1
|
Amer MFA, Hattab D, Bakhtiar A. Anticancer potential of synthetic costunolide and dehydrocostus lactone derivatives: A systematic review. Eur J Med Chem 2025; 291:117648. [PMID: 40273662 DOI: 10.1016/j.ejmech.2025.117648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Costunolide (Cos) and dehydrocostus lactone (DhC) are naturally occurring sesquiterpene lactones with potent anticancer properties. Despite their promising bioactivity, limitations such as poor solubility, metabolic instability, and off-target toxicity restrict their clinical application. To overcome these challenges, synthetic derivatives have been developed to enhance cytotoxicity, selectivity, and pharmacokinetics. METHOD ology: Following Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines, a systematic literature was conducted across PubMed, SciFinder, ScienceDirect, Scopus, and Wiley Online Library. Thirteen studies published between 2006 and 2024 met the inclusion criteria, focusing on the anticancer properties of synthetic Cos and DhC derivatives. RESULTS Synthetic modifications, particularly amino and triazole conjugations, improved tumor selectivity and water solubility, while maintaining or enhancing cytotoxic potency. The most effective derivatives induced apoptosid, cell cycle arrest, and oxidative stress in various cancer cell lines. However, pharmacokinetic data remain limited, and only one study included in vivo evaluation. CONCLUSION Synthetic derivatives of Cos and DhC exhibit enhanced anticancer potential and improved pharmacokinetic properties, making them promising candidates for drug potential. However, further in vivo studies and clinical trials are necessary to validate their therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Mumen F A Amer
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Dima Hattab
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
2
|
Utpal BK, Bouenni H, Zehravi M, Sweilam SH, Mortuza MR, Arjun UVNV, Shanmugarajan TS, Mahesh PG, Roja P, Dodda RK, Thilagam E, Almahjari MS, Rab SO, Koula D, Emran TB. Exploring natural products as apoptosis modulators in cancers: insights into natural product-based therapeutic strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03876-8. [PMID: 40014131 DOI: 10.1007/s00210-025-03876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/02/2025] [Indexed: 02/28/2025]
Abstract
Cancer remains a leading cause of mortality globally, necessitating ongoing research and development of innovative therapeutic strategies. Natural products from plants, herbs, and marine species have shown great promise as anti-cancer therapies due to their bioactive components that alter cellular pathways, particularly apoptosis. This review explores the mechanism by which natural chemicals trigger the apoptosis of cancerous cells, which is crucial for eliminating them and halting tumor growth. These can affect the mitochondrial process by controlling the Bcl-2 protein family, increasing cytochrome c release, and activating caspases. They also activate death receptors like Fas and TRAIL to enhance the extrinsic apoptotic pathway. We focus on the main signaling channels involved, such as the endoplasmic reticulum (ER) stress-mediated apoptosis, extrinsic death receptor, and intrinsic mitochondrial pathways. The review explores the role of natural substances such as polyphenols, terpenoids, alkaloids, and flavonoids in promoting apoptotic cell death and increasing cancer cell susceptibility, potentially aiding in cancer treatments and the potential of combining natural products with traditional chemotherapeutic medicines to combat medication resistance and enhance therapeutic efficacy. Understanding cancer development involves inhibiting cell proliferation, regulating it, targeting apoptosis pathways, and using plant and marine extracts as apoptotic inducers.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Hasna Bouenni
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Cairo, Egypt
| | | | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Ponnammal Ganesan Mahesh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Pathakota Roja
- Department of Pharmacology, Sree Dattha Institute of Pharmacy, Sheriguda, Ibrahimpatnam, Hyderabad, Telangana, 501510, India
| | - Ravi Kalyan Dodda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - E Thilagam
- Department of Pharmacognosy, JKKMMRF'S-ANNAI JKK Sampooorani Ammal College of Pharmacy, Ethirmedu, Komarapalayam (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chennai), India
| | - Mohammed Saeed Almahjari
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Doukani Koula
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
- Laboratory of Animal Production Sciences and Techniques, University of Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| |
Collapse
|
3
|
Abdo BM, Asfaw BT, Choudhary MI, Yousuf S, Mengesha WA, Mekonnen SA. Bioassay-guided isolation of dehydrocostus lactone from Echinops kebericho as a leishmanicidal drug. Heliyon 2024; 10:e36818. [PMID: 39319168 PMCID: PMC11419915 DOI: 10.1016/j.heliyon.2024.e36818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Several strains of Leishmania parasite are involved in the occurrence of leishmaniasis infections, which makes its prevention and treatment very challenging. Currently, all forms of leishmaniasis are being treated with chemical drugs, which have limitations and adverse effects. Discovering antileishmanial agents from natural sources can lead to novel drugs against this dreadful disease. The essential oils and nonpolar solvent extracts of the roots of E. kebericho exhibit antileishmanial activity. Thus, the isolation of the leishmanicidal compounds from the roots of E. kebericho through a bioassay-guided technique was carried out in this study. The present finding showed that the essential oil and hexane fraction of crude extract from the roots of E. kebericho possessed significant leishmanicidal activity against L. major and L. tropica. Dehydrocostus lactone (1), one of the major constituents of the essential oil and hexane fraction, was more active than the standard drug miltefosine against L. major and L. tropica promastigotes. The presence of α-methylene, γ-lactone is the responsible moiety of dehydrocostus lactone towards the leishmanicidal activity against the tested Leishmania species. The MTT assay of dehydrocostus lactone showed inactive toxicity against the human cervical carcinoma HeLa cells. In addition, dehydrocostus lactone exhibits a broad spectrum of antibiotic activities. Based on this interesting finding, dehydrocostus lactone was identified as a potential lead for treating infections caused by Leishmania.
Collapse
Affiliation(s)
- Bekri Melka Abdo
- Wendo Genet Natural Product Research Laboratory, Ethiopian Institute of Agricultural Research, Addis Ababa, 2003, Ethiopia
| | | | - M. Iqbal Choudhary
- International Center for Chemical and Biological Science, University of Karachi, Karachi, 75270, Pakistan
| | - Sammer Yousuf
- International Center for Chemical and Biological Science, University of Karachi, Karachi, 75270, Pakistan
| | - Wendawek Abebe Mengesha
- Department of Molecular, Cellular, and Microbial Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Abate Mekonnen
- Food Science and Nutrition Research Process, Ethiopian Institute of Agricultural Research, Addis Ababa 2003, Ethiopia
| |
Collapse
|
4
|
Wang X, Meng F, Mao J. Progress of natural sesquiterpenoids in the treatment of hepatocellular carcinoma. Front Oncol 2024; 14:1445222. [PMID: 39081717 PMCID: PMC11286475 DOI: 10.3389/fonc.2024.1445222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma is one of the common malignant tumors of digestive tract, which seriously threatens the life of patients due to its high incidence rate, strong invasion, metastasis, and prognosis. At present, the main methods for preventing and treating HCC include medication, surgery, and intervention, but patients frequently encounter with specific adverse reactions or side effects. Many Traditional Chinese medicine can improve liver function, reduce liver cancer recurrence and have unique advantages in the treatment of HCC because of their acting mode of multi-target, multi-pathway, multi-component, and multi-level. Sesquiterpenoids, a class of natural products which are widely present in nature and exhibit good anti-tumor activity, and many of them possess good potential for the treatment of HCC. This article reviewed the anti-tumor activities, natural resources, pharmacological mechanism of natural sesquiterpenoids against HCC, providing the theoretical basis for the prevention and treatment of HCC and a comprehensive understanding of their potential for development of new clinical drugs.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Fancheng Meng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jingxin Mao
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Hsu CY, Rajabi S, Hamzeloo-Moghadam M, Kumar A, Maresca M, Ghildiyal P. Sesquiterpene lactones as emerging biomolecules to cease cancer by targeting apoptosis. Front Pharmacol 2024; 15:1371002. [PMID: 38529189 PMCID: PMC10961375 DOI: 10.3389/fphar.2024.1371002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Apoptosis is a programmed cell death comprising two signaling cascades including the intrinsic and extrinsic pathways. This process has been shown to be involved in the therapy response of different cancer types, making it an effective target for treating cancer. Cancer has been considered a challenging issue in global health. Cancer cells possess six biological characteristics during their developmental process known as cancer hallmarks. Hallmarks of cancer include continuous growth signals, unlimited proliferation, resistance to proliferation inhibitors, apoptosis escaping, active angiogenesis, and metastasis. Sesquiterpene lactones are one of the large and diverse groups of planet-derived phytochemicals that can be used as sources for a variety of drugs. Some sesquiterpene lactones possess many biological activities such as anti-inflammatory, anti-viral, anti-microbial, anti-malarial, anticancer, anti-diabetic, and analgesic. This review article briefly overviews the intrinsic and extrinsic pathways of apoptosis and the interactions between the modulators of both pathways. Also, the present review summarizes the potential effects of sesquiterpene lactones on different modulators of the intrinsic and extrinsic pathways of apoptosis in a variety of cancer cell lines and animal models. The main purpose of the present review is to give a clear picture of the current knowledge about the pro-apoptotic effects of sesquiterpene lactones on various cancers to provide future direction in cancer therapeutics.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
