most drugs, in long-term use and during withdrawal, have been associated with important modulations of the receptor subunit expression in brain-region-specific manner, participating in the mechanisms of tolerance and dependence. In most cases, the molecular mechanisms of regulation of subunit expression are poorly known, partly as a result of neurobiological adaptation to altered neuronal function. More knowledge has been obtained on the mechanisms of GABA(A) receptor trafficking and cell surface expression and the processes that may contribute to tolerance, although their possible pharmacological regulation is not known. Drug development for neuropsychiatric disorders, including epilepsy, alcoholism, schizophrenia, and anxiety, has been ongoing for several years. One key step to extend drug development related to GABA(A) receptors is likely to require deeper understanding of the adaptational mechanisms of neurons, receptors themselves with interacting proteins, and finally receptor subunits during drug action and in neuropsychiatric disease processes.
Collapse
Affiliation(s)
- Mikko Uusi-Oukari
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Itainen Pitkakatu 4, 20014 Turku, Finland.
| | | |
Collapse
|
21
|
Positive allosteric activation of GABAA receptors bi-directionally modulates hippocampal glutamate plasticity and behaviour. Biochem Soc Trans 2010; 37:1394-8. [PMID: 19909283 DOI: 10.1042/bst0371394] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Long-term BZ (benzodiazepine) anxiolytic therapy increases the risk of physical dependence manifested as withdrawal anxiety. BZ-induced potentiation of GABA(A)R (gamma-aminobutyric acid type-A receptor) function by 1-week oral administration of FZP (flurazepam) bi-directionally modulates excitatory glutamatergic synaptic transmission in hippocampal CA1 neurons during drug withdrawal. Previous electrophysiological studies on acutely isolated and intact CA1 neurons, as well as immunofluorescence and post-embedding immunogold electron microscopy studies, suggest increased synaptic insertion of GluR (glutamate receptor) 2-lacking AMPARs (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors) in 2-day FZP-withdrawn rats. Preliminary studies indicated a similar increase in GluR1, then phospho-Ser(831)-GluR1, as well as CaMKIIalpha (Ca(2+)/calmodulin-dependent protein kinase IIalpha), but not phospho-Thr(286)-CaMKII levels at the same time point. In our studies, whole-cell recordings in hippocampal slices revealed that AMPAR mEPSC [miniature EPSC (excitatory postsynaptic current)] amplitude was increased in 1-day FZP-withdrawn rats followed by an increase in estimated single-channel conductance in 2-day-FZP-withdrawn rats. Enhanced conductance was no longer observed in slices pre-incubated for 2 h in the CaMKII inhibitor KN-93, but not the inactive analogue KN-92. To evaluate whether CaMKII-mediated AMPA potentiation could occlude LTP (long-term potentiation), LTP was induced by TBS (theta burst stimulation) and recorded using whole-cell and extracellular techniques. LTP was induced in both groups, but only maintained for <15 min in 2-day FZP-withdrawn rats. LTP was fully restored after 7-day withdrawal. Despite the lack of LTP maintenance, impairment of object recognition, place and context was not observed in 2-day-FZP-withdrawn rats. Since L-VGCC (L-type voltage-gated calcium channel) current density was doubled on drug withdrawal and up to 2 days, Ca(2+) entry through L-VGCCs and perhaps subsequently through Ca(2+)-permeable AMPARs are proposed to be responsible for enhanced CaMKIIalpha levels and AMPAR potentiation. Mechanisms associated with several different models of activity-dependent plasticity may underlie BZ physical dependence.
Collapse
|
22
|
Authier N, Balayssac D, Sautereau M, Zangarelli A, Courty P, Somogyi A, Vennat B, Llorca PM, Eschalier A. Benzodiazepine dependence: Focus on withdrawal syndrome. ANNALES PHARMACEUTIQUES FRANÇAISES 2009; 67:408-13. [DOI: 10.1016/j.pharma.2009.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/16/2009] [Accepted: 07/22/2009] [Indexed: 11/28/2022]
|
23
|
Authier N, Boucher A, Lamaison D, Llorca PM, Descotes J, Eschalier A. Second Meeting of the French CEIP (Centres d’Évaluation d’Information sur la Pharmacodépendance). Part II: Benzodiazepine Withdrawal. Therapie 2009; 64:365-70. [DOI: 10.2515/therapie/2009051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2009] [Indexed: 11/20/2022]
|
24
|
Xiang K, Tietz EI. Chronic benzodiazepine-induced reduction in GABA(A) receptor-mediated synaptic currents in hippocampal CA1 pyramidal neurons prevented by prior nimodipine injection. Neuroscience 2008; 157:153-63. [PMID: 18805463 DOI: 10.1016/j.neuroscience.2008.08.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 08/21/2008] [Accepted: 08/23/2008] [Indexed: 01/13/2023]
Abstract
One week oral flurazepam (FZP) administration in rats results in reduced GABA(A) receptor-mediated synaptic transmission in CA1 pyramidal neurons associated with benzodiazepine tolerance in vivo and in vitro. Since voltage-gated calcium channel (VGCC) current density is enhanced twofold during chronic FZP treatment, the role of L-type VGCCs in regulating benzodiazepine-induced changes in CA1 neuron GABA(A) receptor-mediated function was evaluated. Nimodipine (10 mg/kg, i.p.) or vehicle (0.5% Tween 80, 2 ml/kg) was injected 1 day after ending FZP treatment and 24 h prior to hippocampal slice preparation for measurement of mIPSC characteristics and in vitro tolerance to zolpidem. The reduction in GABA(A) receptor-mediated mIPSC amplitude and estimated unitary channel conductance measured 2 days after drug removal was no longer observed following prior nimodipine injection. However, the single nimodipine injection failed to prevent in vitro tolerance to zolpidem's ability to prolong mIPSC decay in FZP-treated neurons, suggesting multiple mechanisms may be involved in regulating GABA(A) receptor-mediated synaptic transmission following chronic FZP administration. As reported previously in recombinant receptors, nimodipine inhibited synaptic GABA(A) receptor currents only at high concentrations (>30 muM), significantly greater than attained in vivo (1 muM) 45 min after a single antagonist injection. Thus, the effects of nimodipine were unlikely to be related to direct effects on GABA(A) receptors. As with nimodipine injection, buffering intracellular free [Ca(2+)] with BAPTA similarly prevented the effects on GABA(A) receptor-mediated synaptic transmission, suggesting intracellular Ca(2+) homeostasis is important to maintain GABA(A) receptor function. The findings further support a role for activation of L-type VGCCs, and perhaps other Ca(2+)-mediated signaling pathways, in the modulation of GABA(A) receptor synaptic function following chronic benzodiazepine administration, independent of modulation of the allosteric interactions between benzodiazepine and GABA binding sites.
Collapse
Affiliation(s)
- K Xiang
- Department of Physiology and Pharmacology, and the Cellular and Molecular Neurobiology Program, University of Toledo College of Medicine, Health Science Campus, 3000 Arlington Avenue, Mailstop 1008, Toledo, OH 43614, USA
| | | |
Collapse
|