1
|
Yin L, Li F, Li J, Yang X, Xie X, Xue L, Li Y, Zhang C. Chronic Intermittent Ethanol Exposure Induces Upregulation of Matrix Metalloproteinase-9 in the Rat Medial Prefrontal Cortex and Hippocampus. Neurochem Res 2019; 44:1593-1601. [PMID: 30915602 DOI: 10.1007/s11064-019-02783-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9, Gelatinase B), an extracellular-acting Zn2+-dependent endopeptidase, are involved in brain pathologies including ischemia, glioma, and epilepsy. Recent studies suggested that MMP-9 plays an important role in neuronal plasticity, specifically in learning and memory. To determine whether and how MMP-9 plays role in alcohol-related behaviors, male Sprague-Dawley (SD) rats were subjected to chronic intermittent ethanol (CIE) exposure for 4 weeks, following which we collected tissue samples from the hippocampus, medial prefrontal cortex (mPFC), and amygdala at different stages (acute and chronic exposure) during alcohol exposure. Real-time PCR and western blot assays were used to detect changes in the mRNA and protein expression of MMP-9. Our results indicated that both acute and chronic alcohol exposure induced up-regulation of MMP-9 mRNA levels in the hippocampus and mPFC, but not in the amygdala. Furthermore, acute and chronic alcohol exposure up regulated the expression of total MMP-9 and active MMP-9 in these two brain regions. Moreover, the increase of active MMP-9 expression was larger than those in total MMP-9 expression. Immunoprecipitation analyses identified potential MMP-9-interacting proteins, including Itgb1, Src, Eef1a2, tubulin, actin, and histone H2B. These results demonstrate that both acute and CIE exposure induced increases in MMP-9 expression in the mPFC and hippocampus, suggesting that MMP-9 plays a key role in chronic alcohol exposure and dependence.
Collapse
Affiliation(s)
- Litian Yin
- Key Laboratory for Cellular Physiology of Ministry of Education, Department of Physiology, National Key Disciplines, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Fengqing Li
- Key Laboratory for Cellular Physiology of Ministry of Education, Department of Physiology, National Key Disciplines, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jue Li
- School of Clinic, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaorong Yang
- Key Laboratory for Cellular Physiology of Ministry of Education, Department of Physiology, National Key Disciplines, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoyan Xie
- Key Laboratory for Cellular Physiology of Ministry of Education, Department of Physiology, National Key Disciplines, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Linyuan Xue
- Key Laboratory for Cellular Physiology of Ministry of Education, Department of Physiology, National Key Disciplines, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanli Li
- Key Laboratory for Cellular Physiology of Ministry of Education, Department of Physiology, National Key Disciplines, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ce Zhang
- Key Laboratory for Cellular Physiology of Ministry of Education, Department of Physiology, National Key Disciplines, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
2
|
Silva TLA, Braz GRF, Silva SCDA, Pedroza AADS, Freitas CDM, Ferreira DJS, da Silva AI, Lagranha CJ. Serotonin transporter inhibition during neonatal period induces sex-dependent effects on mitochondrial bioenergetics in the rat brainstem. Eur J Neurosci 2018; 48:1620-1634. [PMID: 29802653 DOI: 10.1111/ejn.13971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 12/29/2022]
Abstract
The serotonin reuptake is mainly regulated by the serotonin transporters (SERTs), which are abundantly found in the raphe nuclei, located in the brainstem. Previous studies have shown that dysfunction in the SERT has been associated with several disorders, including depression and cardiovascular diseases. In this manuscript, we aimed to investigate how gender and the treatment with a serotonin selective reuptake inhibitor (SSRI) could affect mitochondrial bioenergetics and oxidative stress in the brainstem of male and female rats. Fluoxetine, our chosen SSRI, was used during the neonatal period (i.e., from postnatal Day 1 to postnatal Day 21-PND1 to PND21) in both male and female animals. Thereafter, experiments were conducted in adult rats (60 days old). Our results demonstrate that, during lactation, fluoxetine treatment modulates the mitochondrial bioenergetics in a sex-dependent manner, such as improving male mitochondrial function and female antioxidant capacity.