6
|
Kumar R, Bhardwaj P, Soni M, Singh R, Choudhary S, Virmani N, Asrani RK, Patial V, Sharma D, Gupta VK, Tripathi BN. Modulation of mammary tumour progression using murine model by ethanol root extract of Saussurea costus (falc.) lipsch. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117302. [PMID: 37858751 DOI: 10.1016/j.jep.2023.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Breast cancer is a major cause of death among human females across the globe. The anti-neoplastic agents or therapies used for the treatment of cancers can enhance longevity but are subsequently observed to deteriorate the quality of life due to the extensive side effects produced. Saussurea costus is a potential medicinal plant of the Himalayas with noticeable ethnopharmacological properties. The phytochemicals present in Saussurea costus are responsible for anti-carcinogenic potential and warranted nil or minimal side effects of Saussurea costus and directed to use this plant as a preventive or therapeutic drug candidate against cancers. AIM OF THE STUDY The present study was planned to evaluate the anti-neoplastic activity of Saussurea costus root extract (SL) in rat mammary tumour model. MATERIALS AND METHODS The anti-neoplastic activity of SL root extract at 3 different doses (100, 250 and 500 mg/kg BW) for 18 weeks against 12-dimethylbenz (a) anthracene (DMBA)-induced mammary tumours in Sprague Dawley (SD) female rats was analyzed through serum biochemistry (ALT, AST, ALP, Total protein, Creatinine and BUN), oxidative stress parameters (Lipid peroxidation, Catalase and Reduced glutathione), pro-inflammatory cytokines (TNF-α and NF-κB), immunohistochemical markers (Ki-67, MMP-9 and VEGF), real-time PCR (PCNA, p53, bax, bcl-2 and caspase-3, genes) and molecular docking. RESULTS Inhibition of tumour parameters, minimal alteration in the liver (ALT, AST and ALP) and kidney enzymes (Creatinine and BUN), decreased activity of MDA, elevated levels of GSH and catalase, reduction in the levels of pro-inflammatory cytokines i.e. TNF-α and NF-κB, reduced gross and histomorphological changes, declined expression of Ki-67, MMP-9 and VEGF in vivo rat model, mRNA expression of cancer-related genes and docking of dehydrocostus lactone and costunolide with NF-κB and TNF-α demonstrated the chemopreventive action of SL root extract. CONCLUSIONS The in-vivo trial elucidates anti-neoplastic activity of Saussurea costus root extract as demonstrated through the reduction of biochemical indices, oxidative stress parameters, histological changes, pro-inflammatory cytokines (NF-κB and TNF-α), cellular proliferation (Ki-67), metastases (MMP-9) and neovascularization (VEGF) markers with highest anti-neoplastic effect of SL extract at the dose of 500 mg/kg body weight. Therefore, the present study signifies the need to use the active principles present in the root extract of Saussurea costus against breast cancer as a therapeutic regimen.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Veterinary Pathology, Dr. G.C Negi College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, 176062, India.
| | - Pallavi Bhardwaj
- Department of Veterinary Pharmacology and Toxicology, Dr. G.C Negi College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, 176062, India
| | - Mridul Soni
- Department of Veterinary Pathology, Dr. G.C Negi College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, 176062, India
| | - Rahul Singh
- Department of Veterinary Pathology, Dr. G.C Negi College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, 176062, India
| | - Sahil Choudhary
- Department of Veterinary Pathology, Dr. G.C Negi College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, 176062, India
| | - Nitin Virmani
- ICAR- National Research Centre on Equines, Sirsa Road, Hisar, Haryana, 125001, India
| | - R K Asrani
- Department of Veterinary Pathology, Dr. G.C Negi College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, 176062, India
| | - Vikram Patial
- Division of Dietetics and Nutrition Technology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Dixit Sharma
- Department of Animal Sciences, Central University of Himachal Pradesh, Sahpur, Kangra, Himachal Pradesh, 176062, India
| | - V K Gupta
- Department of Veterinary Pathology, Dr. G.C Negi College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, 176062, India
| | - B N Tripathi
- Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST) of Jammu, Jammu and Kashmir, 180009, India.
| |
Collapse
|
7
|
Wu S, Bai X, Cai L, Ke Q, Zhang X. Dehydrocostus lactone (DHC) promotes osteoblastic differentiation and mineralization through p38/RUNX-2 signaling. J Biochem Mol Toxicol 2024; 38:e23601. [PMID: 38069819 DOI: 10.1002/jbt.23601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/09/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Dysregulation of osteoblastic differentiation is an important risk factor of osteoporosis, the therapy of which is challenging. Dehydrocostus lactone (DHC), a sesquiterpene isolated from medicinal plants, has displayed anti-inflammatory and antitumor properties. In this study, we investigated the effects of DHC on osteoblastic differentiation and mineralization of MC3T3-E1 cells. Interestingly, we found that DHC increased the expression of marker genes of osteoblastic differentiation, such as alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). Additionally, DHC increased the expressions of collagen type I alpha 1 (Col1a1) and collagen type I alpha 2 (Col1a2). We also demonstrate that DHC increased ALP activity. Importantly, the Alizarin Red S staining assay revealed that DHC enhanced osteoblastic differentiation of MC3T3-E1 cells. Mechanistically, it is shown that DHC increased the expression of Runx-2, a central regulator of osteoblastic differentiation. Treatment with DHC also increased the levels of phosphorylated p38, and its blockage using its specific inhibitor SB203580 abolished the effects of DHC on runt-related transcription factor 2 (Runx-2) expression and osteoblastic differentiation, suggesting the involvement of p38. Based on these findings, we concluded that DHC might possess a capacity for the treatment of osteoporosis by promoting osteoblastic differentiation.
Collapse
Affiliation(s)
- Shiqiang Wu
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiaoming Bai
- The Second Clinical College, Fujian Medical University, Quanzhou, China
| | - Liquan Cai
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qingfeng Ke
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiaolu Zhang
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
8
|
El Sayed SM. Al-Hijamah (Prophetic Wet Cupping Therapy) is a Novel Adjuvant Treatment for Viral Hepatitis That Excretes Viral Particles and Excess Ferritin Percutaneously, Synergizes Pharmacotherapy, Enhances Antiviral Immunity and Helps Better HCC Prevention and Treatment: A Novel Evidence-Based Combination with Prophetic Medicine Remedies. J Hepatocell Carcinoma 2023; 10:1527-1546. [PMID: 37727876 PMCID: PMC10505647 DOI: 10.2147/jhc.s409526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/12/2023] [Indexed: 09/21/2023] Open
Abstract
Viral hepatitis progresses to liver cirrhosis and HCC. Several challenges are facing Sovaldi treatment to viral C hepatitis, eg, viral resistance, difficulty to treat all genotypes, and inability to access treatments in low-income countries. Also, current treatments to Hepatitis B are still challenging. Ideal treatments to viral hepatitis should decrease the viral load, enhance antiviral immunity and repair the viruses-induced tissue damage. That is still beyond reach. High serum ferritin in viral hepatitis correlates with chronicity, increased necro-inflammation, hepatotoxicity, progression to cirrhosis, progression to HCC, unresponsiveness to treatments and viremia. Previously, Al-hijamah (wet cupping therapy of prophetic medicine) significantly cleared thalassemic children of causative pathological substances (CPS), eg, excess ferritin, free radicals and serum lipids. Moreover, Al-hijamah significantly increased the antioxidant power and potentiated the natural antiviral immunity, eg, increasing CD4 count, CD8 count and CD4/CD8 ratio. Prophet Muhammad peace be upon him said: "If there is a benenvolence (benefit) in any of your medicines, benefit will be in shrtat mihjam (Al-hijamah), honey drink, and a stinge of fire compatible with disease and I do not like to cauterize". Likewise, the author suggests Al-hijamah as a novel promising adjuvant treatment for viral hepatitis (B and C) for percutaneous excretion of CPS as hepatitis viral particles, excess ferritin, inflammatory mediators, free radicals, and antigen-antibody complexes. Published reports proved that Al-hijamah exerted tissue-protective effects, and cleared blood through the fenestrated skin capillaries in a pressure-dependent and size-dependent manner (a kidney-like manner). That collectively may decrease the viral load for better HCC prevention and supports the evidence-based Taibah theory (Taibah mechanism). Same therapeutic benefits apply to other viral illnesses as AIDS. Even after HCC development, Al-hijamah is quite mandatory for excretion and clearance of CPS that favor malignancy, eg, lactate (Warburg effect), growth factors, metalloproteinases, and others. Al-hijamah-induced immune potentiation benefits HCC patients. Combining Al-hijamah with other natural antioxidant remedies of prophetic medicine, eg, nigella sativa, costus, natural honey, Zamzam water and others will maximize the therapeutic benefits. In conclusion, Al-hijamah and other prophetic medicine remedies are recommended adjuvants to current pharmacological treatments to viral hepatitis and HCC.
Collapse
Affiliation(s)
- Salah Mohamed El Sayed
- Al-Hijamah Clinic, Medical University Center, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Clinical Biochemistry & Molecular Medicine, Taibah College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Sohag University, Sohag, Egypt
- Prophetic Medicine Course & Research, Taibah College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| |
Collapse
|
9
|
Shen J, Yang Z, Wu X, Yao G, Hou M. Baicalein facilitates gastric cancer cell apoptosis by triggering endoplasmic reticulum stress via repression of the PI3K/AKT pathway. APPLIED BIOLOGICAL CHEMISTRY 2023; 66:10. [PMID: 36815904 PMCID: PMC9924871 DOI: 10.1186/s13765-022-00759-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Gastric cancer (GC) remains a prevailing threat to life. Baicalein exhibits anti-cancer properties. This study estimated the mechanism of baicalein in GC cell apoptosis by mediating endoplasmic reticulum stress (ERS) through the PI3K/AKT pathway. METHODS After treatment with different concentrations of baicalein, GC cell (HGC-27 and AGS) viability was detected by MTT assay. AGS cells more sensitive to baicalein treatment were selected as study subjects. The IC50 of baicalein on AGS cells was determined. Colony formation, cell cycle, and apoptosis were detected using crystal violet staining and flow cytometry. Levels of ERS-related and BTG3/PI3K/AKT pathway-related proteins were determined by Western blot. Intracellular Ca2+ level was measured using Fluo-3 AM fluorescence working solution. GC mouse models were established by subcutaneously injecting AGS cells into the right rib and were intragastrically administrated with baicalein. Tumor volume and weight were recorded. Expression of Ki67 in tumor tissues and positive expression of apoptotic cells were detected by immunohistochemistry and TUNEL staining. RESULTS Baicalein inhibited cell proliferation and induced G0/G1 arrest and apoptosis by regulating the cell cycle, and triggered ERS in GC cells. Baicalein impeded the PI3K/AKT pathway by activating BTG3, thereby triggering ERS and inducing apoptosis. BTG3 inhibition reversed baicalein-induced apoptosis and ERS. Baicalein regulated GC cells in a concentration-dependent manner. Moreover, in xenograft mice, baicalein prevented tumor growth, decreased Ki67-positive cells, activated BTG3, and inhibited the PI3K/AKT pathway, thus activating ERS and increasing apoptotic cells. CONCLUSION Baicalein facilitates GC cell apoptosis by triggering ERS via repression of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Junjie Shen
- Nanjing University of Chinese Medicine, Nanjing, 210029 Jiangsu province China
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
| | - Zhiwen Yang
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
| | - Xinlin Wu
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
| | - Guodong Yao
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
| | - Mingxing Hou
- Nanjing University of Chinese Medicine, Nanjing, 210029 Jiangsu province China
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
- The Affiliated Hospital of Inner Mongolia Medical University, No. 1, Datong North Street, Huimin District, 010050 Hohhot, Inner Mongolia China
| |
Collapse
|
10
|
Ajoolabady A, Kaplowitz N, Lebeaupin C, Kroemer G, Kaufman RJ, Malhi H, Ren J. Endoplasmic reticulum stress in liver diseases. Hepatology 2023; 77:619-639. [PMID: 35524448 PMCID: PMC9637239 DOI: 10.1002/hep.32562] [Citation(s) in RCA: 168] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 02/02/2023]
Abstract
The endoplasmic reticulum (ER) is an intracellular organelle that fosters the correct folding of linear polypeptides and proteins, a process tightly governed by the ER-resident enzymes and chaperones. Failure to shape the proper 3-dimensional architecture of proteins culminates in the accumulation of misfolded or unfolded proteins within the ER, disturbs ER homeostasis, and leads to canonically defined ER stress. Recent studies have elucidated that cellular perturbations, such as lipotoxicity, can also lead to ER stress. In response to ER stress, the unfolded protein response (UPR) is activated to reestablish ER homeostasis ("adaptive UPR"), or, conversely, to provoke cell death when ER stress is overwhelmed and sustained ("maladaptive UPR"). It is well documented that ER stress contributes to the onset and progression of multiple hepatic pathologies including NAFLD, alcohol-associated liver disease, viral hepatitis, liver ischemia, drug toxicity, and liver cancers. Here, we review key studies dealing with the emerging role of ER stress and the UPR in the pathophysiology of liver diseases from cellular, murine, and human models. Specifically, we will summarize current available knowledge on pharmacological and non-pharmacological interventions that may be used to target maladaptive UPR for the treatment of nonmalignant liver diseases.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Cardiology, Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Neil Kaplowitz
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cynthia Lebeaupin
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jun Ren
- Department of Cardiology, Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Z-Guggulsterone Is a Potential Lead Molecule of Dawa-ul-Kurkum against Hepatocellular Carcinoma. Molecules 2022; 27:molecules27165104. [PMID: 36014345 PMCID: PMC9413334 DOI: 10.3390/molecules27165104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
An ancient saffron-based polyherbal formulation, Dawa-ul-Kurkum (DuK), has been used to treat liver ailments and other diseases and was recently evaluated for its anticancer potential against hepatocellular carcinoma (HCC) by our research team. To gain further insight into the lead molecule of DuK, we selected ten active constituents belonging to its seven herbal constituents (crocin, crocetin, safranal, jatamansone, isovaleric acid, cinnamaldehyde, coumaric acid, citral, guggulsterone and dehydrocostus lactone). We docked them with 32 prominent proteins that play important roles in the development, progression and suppression of HCC and those involved in endoplasmic reticulum (ER) stress to identify the binding interactions between them. Three reference drugs for HCC (sorafenib, regorafenib, and nivolumab) were also examined for comparison. The in silico studies revealed that, out of the ten compounds, three of them—viz., Z-guggulsterone, dehydrocostus lactone and crocin—showed good binding efficiency with the HCC and ER stress proteins. Comparison of binding affinity with standard drugs was followed by preliminary in vitro screening of these selected compounds in human liver cancer cell lines. The results provided the basis for selecting Z-guggulsterone as the best-acting phytoconstituent amongst the 10 studied. Further validation of the binding efficiency of Z-guggulsterone was undertaking using molecular dynamics (MD) simulation studies. The effects of Z-guggulsterone on clone formation and cell cycle progression were also assessed. The anti-oxidant potential of Z-guggulsterone was analyzed through DPPH and FRAP assays. qRTPCR was utilized to check the results at the in vitro level. These results indicate that Z-guggulsterone should be considered as the main constituent of DuK instead of the crocin in saffron, as previously hypothesized.
Collapse
|
12
|
Kamran S, Sinniah A, Abdulghani MAM, Alshawsh MA. Therapeutic Potential of Certain Terpenoids as Anticancer Agents: A Scoping Review. Cancers (Basel) 2022; 14:1100. [PMID: 35267408 PMCID: PMC8909202 DOI: 10.3390/cancers14051100] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is a life-threatening disease and is considered to be among the leading causes of death worldwide. Chemoresistance, severe toxicity, relapse and metastasis are the major obstacles in cancer therapy. Therefore, introducing new therapeutic agents for cancer remains a priority to increase the range of effective treatments. Terpenoids, a large group of secondary metabolites, are derived from plant sources and are composed of several isoprene units. The high diversity of terpenoids has drawn attention to their potential anticancer and pharmacological activities. Some terpenoids exhibit an anticancer effect by triggering various stages of cancer progression, for example, suppressing the early stage of tumorigenesis via induction of cell cycle arrest, inhibiting cancer cell differentiation and activating apoptosis. At the late stage of cancer development, certain terpenoids are able to inhibit angiogenesis and metastasis via modulation of different intracellular signaling pathways. Significant progress in the identification of the mechanism of action and signaling pathways through which terpenoids exert their anticancer effects has been highlighted. Hence, in this review, the anticancer activities of twenty-five terpenoids are discussed in detail. In addition, this review provides insights on the current clinical trials and future directions towards the development of certain terpenoids as potential anticancer agents.