Collapse
Affiliation(s)
- Tercya Lucidi Araujo Silva
- Neuropsychiatry and Behavioral Science Graduate Program, Federal University of Pernambuco, Recife, Brazil
| | - Glauber Rudá Feitoza Braz
- Neuropsychiatry and Behavioral Science Graduate Program, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | | | - Aline Isabel da Silva
- Neuropsychiatry and Behavioral Science Graduate Program, Federal University of Pernambuco, Recife, Brazil
| | - Claudia Jacques Lagranha
- Neuropsychiatry and Behavioral Science Graduate Program, Federal University of Pernambuco, Recife, Brazil
- Biochemistry and Physiology Graduate Program, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
3
|
Bâ A. Alcohol and thiamine deficiency trigger differential mitochondrial transition pore opening mediating cellular death. Apoptosis 2017; 22:741-752. [DOI: 10.1007/s10495-017-1372-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Jung ME, Metzger DB. A sex difference in oxidative stress and behavioral suppression induced by ethanol withdrawal in rats. Behav Brain Res 2016; 314:199-214. [PMID: 27503149 DOI: 10.1016/j.bbr.2016.07.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/25/2016] [Accepted: 07/30/2016] [Indexed: 12/19/2022]
Abstract
Ethanol withdrawal (EW) is referred to the abrupt termination of long-term heavy drinking, and provokes oxidative brain damage. Here, we investigated whether the cerebellum and hippocampus of female rats are less affected by prooxidant EW than male rats due to the antioxidant effect of 17β-estradiol (E2). Female and male rats received a four-week ethanol diet and three-week withdrawal per cycle for two cycles. Some female rats were ovariectomized with E2 or antioxidant (Vitamin E+Co-Q10) treatment. Measurements were cerebellum (Rotarod) and hippocampus (water-maze)-related behaviors, oxidative markers (O2(-), malondialdehyde, protein carbonyls), mitochondrial membrane swelling, and a key mitochondrial enzyme, cytochrome c oxidase (CcO). Separately, HT22 (hippocampal) cells were subjected to ethanol-exposure and withdrawal for two cycles to assess the effect of a CcO inhibitor on E2's protection for mitochondrial respiration and cell viability. Ethanol-withdrawn female rats showed a smaller increase in oxidative markers in cerebellum and hippocampus than male rats, and E2 treatment decreased the oxidative markers. Compared to male counterparts, ethanol-withdrawn female rats showed better Rotarod but poorer water-maze performance, accompanied by more severe mitochondrial membrane swelling and CcO suppression in hippocampus. E2 or antioxidant treatment improved Rotarod but not water-maze performance. In the presence of a CcO inhibitor, E2 treatment failed to protect mitochondrial respiration and cell viability from EW. These data suggest that antioxidant E2 contributes to smaller oxidative stress in ethanol-withdrawn female than male rats. They also suggest that EW-induced severe mitochondrial damage in hippocampus may blunt E2's antioxidant protection for hippocampus-related behavior.
Collapse
Affiliation(s)
- Marianna E Jung
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, USA.