Collapse
Affiliation(s)
- Sareh Kamran
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.K.); (A.S.)
| | - Ajantha Sinniah
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.K.); (A.S.)
| | - Mahfoudh A. M. Abdulghani
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Al Qassim 51911, Saudi Arabia;
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.K.); (A.S.)
| |
Collapse
|
13
|
Huang Z, Wei C, Yang K, Yu Z, Wang Z, Hu H. Aucklandiae Radix and Vladimiriae Radix: A systematic review in ethnopharmacology, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114372. [PMID: 34186101 DOI: 10.1016/j.jep.2021.114372] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aucklandiae Radix (AR) and Vladimiriae Radix (VR), as commonly used traditional Chinese herbal medicine, were widely used in the treatment of gastrointestinal diseases. The two herbal medicines were warm, pungent and bitter. They entered the spleen, stomach, large intestine and gallbladder meridians, and had the effect of promoting qi circulation to relieve pain. It is usually used for chest and hypochondrium, abdominal fullness and pain, tenesmus, indigestion, and warming the middle to harmonize the stomach in clinically. AIM OF THIS REVIEW To provide a reference for the identification of traditional use, the material basis of efficacy and preclinical research between AR and VR, this review systematically summarized the similarities and differences in ethnopharmacology, phytochemistry and modern pharmacology. MATERIALS AND METHODS The literature information was collected systematically from the electronic scientific databases, including PubMed, Science Direct, Google Scholar, Web of Science, Geen Medical, China National Knowledge Infrastructure, as well as other literature sources, such as classic books of herbal medicine, master's thesis, doctoral thesis. RESULTS In the plateau areas of Sichuan Province, VR used to be regarded as substitute or local habit for AR, which is regularly used for chest, abdominal fullness and pain, diarrhea, and other related diseases. In Chinese Pharmacopoeia (ChP) 2020 edition, 145 prescription preparations with AR were collected, such as Xianglian Wan, Muxiang Shunqi Wan, Liuwei Muxiang San. However, only one prescription preparation (Jiuxiang Zhitong Wan) contained VR. Additionally, 237 and 254 chemical components were separately isolated and identified from AR and VR, 69 kinds of compounds were common among them, and the significant differences were presented in sesquiterpene lactones, monoterpenoids, triterpenoids and phenylpropanoids. Moreover, Costunolide (COS) and Dehydrocostus lactone (DEH), two main research objects of modern pharmacology, showed multiple pharmacological activities. Not only could they inhibit the activity of some cancer cells (such as breast cancer and leukemia cells), but they regulated the levels of various inflammatory factors (including TNF-α, NF-κB, IL-1β, IL-6) and repressed the growth and reproduction of various microorganisms (like Helicobacter pylori, Staphylococcus aureus). CONCLUSION COS and DEH as the common active components, provide a certain basis for local medicine about the substitution of VR for AR in Sichuan province of China in the past. In addition, the sesquiterpenoids are the main common compounds in AR and VR by collecting and collating a large number of literature and various data websites. Furthermore, AR and VR have significant differences in ethnopharmacology and phytochemistry, especially in sesquiterpene lactones, monoterpenoids, triterpenoids and phenylpropanoids, and are probably viewed as reference of a separate list of AR and VR in Chinese Pharmacopoeia.
Collapse
Affiliation(s)
- Zecheng Huang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Chunlei Wei
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Ke Yang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Ziwei Yu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Zhanguo Wang
- Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Sichuan, Chengdu, 610106, China.
| | - Huiling Hu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| |
Collapse
|
14
|
Kaden F, Nowotni S, Höfner F, Lorenz M, Barthel A, Jäger A, Hennersdorf F, Weigand JJ, Metz P. Asymmetric Total Synthesis of (−)‐Dehydrocostus Lactone by Domino Metathesis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Felix Kaden
- Fakultät Chemie und Lebensmittelchemie Organische Chemie I, Technische Universität Dresden Bergstraße 66 01069 Dresden Germany
| | - Susanne Nowotni
- Fakultät Chemie und Lebensmittelchemie Organische Chemie I, Technische Universität Dresden Bergstraße 66 01069 Dresden Germany
| | - Franziska Höfner
- Fakultät Chemie und Lebensmittelchemie Organische Chemie I, Technische Universität Dresden Bergstraße 66 01069 Dresden Germany
| | - Melanie Lorenz
- Fakultät Chemie und Lebensmittelchemie Organische Chemie I, Technische Universität Dresden Bergstraße 66 01069 Dresden Germany
| | - André Barthel
- Fakultät Chemie und Lebensmittelchemie Organische Chemie I, Technische Universität Dresden Bergstraße 66 01069 Dresden Germany
| | - Anne Jäger
- Fakultät Chemie und Lebensmittelchemie Organische Chemie I, Technische Universität Dresden Bergstraße 66 01069 Dresden Germany
| | - Felix Hennersdorf
- Fakultät Chemie und Lebensmittelchemie Anorganische Molekülchemie, Technische Universität Dresden Mommsenstraße 4 01069 Dresden Germany
| | - Jan J. Weigand
- Fakultät Chemie und Lebensmittelchemie Anorganische Molekülchemie, Technische Universität Dresden Mommsenstraße 4 01069 Dresden Germany
| | - Peter Metz
- Fakultät Chemie und Lebensmittelchemie Organische Chemie I, Technische Universität Dresden Bergstraße 66 01069 Dresden Germany
| |
Collapse
|
15
|
Kaden F, Metz P. Enantioselective Total Synthesis of the Guaianolide (-)-Dehydrocostus Lactone by Enediyne Metathesis. Org Lett 2021; 23:1344-1348. [PMID: 33528264 DOI: 10.1021/acs.orglett.1c00008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydroazulene core of the bioactive sesquiterpenoid (-)-dehydrocostus lactone was generated by domino enediyne metathesis. A triple hydroboration/oxidation of the resultant conjugated triene installed three out of four stereogenic centers of the target in a single step. The enantiopure acyclic metathesis substrate was readily available by an asymmetric anti aldol reaction. Masking of the γ-lactone as an acetal allowed for an efficient completion of the synthesis through late-stage double carbonyl olefination.
Collapse
Affiliation(s)
- Felix Kaden
- Fakultät Chemie und Lebensmittelchemie, Organische Chemie I, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Peter Metz
- Fakultät Chemie und Lebensmittelchemie, Organische Chemie I, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| |
Collapse
|
16
|
Nadda RK, Ali A, Goyal RC, Khosla PK, Goyal R. Aucklandia costus (Syn. Saussurea costus): Ethnopharmacology of an endangered medicinal plant of the himalayan region. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113199. [PMID: 32730877 DOI: 10.1016/j.jep.2020.113199] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aucklandia costus Falc. a medicinal plant is native to the Himalayan region and synonymous with Saussurea costus, Saussurea lappa, and Aucklandia lappa. It has an ancient background of being used ethnopharmacologically for various body ailments. According to Ayurveda, Unani, Siddha, and Traditional Chinese Medicine, Costus roots are recommended for leukoderma, liver, kidney, blood disorders, Qi stagnation, and tridosha. Root and powder are used orally with warm water to cure gastric problems, and the paste is applied to the inflamed area to relieve pain. Root paste is applied on the skin to cure boils, blisters, and leprosy. AIM OF THE STUDY The aim of the present review is to establish a correlation among the ethnopharmacological uses and scientific studies conducted on A. costus with chemical constituents, safety & toxicity data including future directions for its conservation with higher yield and effect. MATERIALS AND METHODS The study was conducted by studying books, research papers, and literature in history, agroforestry, phytopharmacology of Himalayan plants using international databases, publication, Red data book, and reports. The search engines: Pubmed, Scopus, Wiley Inter-science, Indian Materia Medica, Science Direct, and referred journals are referenced. RESULTS The literature collected from databases, journals, websites, and books mentioned the use of costus roots in local and traditional practices. CITES included A. costus in a critically endangered category due to lack of cultural practices and overexploitation from wild. A. costus roots are known since 13th century for use in ancient Ayurvedic products but the scientific evaluation is of future research interest. A correlation of traditional uses with scientific studies has been explored to assess the effect of root powder, extract, oil and isolated constituents: Costunolids, Saussureamine B and Dehydrocostus lactone etc. in gastric ulceration and lesions; inhibition of antigen-induced degranulation, mucin production, number of immune cells, eosinophils, and expression and secretion of Th2 cytokines (IL-4 and IL-13) in asthma. The inhibition of pro-inflammatory mediators is also reported by Cynaropicrin, Alantolactone, Caryophyllene, Costic acid. Also, the sesquiterpene lactones has profound effect in inhibition of inflammatory stages and induced apoptotic cascades in cancer. Very few data on the safety and toxicity of plant parts have been noted which needs to be evaluated scientifically. CONCLUSION A. costus have been noted to have remarkable effect for gastric, hepatic, inflammatory, respiratory, cancer, skin problems but there were several errors in selection of plant material, authentification, selection of dose, assessment, selection of standard and control have been identified. Therefore, a schematic drug development and research strategy exploiting the potential of plant extract, fraction, products and probable constituents, costunolide, dehydrocostus lactone, cynaropicrin, saussureamine assuring dose-response relationship and safety may be determined under pre-clinical which may be extrapolated to clinical level. An evaluation of phytochemicals in A. costus collected from different geographical location in Himalayas may be drawn to identify and conserve the higher yielding plant.
Collapse
Affiliation(s)
- Rohit Kumar Nadda
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Aaliya Ali
- School of Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Renu Chib Goyal
- Natural Product Chemistry Microbes, Indian institute of Integrative Medicine (CSIR Lab, Canal Road), Jammu, J&K, 180001, India
| | - Prem Kumar Khosla
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
17
|
Huang X, Chen J, Wu W, Yang W, Zhong B, Qing X, Shao Z. Delivery of MutT homolog 1 inhibitor by functionalized graphene oxide nanoparticles for enhanced chemo-photodynamic therapy triggers cell death in osteosarcoma. Acta Biomater 2020; 109:229-243. [PMID: 32294550 DOI: 10.1016/j.actbio.2020.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) generates highly toxic reactive oxygen species (ROS) during noninvasive cancer treatment. MutT homolog 1 (MTH1) protein is a DNA oxidative damage repair protease and suppressing its function may provide a strategy to enhance PDT efficacy by improving cellular sensitivity to ROS. A nanoparticle, composed of functional graphene oxide (GO) conjugated with polyethylene glycol (PEG), folic acid (FA) and photosensitizer indocyanine green (ICG), was constructed to deliver MTH1 inhibitor (TH287) and doxorubicin. The effects of this nanoparticle on biological properties and cell death of osteosarcoma cells were investigated. We further examined the endoplasmic reticulum (ER) stress and apoptosis in osteosarcoma. A xenograft tumor model was used to validate the results in vivo. This drug-carrying PEG-GO-FA/ICG nanoparticle showed combined chemo-photodynamic therapy (Chemo-PDT) to inhibit the proliferation and migration of osteosarcoma cells. Enhanced Chemo-PDT promoted both apoptosis and autophagy by suppressing the MTH1 protein and promoting the accumulation of ROS. In this study, autophagy served as a rescue pathway against cell death, and suppressing autophagy enhanced the anti-cancer effects of Chemo-PDT. However, Chemo-PDT induced apoptosis was related to the occurrence of ER stress. ROS might contribute to ER stress and further induce apoptosis via the JNK/p53/p21 pathway. These findings provide a mechanistic understanding of nanoparticle-induced cell death in osteosarcoma. The combination of Chemo-PDT with other therapies is promising as a new strategy to treat osteosarcoma. STATEMENT OF SIGNIFICANCE: Administration of chemotherapeutic drugs by traditional methods still has many problems. We designed a functionalized graphene oxide drug delivery system to deliver the photosensitizer indocyanine green, doxorubicin, and MTH1 inhibitor TH287. This nano delivery system showed combined chemo-photodynamic effects to inhibit osteosarcoma. Suppressing MTH1 protein might induce "phenotypic lethality" and enhance chemo-photodynamic therapy efficacy by improving cellular sensitivity to reactive oxygen species.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Binlong Zhong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
18
|
Zhang R, Hao J, Wu Q, Guo K, Wang C, Zhang WK, Liu W, Wang Q, Yang X. Dehydrocostus lactone inhibits cell proliferation and induces apoptosis by PI3K/Akt/Bad and ERS signalling pathway in human laryngeal carcinoma. J Cell Mol Med 2020; 24:6028-6042. [PMID: 32319208 PMCID: PMC7294112 DOI: 10.1111/jcmm.15131] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/13/2020] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
The anti-cancer effect of dehydrocostus lactone (DHL) derived from Saussurea costus (Falc.) Lipech against laryngeal carcinoma was assessed. The cytotoxic activity of DHL against laryngeal carcinoma is still obscure. Therefore, our study investigated the role of DHL in the growth inhibition of laryngeal carcinoma in vitro and in vivo, and the molecular mechanism of DHL-induced apoptosis in cancer cells of the larynx. The results showed that DHL inhibits the viability, migration and proliferation of Hep-2 and TU212 cells with little toxic effects on human normal larynx epithelial HBE cell line. Flow cytometry analysis (FAC) analysis and staining assay (Hoechst 33258) indicated that DHL stimulated Hep-2 and TU212 cell apoptosis in a dose-dependent manner. Mechanistically, DHL is capable of inhibiting Hep-2 and TU212 cell viability via promoting p53 and P21 function, meanwhile DHL dose-dependently induces Hep-2 and TU212 cells apoptosis via activating mitochondrial apoptosis by inhibiting PI3K/Akt/Bad pathway and stimulating endoplasmic reticulum stress-mediated apoptosis pathway. In vivo, DHL inhibited the growth of the Hep-2 nude mouse xenograft model and observed no significant signs of toxicity in the organs of nude mice. In vivo experiments further confirmed the anti-cancer effect of DHL on laryngeal carcinoma cells in vitro, and DHL-treated nude mice can reduce the volume of tumours. Together, our study indicated that DHL has the potential to inhibit human laryngeal carcinoma via activating mitochondrial apoptosis pathway by inhibiting PI3K/Akt/Bad signalling pathway and stimulating endoplasmic reticulum stress-mediated apoptosis pathway, providing a strategy for the treatment of human laryngeal carcinoma.
Collapse
Affiliation(s)
- Ren Zhang
- Institute of Infection, Immunology and Tumor Microenviroment, Hubei Province Key Laboratory of Occupational Hazard Identification and ControlMedical SchoolWuhan University of Science and TechnologyWuhanChina
| | - Ji Hao
- School of Pharmaceutical SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenviroment, Hubei Province Key Laboratory of Occupational Hazard Identification and ControlMedical SchoolWuhan University of Science and TechnologyWuhanChina
| | - Kaiwen Guo
- Institute of Infection, Immunology and Tumor Microenviroment, Hubei Province Key Laboratory of Occupational Hazard Identification and ControlMedical SchoolWuhan University of Science and TechnologyWuhanChina
| | - Chao Wang
- Institute of Infection, Immunology and Tumor Microenviroment, Hubei Province Key Laboratory of Occupational Hazard Identification and ControlMedical SchoolWuhan University of Science and TechnologyWuhanChina
| | - Wei Kevin Zhang
- School of Pharmaceutical SciencesSouth‐Central University for NationalitiesWuhanChina
| | - Wanxin Liu
- Institute of Infection, Immunology and Tumor Microenviroment, Hubei Province Key Laboratory of Occupational Hazard Identification and ControlMedical SchoolWuhan University of Science and TechnologyWuhanChina
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenviroment, Hubei Province Key Laboratory of Occupational Hazard Identification and ControlMedical SchoolWuhan University of Science and TechnologyWuhanChina
| | - Xinzhou Yang
- School of Pharmaceutical SciencesSouth‐Central University for NationalitiesWuhanChina
| |
Collapse
|
19
|
Abd El-Rahman GI, Behairy A, Elseddawy NM, Batiha GES, Hozzein WN, Khodeer DM, M. Abd-Elhakim Y. Saussurea lappa Ethanolic Extract Attenuates Triamcinolone Acetonide-Induced Pulmonary and Splenic Tissue Damage in Rats via Modulation of Oxidative Stress, Inflammation, and Apoptosis. Antioxidants (Basel) 2020; 9:antiox9050396. [PMID: 32397156 PMCID: PMC7278611 DOI: 10.3390/antiox9050396] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background: In this era, worldwide interest has been directed towards using natural antioxidants to guard against drug side effects. Saussurea lappa is a famous medicinal plant with many biologically active compounds. Triamcinolone acetonide (TA) is an extensively used glucocorticoid. Hence, this study explored, for the first time, the possible beneficial effects of S. lappa ethanolic extract on TA-induced oxidative damage in the lung and spleen of rats. Methods: Five experimental groups were used: control group, S. lappa-treated group (600 mg/kg/day, orally), TA-treated group (40 mg/kg/twice/week I/P), S. lappa + TA co-treated group, and S. lappa/TA prophylactic group. Results: TA exposure significantly induced leukocytosis and neutrophilia. In addition, TA significantly reduced the levels of C-reactive protein, interleukin-12, tumor necrosis factor α, and immunoglobulins. Lung Caspase-3 overexpression and splenic CD8+ downregulation were also noted in the TA group. TA treatment significantly increased malondialdehyde concentration but reduced superoxide dismutase and glutathione peroxidase activities. S. lappa counteracted the TA oxidative and apoptotic effects. The best results were recorded in the prophylactic group. Conclusions:S. lappa has a remarkable protective effect via its anti-inflammatory, anti-apoptotic, and antioxidant capacity. Thus, it could be a candidate as a natural antioxidant to face glucocorticoid’s harmful side effects.