| | - Daniel B Metzger
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, USA
| |
Collapse
|
5
|
Abstract
Cerebellar disorders trigger the symptoms of movement problems, imbalance, incoordination, and frequent fall. Cerebellar disorders are shown in various CNS illnesses including a drinking disorder called alcoholism. Alcoholism is manifested as an inability to control drinking in spite of adverse consequences. Human and animal studies have shown that cerebellar symptoms persist even after complete abstinence from drinking. In particular, the abrupt termination (ethanol withdrawal) of long-term excessive ethanol consumption has shown to provoke a variety of neuronal and mitochondrial damage to the cerebellum. Upon ethanol withdrawal, excitatory neurotransmitter molecules such as glutamate are overly released in brain areas including cerebellum. This is particularly relevant to the cerebellar neuronal network as glutamate signals are projected to Purkinje neurons through granular cells that are the most populated neuronal type in CNS. This excitatory neuronal signal may be elevated by ethanol withdrawal stress, which promotes an increase in intracellular Ca(2+) level and a decrease in a Ca(2+)-binding protein, both of which result in the excessive entry of Ca(2+) to the mitochondria. Subsequently, mitochondria undergo a prolonged opening of mitochondrial permeability transition pore and the overproduction of harmful free radicals, impeding adenosine triphosphate (ATP)-generating function. This in turn provokes the leakage of mitochondrial molecule cytochrome c to the cytosol, which triggers a cascade of adverse cytosol reactions. Upstream to this pathway, cerebellum under the condition of ethanol withdrawal has shown aberrant gene modifications through altered DNA methylation, histone acetylation, or microRNA expression. Interplay between these events and molecules may result in functional damage to cerebellar mitochondria and consequent neuronal degeneration, thereby contributing to motoric deficit. Mitochondria-targeting research may help develop a powerful new therapy to manage cerebellar disorders associated with hyperexcitatory CNS disorders like ethanol withdrawal.
Collapse
Affiliation(s)
- Marianna E Jung
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107-2699, USA,
| |
Collapse
|
6
|
Jung ME, Metzger DB. Aberrant histone acetylation promotes mitochondrial respiratory suppression in the brain of alcoholic rats. J Pharmacol Exp Ther 2015; 352:258-66. [PMID: 25406171 PMCID: PMC4293440 DOI: 10.1124/jpet.114.219311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/17/2014] [Indexed: 11/22/2022] Open
Abstract
The acetylation of histone proteins in the core of DNA regulates gene expression, including those affecting mitochondria. Both histone acetylation and mitochondrial deficit have been implicated in neuronal damage associated with drinking problems. Many alcoholics will repeat unsuccessful attempts at abstaining, developing a pattern of repeated drinking and withdrawal. We investigated whether aberrant histone acetylation contributes to mitochondrial and cellular damage induced by repeated ethanol withdrawal (EW). We also investigated whether this effect of histone acetylation involves let-7f, a small noncoding RNA (microRNA). Male rats received two cycles of an ethanol/control diet (7.5%, 4 weeks) and withdrawal. Their prefrontal cortex was collected to measure the mitochondrial respiration and histone acetylation using extracellular flux (XF) real-time respirometry and gold immunostaining, respectively. Separately, HT22 (mouse hippocampal) cells received two cycles of ethanol exposure (100 mM, 20 hours) and withdrawal. Trichostatin A (TSA) as a histone acetylation promoter and let-7f antagomir were applied during withdrawal. The mitochondrial respiration, let-7f level, and cell viability were assessed using XF respirometry, quantitative polymerase chain reaction, TaqMan let-7f primers, and a calcein-acetoxymethyl assay, respectively. Repeated ethanol withdrawn rats showed a more than 2-fold increase in histone acetylation, accompanied by mitochondrial respiratory suppression. EW-induced mitochondrial respiratory suppression was exacerbated by TSA treatment in a manner that was attenuated by let-7f antagomir cotreatment. TSA treatment did not alter the increasing effect of EW on the let-7f level but dramatically exacerbated the cell death induced by EW. These data suggest that the multiple episodes of withdrawal from chronic ethanol impede mitochondrial and cellular integrity through upregulating histone acetylation, independent of or additively with let-7f.