Collapse
Affiliation(s)
- Ghada I. Abd El-Rahman
- Department of Clinical Pathology, Faculty of Veterinary medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Nora M. Elseddawy
- Department of Pathology, Faculty of Veterinary medicine, Zagazig University, Zagazig 44519 Egypt;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Wael N. Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Dina M. Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Correspondence:
| |
Collapse
|
20
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
21
|
Antitumor activity and mechanism of costunolide and dehydrocostus lactone: Two natural sesquiterpene lactones from the Asteraceae family. Biomed Pharmacother 2020; 125:109955. [PMID: 32014691 DOI: 10.1016/j.biopha.2020.109955] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022] Open
Abstract
Costunolide (COS) and dehydrocostus lactone (DEH) are two natural sesquiterpene lactones with potential antitcancer activity against a range of cancer cell types both in vitro and in vivo, particularly for breast cancer and leukemia. There are many researches that have been taken to characterize these pathways and to reveal their anticancer mechanisms of action of COS and DEH. However, while there is a great deal of evidence detailing the effects of COS and DEH on considerable signaling pathways and cellular functions, a global view of their mechanism of action remains elusive. This review systematically summarizes the antitumor activity and mechanism of COS and DEH in the recent reports, and discusses the effect of the key active part (α-methylene-γ-butyrolactone) of COS and DEH against cancer. Moreover, we also discuss the antineoplastic activity of COS and DEH derivatives to improve the cytotoxicity and safety index. We believe this review can provide a systemic reference to develop COS and DEH as anticancer agents.
Collapse
|
22
|
Kim SY, Heo S, Kim SH, Kwon M, Sung NJ, Ryu AR, Lee MY, Park SA, Youn HS. Suppressive effects of dehydrocostus lactone on the toll-like receptor signaling pathways. Int Immunopharmacol 2019; 78:106075. [PMID: 31812722 DOI: 10.1016/j.intimp.2019.106075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 01/17/2023]
Abstract
Toll-like receptors (TLRs) are a group of pattern-recognition receptors (PRRs) that are at the core of innate and adaptive immune responses. TLRs activation triggers the activation of two downstream signaling pathways, the myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-β (TRIF)-dependent pathways. To evaluate the therapeutic potential of DHL, a natural sesquiterpene lactone derived from Inulahelenium L. and Saussurea lappa, we examined its effect on signal transduction via the TLR signaling pathways. DHL inhibited the activation of nuclear factor-κB (NF-κB) and interferon regulatory factor 3 (IRF3), the representative transcription factors involved in the inflammatory response, induced by TLR agonists, as well as the expression of cyclooxygenase-2 and interferon inducible protein-10. DHL also inhibited the activation of NF-κB and IRF3 induced by the overexpression of downstream signaling components of the TLRs signaling pathways. All results suggest that DHL might become a new therapeutic drug for a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Su Yeon Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Sunghye Heo
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Seung Han Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Minji Kwon
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Nam Ji Sung
- Department of Medical Science, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - A-Reum Ryu
- Department of Medical Science, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Mi-Young Lee
- Department of Medical Science, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Sin-Aye Park
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Hyung-Sun Youn
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea.
| |
Collapse
|
23
|
Recent advances in α,β-unsaturated carbonyl compounds as mitochondrial toxins. Eur J Med Chem 2019; 183:111687. [DOI: 10.1016/j.ejmech.2019.111687] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/24/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
|
24
|
Li J, Li TX, Ma Y, Zhang Y, Li DY, Xu HR. Bursopentin (BP5) induces G1 phase cell cycle arrest and endoplasmic reticulum stress/mitochondria-mediated caspase-dependent apoptosis in human colon cancer HCT116 cells. Cancer Cell Int 2019; 19:130. [PMID: 31123429 PMCID: PMC6521404 DOI: 10.1186/s12935-019-0849-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Background Bursopentin (BP5) is a multifunctional pentapeptide found in the chicken bursa of Fabricius. Recent study indicated that BP5 significantly stimulates expression of p53 protein in colon cancer HCT116 cells. However, the effects and underlying mechanisms of BP5 on HCT116 cell proliferation remain largely unclear. Methods Analyses of cell viability, cell cycle arrest as well as apoptosis were performed to study the actions of BP5 on HCT116 cells. Western blot analyse was assayed to measure the cell cycle-related and apoptosis-related proteins. Specific siRNAs targeting IRE1, ATF-6, and PERK were used for IRE1, ATF-6, and PERK knockdown, respectively. Cellular reactive oxygen species (ROS) were detected using a H2DCF-DA green fluorescence probe. Cytosolic free Ca2+ concentrations and mitochondrial membrane potential (ΔΨm) were measured using Fluo-3 AM and JC-1 stains, respectively. Results BP5 possessed strong inhibitory effects on the cell growth and induced apoptosis in HCT116 cells. Mechanistically, BP5 arrested the cell cycle at G1 phase by increasing p53 and p21 expression and decreasing cyclin E1-CDK2 complex expression. BP5 treatment dramatically activated the endoplasmic reticulum (ER) stress-mediated apoptotic pathway, as revealed by the significantly enhanced expression of unfolded protein response (UPR) sensors (IRE1α, ATF6, PERK) as well as downstream signaling molecules (XBP-1s, eIF2α, ATF4 and CHOP), and by the significantly altered the BP5-induced phenotypic changes in IRE1, ATF6, and PERK knockdown cells. Additionally, BP5-induced ER stress was accompanied by the accumulation of cytosolic free Ca2+ and intracellular ROS. Furthermore, BP5 treatment resulted in the increase of Bax expression, the decrease of Bcl-2 expression and the reduction of ΔΨm, subsequently causing a release of cytochrome c from the mitochondria into the cytoplasm and finally enhancing the activities of caspase-9 and -3. In addition, z-VAD-fmk, a pan-caspase inhibitor, markedly rescued BP5-induced cell viability reduction and reduced BP5-induced apoptosis. Conclusions Our present results suggest that BP5 has an anticancer capacity to arrest cell cycle at G1 phase and to trigger ER stress/mitochondria-mediated caspase-dependent apoptosis in HCT116 cells. Therefore, our findings provide insight into further investigations of the anticancer activities of BP5. Electronic supplementary material The online version of this article (10.1186/s12935-019-0849-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Li
- 1Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009 People's Republic of China.,2Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009 People's Republic of China
| | - Tian-Xiang Li
- 3Department of Clinical Medicine, Kangda College of Nanjing Medical University, Lianyungang, 222000 People's Republic of China
| | - Yao Ma
- 1Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009 People's Republic of China.,2Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009 People's Republic of China
| | - Yong Zhang
- 1Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009 People's Republic of China.,2Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009 People's Republic of China
| | - De-Yuan Li
- 4Key Lab of Animal Disease Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Hai-Rong Xu
- 1Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009 People's Republic of China.,2Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009 People's Republic of China.,5Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 People's Republic of China
| |
Collapse
|
25
|
Li Z, Yuan G, Lin X, Liu Q, Xu J, Lian Z, Song F, Zheng J, Xie D, Chen L, Wang X, Feng H, Zhou M, Yao G. Dehydrocostus lactone (DHC) suppresses estrogen deficiency-induced osteoporosis. Biochem Pharmacol 2019; 163:279-289. [PMID: 30721671 DOI: 10.1016/j.bcp.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/01/2019] [Indexed: 02/05/2023]
Abstract
Osteoporosis is a chronic bone lytic disease, because of inadequate bone ossification and/or excessive bone resorption. Even though drugs are currently available for the treatment of osteoporosis, there remains an unmet need for the development of more specific novel agents with less adverse effects. Dehydrocostus lactone (DHC), a natural sesquiterpene lactone, was previously found to affect the differentiation of inflammatory cells by inhibiting NF-κB pathways, and garnered much interest for its anti-cancer properties via SOCS-mediated cell cycle arrest and apoptosis. As NF-κB pathway plays an essential role in osteoclast differentiation, we sought to discover the biological effects of DHC on osteoclast differentiation and resorptive activity, as well as the underlying mechanisms on these effects. Our research found that DHC inhibited RANKL-induced osteoclast differentiation, bone resorption and osteoclast specific genes expression via suppression of NF-κB and NFAT signaling pathways in vitro. We further demonstrated that DHC protected against ovariectomy (OVX)-induced bone loss in mice and the protective effect was mediated at least in part through the attenuation of NF-κB signaling pathway. Thus, this study provides insight that DHC might be used as a potential pharmacological treatment for osteoporosis.
Collapse
Affiliation(s)
- Zhaoning Li
- Department of Orthopedics, Dongguan People's Hospital, Dongguan, Guangdong 523000, China
| | - Guixin Yuan
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xixi Lin
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China; Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China; Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Zhen Lian
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Fangming Song
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China; Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jinjian Zheng
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Dantao Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Lingzi Chen
- Affiliated Chaozhou Central Hospital, Southern Medical University (Chaozhou Central Hospital), China
| | - Xinjia Wang
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Haotian Feng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China; Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Mengyu Zhou
- Department of Dentistry, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Guanfeng Yao
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
26
|
Sheng W, Mao H, Wang C, Yang N, Zhang Z, Han J. Dehydrocostus Lactone Enhances Chemotherapeutic Potential of Doxorubicin in Lung Cancer by Inducing Cell Death and Limiting Metastasis. Med Sci Monit 2018; 24:7850-7861. [PMID: 30388099 PMCID: PMC6228117 DOI: 10.12659/msm.911410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Natural compounds have been utilized in inhibiting metastasis alone or in combination with other anti-tumor agents. Dehydrocostus lactone (DHC), a natural sesquiterpene lactone, was used to investigate its effect on proliferation of lung cancer cells and on the anti-angiogenic efficacy of doxorubicin. MATERIAL AND METHODS Cell proliferation was assessed by MTT assay and clonogenic assay. Apoptosis and migration were assessed by flow cytometry and wound-healing assay, respectively. Western blotting and qPCR were performed for gene and protein expression analysis. Matrigel plug assay was performed for angiogenesis assessment. RESULTS Results of the study show that DHC inhibited the survival and proliferation of lung cancer cells (A549 and H460) and enhanced the growth-inhibitory properties of DOX. Cotreatment of DHC enhanced the apoptosis-inducing effects of DOX by activating caspase-9 and caspase-3 followed by cleavage of PARP. Treatment of A549 and H460 cells with DHC caused suppression of HIF-1α, Akt and pAkt, GSK-3β and pGSK-3β, as well as ERK, pERK, mTOR, and p-mTOR. DHC enhanced the effect of DOX by inhibiting migration of A549 cells as observed by wound-healing assay. DHC caused synergistic inhibition of MMP-2 and MMP-9 genes when treated in combination with DOX. DHC further enhanced the anti-angiogenic properties of DOX in mice implanted with Matrigel plugs. DHC suppressed the proliferation of lung cancer cells and enhanced the anti-angiogenic properties of DOX. CONCLUSIONS The putative mechanism behind the metastasis-limiting effects of DHC may involve the suppression of Akt/GSK-3β and inhibition of MMP-2 and MMP-9 in lung cancer cells.
Collapse
Affiliation(s)
- Wei Sheng
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Hongyan Mao
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Chuanxi Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Ning Yang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Zhe Zhang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Junqing Han
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
27
|
Pyun H, Kang U, Seo EK, Lee K. Dehydrocostus lactone, a sesquiterpene from Saussurea lappa Clarke, suppresses allergic airway inflammation by binding to dimerized translationally controlled tumor protein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 43:46-54. [PMID: 29747753 DOI: 10.1016/j.phymed.2018.03.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/16/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND We previously reported that the biologically active form of histamine releasing factor (HRF) is dimerized translationally controlled tumor protein (dTCTP) which is involved in a number of allergic diseases. HYPOTHESIS/PURPOSE Hoping that agents that modulate dTCTP may provide new therapeutic targets to allergic inflammatory diseases, we screened a library of natural products for substances that inhibit dTCTP. One such inhibitor we found was dehydrocostus lactone (DCL), a natural sesquiterpene present in rhizome of Saussurea lappa Clarke, the subject of this study. METHODS We evaluated the therapeutic efficacy of DCL in a mouse model of ovalbumin (OVA)-induced allergic airway inflammation, employing the ELISA system using BEAS-2B cells and splenocytes, and confirmed that DCL interacts with dTCTP using SPR assay. RESULTS DCL inhibited dTCTP-induced secretion of IL-8 in BEAS-2B cells. From kinetic analysis of dTCTP and DCL, we found that KD value was 5.33 ± 0.03 μM between dTCTP and DCL. DCL also significantly reduced inflammatory lung eosinophilia, type 2 cytokines in BALF, as well as OVA specific IgE and mucus production in a mouse model of ovalbumin induced allergy. Moreover, DCL suppressed NF-κB activation. CONCLUSION DCL's therapeutic potential in allergic airway inflammation is based on its anti-inflammatory activity of suppressing the function of dTCTP.
Collapse
Affiliation(s)
- Haejun Pyun
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Unwoo Kang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eun Kyoung Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
28
|
Yang Q, Wang Y, Yang Q, Gao Y, Duan X, Fu Q, Chu C, Pan X, Cui X, Sun Y. Cuprous oxide nanoparticles trigger ER stress-induced apoptosis by regulating copper trafficking and overcoming resistance to sunitinib therapy in renal cancer. Biomaterials 2017; 146:72-85. [DOI: 10.1016/j.biomaterials.2017.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/03/2017] [Accepted: 09/03/2017] [Indexed: 12/15/2022]
|
29
|
Tian X, Song HS, Cho YM, Park B, Song YJ, Jang S, Kang SC. Anticancer effect of Saussurea lappa extract via dual control of apoptosis and autophagy in prostate cancer cells. Medicine (Baltimore) 2017; 96:e7606. [PMID: 28746210 PMCID: PMC5627836 DOI: 10.1097/md.0000000000007606] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To demonstrate the mechanisms of the curative effect of Saussurea lappa ethanol extract (SLE) against prostate cancer, we evaluated the effect of SLE on the induction of apoptosis and autophagy and investigated whether SLE-induced autophagy exerts a pro-survival or pro-apoptotic effect in lymph node carcinoma of the prostate (LNCaP) prostate cancer cells. SLE was prepared using 100% ethanol and added to LNCaP cells for 24 hours. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and cell apoptosis was evaluated by Tali assay. The expression of apoptosis-related mRNA and proteins was analyzed by quantitative real-time RT-PCR and western blotting. SLE treatment decreased the viability of LNCaP cells and increased Bax expression while suppressing the expression of pro-caspases-8/9/3, PARP, Bid, and Bcl-2, thereby inducing apoptosis in LNCaP cells. Cell proliferation related proteins, including p-Akt, androgen receptor, and prostate-specific antigen, were suppressed by SLE treatment. SLE also induced autophagy in LNCaP cells, and inhibition of autophagy enhanced the apoptosis induced by SLE treatment. These results suggest that SLE exerts anticancer effects through the induction of both cellular apoptosis and autophagy, and apoptotic cell death can be facilitated by blocking autophagy in SLE-treated LNCaP cells. Therefore, SLE might be a potential anticancer agent for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Xue Tian
- Department of Life Science, Gachon University, Seongnam-si
| | - Hae Seong Song
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin-si, Korea
| | - Young Mi Cho
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin-si, Korea
| | - Bongkyun Park
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin-si, Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam-si
| | - Sunphil Jang
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin-si, Korea
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin-si, Korea
| |
Collapse
|
30
|
Ren Y, Yu J, Kinghorn AD. Development of Anticancer Agents from Plant-Derived Sesquiterpene Lactones. Curr Med Chem 2017; 23:2397-420. [PMID: 27160533 DOI: 10.2174/0929867323666160510123255] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/26/2016] [Accepted: 05/09/2016] [Indexed: 12/24/2022]
Abstract
Sesquiterpene lactones are of considerable interest due to their potent bioactivities, including cancer cell cytotoxicity and antineoplastic efficacy in in vivo studies. Among these compounds, artesunate, dimethylaminoparthenolide, and L12ADT peptide prodrug, a derivative of thapsigargin, are being evaluated in the current cancer clinical or preclinical trials. Based on the structures of several antitumor sesquiterpene lactones, a number of analogues showing greater potency have been either isolated as natural products or partially synthesized, and some potential anticancer agents that have emerged from this group of lead compounds have been investigated extensively. The present review focuses on artemisinin, parthenolide, thapsigargin, and their naturally occurring or synthetic analogues showing potential anticancer activity. This provides an overview of the advances in the development of these types of sesquiterpene lactones as potential anticancer agents, including their structural characterization, synthesis and synthetic modification, and antitumor potential, with the mechanism of action and structure-activity relationships also discussed. It is hoped that this will be helpful in stimulating the further interest in developing sesquiterpene lactones and their derivatives as new anticancer agents.