Collapse
Affiliation(s)
- Marianna E Jung
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas
| | - Daniel B Metzger
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
7
|
Han J, Zhang Z, Yang S, Wang J, Yang X, Tan D. Betanin attenuates paraquat-induced liver toxicity through a mitochondrial pathway. Food Chem Toxicol 2014; 70:100-6. [PMID: 24799198 DOI: 10.1016/j.fct.2014.04.038] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 03/28/2014] [Accepted: 04/24/2014] [Indexed: 02/01/2023]
Abstract
We attempted to determine whether betanin (from natural pigments) that has anti-oxidant properties would be protective against paraquat-induced liver injury in Sprague-Dawley rats. Paraquat was injected intraperitoneally into rats to induce liver toxicity. The rats were randomly divided into four groups: a control group, a paraquat group, and two groups that received betanin at doses of 25 and 100mg/kg/day three days before and two days after they were administered paraquat. We evaluated liver histopathology, serum liver enzymatic activities, oxidative stress, cytochrome P450 (CYP) 3A2 mRNA expression, and mitochondrial damage. The rats that were injected with paraquat incurred liver injury, evidenced by histological changes and elevated serum aspartate aminotransferase and alanine aminotransferase levels; paraquat also led to oxidative stress, an increase of cytochrome P450 3A2 mRNA expression, and mitochondrial damage, indicated by mitochondrial membrane swelling, reduced mitochondrial cytochrome C, and apoptosis-inducing factor protein levels. Pathological damage and all of the above mentioned markers were lesser in the animals treated with betanin than in those who received paraquat alone. Betanin had a protective effect against paraquat-induced liver damage in rats. The mechanism of the protection appears to be the inhibition of CYP 3A2 expression and protection of mitochondria.
Collapse
Affiliation(s)
- Junyan Han
- College of Life Science and Engineering, Shenyang University, Shenyang city 110044, China.
| | - Zongju Zhang
- College of Life Science and Engineering, Shenyang University, Shenyang city 110044, China
| | - Shaobin Yang
- College of Life Science and Engineering, Shenyang University, Shenyang city 110044, China
| | - Jun Wang
- College of Life Science and Engineering, Shenyang University, Shenyang city 110044, China
| | - Xuelian Yang
- College of Life Science and Engineering, Shenyang University, Shenyang city 110044, China
| | - Dehong Tan
- College of Food, Shenyang Agricultural University, Shenyang city 110866, China.
| |
Collapse
|
8
|
Lamarche F, Carcenac C, Gonthier B, Cottet-Rousselle C, Chauvin C, Barret L, Leverve X, Savasta M, Fontaine E. Mitochondrial permeability transition pore inhibitors prevent ethanol-induced neuronal death in mice. Chem Res Toxicol 2013; 26:78-88. [PMID: 23268549 DOI: 10.1021/tx300395w] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ethanol induces brain injury by a mechanism that remains partly unknown. Mitochondria play a key role in cell death processes, notably through the opening of the permeability transition pore (PTP). Here, we tested the effect of ethanol and PTP inhibitors on mitochondrial physiology and cell viability both in vitro and in vivo. Direct addition of ethanol up to 100 mM on isolated mouse brain mitochondria slightly decreased oxygen consumption but did not affect PTP regulation. In comparison, when isolated from ethanol-treated (two doses of 2 g/kg, 2 h apart) 7-day-old mouse pups, brain mitochondria displayed a transient decrease in oxygen consumption but no change in PTP regulation or H2O2 production. Conversely, exposure of primary cultured astrocytes and neurons to 20 mM ethanol for 3 days led to a transient PTP opening in astrocytes without affecting cell viability and to a permanent PTP opening in 10 to 20% neurons with the same percentage of cell death. Ethanol-treated mouse pups displayed a widespread caspase-3 activation in neurons but not in astrocytes and dramatic behavioral alterations. Interestingly, two different PTP inhibitors (namely, cyclosporin A and nortriptyline) prevented both ethanol-induced neuronal death in vivo and ethanol-induced behavioral modifications. We conclude that PTP opening is involved in ethanol-induced neurotoxicity in the mouse.
Collapse
Affiliation(s)
- Frederic Lamarche
- Inserm , U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA) et SFR Biologie Environnementale et Systémique (BEeSy), Grenoble, F-38041, France
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jung M, Metzger D. Methylene blue protects mitochondrial respiration from ethanol withdrawal stress. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.47a2004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Alterations of motor performance and brain cortex mitochondrial function during ethanol hangover. Alcohol 2012; 46:473-9. [PMID: 22608205 DOI: 10.1016/j.alcohol.2011.09.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/13/2011] [Accepted: 09/16/2011] [Indexed: 10/28/2022]
Abstract
Ethanol has been known to affect various behavioral parameters in experimental animals, even several hours after ethanol (EtOH) is absent from blood circulation, in the period known as hangover. The aim of this study was to assess the effects of acute ethanol hangover on motor performance in association with the brain cortex energetic metabolism. Evaluation of motor performance and brain cortex mitochondrial function during alcohol hangover was performed in mice 6 hours after a high ethanol dose (hangover onset). Animals were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Ethanol hangover group showed a bad motor performance compared with control animals (p < .05). Oxygen uptake in brain cortex mitochondria from hangover animals showed a 34% decrease in the respiratory control rate as compared with the control group. Mitochondrial complex activities were decreased being the complex I-III the less affected by the hangover condition; complex II-III was markedly decreased by ethanol hangover showing 50% less activity than controls. Complex IV was 42% decreased as compared with control animals. Hydrogen peroxide production was 51% increased in brain cortex mitochondria from the hangover group, as compared with the control animals. Quantification of the mitochondrial transmembrane potential indicated that ethanol injected animals presented 17% less ability to maintain the polarized condition as compared with controls. These results indicate that a clear decrease in proton motive force occurs in brain cortex mitochondria during hangover conditions. We can conclude that a decreased motor performance observed in the hangover group of animals could be associated with brain cortex mitochondrial dysfunction and the resulting impairment of its energetic metabolism.
Collapse
|
11
|
Jung ME, Ju X, Metzger DB, Simpkins JW. Ethanol withdrawal hastens the aging of cytochrome c oxidase. Neurobiol Aging 2011; 33:618.e21-32. [PMID: 21439684 DOI: 10.1016/j.neurobiolaging.2011.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/18/2011] [Accepted: 02/03/2011] [Indexed: 01/01/2023]
Abstract
We investigated whether abrupt ethanol withdrawal (EW) age-specifically inhibits a key mitochondrial enzyme, cytochrome c oxidase (COX), and whether estrogen mitigates this problem. We also tested whether this possible effect of EW involves a substrate (cytochrome c) deficiency that is associated with proapoptotic Bcl2-associated X protein (BAX) and mitochondrial membrane swelling. Ovariectomized young, middle age, and older rats, with or without 17β-estradiol (E2) implantation, underwent repeated EW. Cerebelli were collected to measure COX activity and the mitochondrial membrane swelling using spectrophotometry and the mitochondrial levels of cytochrome c and BAX using an immunoblot method. The loss of COX activity and the mitochondrial membrane swelling occurred only in older rats under control diet conditions but occurred earlier, starting in the young rats under EW conditions. E2 treatment mitigated these EW effects. EW increased mitochondrial BAX particularly in middle age rats but did not alter cytochrome c. Collectively EW hastens but E2 delays the age-associated loss of COX activity. This EW effect is independent of cytochrome c but may involve the mitochondrial overload of BAX and membrane vulnerability.
Collapse
Affiliation(s)
- Marianna E Jung
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's disease, University of North Texas, Health Science Center at Fort Worth, Fort Worth, TX 76107-2699,
| | | | | | | |
Collapse
|
12
|
Alcohol withdrawal and brain injuries: beyond classical mechanisms. Molecules 2010; 15:4984-5011. [PMID: 20657404 PMCID: PMC6257660 DOI: 10.3390/molecules15074984] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/15/2010] [Accepted: 07/19/2010] [Indexed: 01/12/2023] Open
Abstract
Unmanaged sudden withdrawal from the excessive consumption of alcohol (ethanol) adversely alters neuronal integrity in vulnerable brain regions such as the cerebellum, hippocampus, or cortex. In addition to well known hyperexcitatory neurotransmissions, ethanol withdrawal (EW) provokes the intense generation of reactive oxygen species (ROS) and the activation of stress-responding protein kinases, which are the focus of this review article. EW also inflicts mitochondrial membranes/membrane potential, perturbs redox balance, and suppresses mitochondrial enzymes, all of which impair a fundamental function of mitochondria. Moreover, EW acts as an age-provoking stressor. The vulnerable age to EW stress is not necessarily the oldest age and varies depending upon the target molecule of EW. A major female sex steroid, 17β-estradiol (E2), interferes with the EW-induced alteration of oxidative signaling pathways and thereby protects neurons, mitochondria, and behaviors. The current review attempts to provide integrated information at the levels of oxidative signaling mechanisms by which EW provokes brain injuries and E2 protects against it.
Collapse
|
13
|
Jung ME, Ju X, Simpkins JW, Metzger DB, Yan LJ, Wen Y. Ethanol withdrawal acts as an age-specific stressor to activate cerebellar p38 kinase. Neurobiol Aging 2010; 32:2266-78. [PMID: 20122756 DOI: 10.1016/j.neurobiolaging.2010.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 12/17/2009] [Accepted: 01/07/2010] [Indexed: 11/28/2022]
Abstract
We investigated whether protein kinase p38 plays a role in the brain-aging changes associated with repeated ethanol withdrawal (EW). Ovariectomized young, middle-age and older rats, with or without 17β-estradiol (E2) implantation, received a 90-day ethanol with repeated withdrawal. They were tested for active pP38 expression in cerebellar Purkinje neurons and whole-cerebellar lysates using immunohistochemistry and enzyme-linked immunosorbent assay, respectively. They were also tested for the Rotarod task to determine the behavioral manifestation of cerebellar neuronal stress and for reactive oxygen species (ROS) and mitochondrial protein carbonyls to determine oxidative mechanisms. Middle-age EW rats showed higher levels of pP38-positive Purkinje neurons/cerebellar lysates, which coincided with increased mitochondrial protein oxidation than other diet/age groups. Exacerbated motor deficit due to age-EW combination also began at the middle-age. In comparison, ROS contents peaked in older EW rats. E2 treatment mitigated each of the EW effects to a different extent. Collectively, pP38 may mediate the brain-aging changes associated with pro-oxidant EW at vulnerable ages and in vulnerable neurons in a manner protected by estrogen.
Collapse
Affiliation(s)
- Marianna E Jung
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's disease, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Prokai-Tatrai K, Prokai L, Simpkins JW, Jung ME. Phenolic compounds protect cultured hippocampal neurons against ethanol-withdrawal induced oxidative stress. Int J Mol Sci 2009; 10:1773-1787. [PMID: 19468338 PMCID: PMC2680646 DOI: 10.3390/ijms10041773] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 03/27/2009] [Accepted: 04/15/2009] [Indexed: 12/16/2022] Open
Abstract
Ethanol withdrawal is linked to elevated oxidative damage to neurons. Here we report our findings on the contribution of phenolic antioxidants (17beta-estradiol, p-octyl-phenol and 2,6-di-tert-butyl-4-methylphenol) to counterbalance sudden ethanol withdrawal-initiated oxidative events in hippocampus-derived cultured HT-22 cells. We showed that ethanol withdrawal for 4 h after 24-h ethanol treatment provoked greater levels of oxidative damage than the preceding ethanol exposure. Phenolic antioxidant treatment either during ethanol exposure or ethanol withdrawal only, however, dose-dependently reversed cellular oxidative damage, as demonstrated by the significantly enhanced cell viability, reduced malondialdehyde production and protein carbonylation, compared to untreated cells. Interestingly, the antioxidant treatment schedule had no significant impact on the observed neuroprotection. In addition, the efficacy of the three phenolic compounds was practically equipotent in protecting HT-22 cells in spite of predictions based on an in silico study and a cell free assay of lipid peroxidation. This finding implies that free-radical scavenging may not be the sole factor responsible for the observed neuroprotection and warrants further studies to establish, whether the HT-22 line is indeed a suitable model for in vitro screening of antioxidants against EW-related neuronal damage.
Collapse
Affiliation(s)
- Katalin Prokai-Tatrai
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; E-Mails:
(J.W.S.);
(M.E.J.)
| | - Laszlo Prokai
- Department of Molecular Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX, USA; E-Mail:
| | - James W. Simpkins
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; E-Mails:
(J.W.S.);
(M.E.J.)
| | - Marianna E. Jung
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; E-Mails:
(J.W.S.);
(M.E.J.)
| |
Collapse
|