Collapse
Affiliation(s)
| | | | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
31
|
Chen Y, Zheng H, Zhang J, Wang L, Jin Z, Gao W. Reparative activity of costunolide and dehydrocostus in a mouse model of 5-fluorouracil-induced intestinal mucositis. RSC Adv 2016. [DOI: 10.1039/c5ra22371g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of the study was to investigate the protective effects of costunolide (Co) and dehydrocostus (De) in 5-fluorouracil (5-FU)-induced intestinal mucositis (IM) as well as the potential mechanisms involved.
Collapse
Affiliation(s)
- Yuling Chen
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- China
| | - Hong Zheng
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jingze Zhang
- Department of Pharmacy
- Logistics University of Chinese People's Armed Police Forces
- Special Drugs R & D Center of People's Armed Police Forces
- Tianjin 300162
- China
| | - Lei Wang
- Tianjin Lerentang Pharmaceutical Factory
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd
- Tianjin 300380
- China
| | - Zhaoxiang Jin
- Tianjin Lerentang Pharmaceutical Factory
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd
- Tianjin 300380
- China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
32
|
Jiang E, Sun X, Kang H, Sun L, An W, Yao Y, Hu X. Dehydrocostus Lactone Inhibits Proliferation, Antiapoptosis, and Invasion of Cervical Cancer Cells Through PI3K/Akt Signaling Pathway. Int J Gynecol Cancer 2015; 25:1179-86. [PMID: 26017248 DOI: 10.1097/igc.0000000000000474] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Recent studies found that dehydrocostus lactone (DHC), a traditional Chinese medicine in curing chronic ulcer and inflammation, can inhibit several type of tumor cells. The purpose of this study was to define the role of DHC on cervical cancer cells and to explore its mechanism of action. METHODS We used DHC alone or in combination with PI3K/Akt-specific inhibitor LY294002 (LY) to treat Hela cells [human papillomavirus (HPV)-18 positive] and C33a cells (HPV negative). The proliferation, apoptosis, and Akt activation were assessed. Cell invasive ability was assayed in transwell chambers. RESULTS We found that DHC significantly inhibited proliferation, antiapoptosis, and invasion of both cells, and reduced the level of p-Akt phosphorylation in these cells, in a dose- or time-dependent manner. In addition, these inhibitions of DHC were significantly strengthened by LY. CONCLUSIONS The result suggested that DHC plays a potent role in anticervical cancer in multiple biological aspects through PI3K/Akt signaling pathway, independently of HPV infection. This finding surely adds new knowledge to understand the role of DHC in fighting cancers.
Collapse
Affiliation(s)
- Enping Jiang
- Department of Pathology, Cancer Research Institute of Guangdong Medical University, Dongguan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
33
|
Dehydrocostus lactone suppressed the proliferation, migration, and invasion of colorectal carcinoma through the downregulation of eIF4E expression. Anticancer Drugs 2015; 26:641-8. [DOI: 10.1097/cad.0000000000000229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Lin X, Peng Z, Su C. Potential anti-cancer activities and mechanisms of costunolide and dehydrocostuslactone. Int J Mol Sci 2015; 16:10888-906. [PMID: 25984608 PMCID: PMC4463681 DOI: 10.3390/ijms160510888] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/10/2015] [Accepted: 04/22/2015] [Indexed: 12/31/2022] Open
Abstract
Costunolide (CE) and dehydrocostuslactone (DE) are derived from many species of medicinal plants, such as Saussurea lappa Decne and Laurus nobilis L. They have been reported for their wide spectrum of biological effects, including anti-inflammatory, anticancer, antiviral, antimicrobial, antifungal, antioxidant, antidiabetic, antiulcer, and anthelmintic activities. In recent years, they have caused extensive interest in researchers due to their potential anti-cancer activities for various types of cancer, and their anti-cancer mechanisms, including causing cell cycle arrest, inducing apoptosis and differentiation, promoting the aggregation of microtubule protein, inhibiting the activity of telomerase, inhibiting metastasis and invasion, reversing multidrug resistance, restraining angiogenesis has been studied. This review will summarize anti-cancer activities and associated molecular mechanisms of these two compounds for the purpose of promoting their research and application.
Collapse
Affiliation(s)
- Xuejing Lin
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China.
| | - Zhangxiao Peng
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China.
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China.
| |
Collapse
|
35
|
Sesquiterpene lactones derived from Saussurea lappa induce apoptosis and inhibit invasion and migration in neuroblastoma cells. J Pharmacol Sci 2015; 127:397-403. [PMID: 25953266 DOI: 10.1016/j.jphs.2015.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 01/15/2023] Open
Abstract
Neuroblastoma is among the most fatal of solid tumors in the pediatric age group, even when treated aggressively. Therefore, a new effective therapeutic drug(s) for neuroblastoma is urgently needed. To clarify the anticancer effects of the sesquiterpene lactones dehydrocostus lactone and costunolide, derived from Saussurea lappa, we examined the cytotoxic and migration/invasion-inhibitory effects of these compounds against neuroblastoma cell lines. Both the compounds exerted significant cytotoxicity against the neuroblastoma cell lines IMR-32, NB-39, SK-N-SH, and LA-N-1. Evidence of cellular apoptosis, such as nuclear condensation and membrane inversion, were observed after treatment with these compounds. Both compounds induced caspase-7 activation and PARP cleavage as confirmed by Western blotting. Furthermore, the sesquiterpene lactones also suppressed invasion and migration of the neuroblastoma cells. These results suggest that dehydrocostus lactone and costunolide are promising candidates for being developed into novel anticancer drugs effective against neuroblastoma.
Collapse
|
36
|
Zahara K, Tabassum S, Sabir S, Arshad M, Qureshi R, Amjad MS, Chaudhari SK. A review of therapeutic potential of Saussurea lappa-An endangered plant from Himalaya. ASIAN PAC J TROP MED 2014; 7S1:S60-9. [PMID: 25312191 DOI: 10.1016/s1995-7645(14)60204-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 07/23/2014] [Accepted: 08/10/2014] [Indexed: 11/26/2022] Open
Abstract
There are 300 known Saussurea species. Among them, Saussurea lappa (S. lappa) is a representative perennial herb, globally distributed across Himalaya region. S. lappa has been traditionally used in medicines without obvious adverse effects. Despite significant progress in phytochemical and biological analyses of S. lappa over the past few years, inclusive and critical reviews of this plant are anachronistic or quite limited in scope. The present review aims to summarize up-to-date information on the active constituents, pharmacology, traditional uses, trade and challenges in conservation and sustainable use of S. lappa from the literature. In addition to botanical studies and records of the traditional use of S. lappa in over 43 diseases, scientific studies investigating the latent medicinal uses of this species and its constituent phytochemicals for a range of disorders are presented and discussed. The structure, bioactivity, and likely mechanisms of action of S. lappa and its phytochemicals are highlighted. Although some progress has been made, further scrupulous efforts are required to investigate the individual compounds isolated from S. lappa to validate and understand its traditional uses and develop clinical applications. The present review offers preliminary information and gives direction for further basic and clinical research into this plant.
Collapse
Affiliation(s)
- Kulsoom Zahara
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Shaista Tabassum
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Sidra Sabir
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Muhammad Arshad
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | | | | | | |
Collapse
|
37
|
Scarponi C, Butturini E, Sestito R, Madonna S, Cavani A, Mariotto S, Albanesi C. Inhibition of inflammatory and proliferative responses of human keratinocytes exposed to the sesquiterpene lactones dehydrocostuslactone and costunolide. PLoS One 2014; 9:e107904. [PMID: 25226283 PMCID: PMC4166670 DOI: 10.1371/journal.pone.0107904] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/19/2014] [Indexed: 12/18/2022] Open
Abstract
The imbalance of the intracellular redox state and, in particular, of the glutathione (GSH)/GSH disulfide couple homeostasis, is involved in the pathogenesis of a number of diseases. In many skin diseases, including psoriasis, oxidative stress plays an important role, as demonstrated by the observation that treatments leading to increase of the local levels of oxidant species ameliorate the disease. Recently, dehydrocostuslactone (DCE) and costunolide (CS), two terpenes naturally occurring in many plants, have been found to exert various anti-inflammatory and pro-apoptotic effects on different human cell types. These compounds decrease the level of the intracellular GSH by direct interaction with it, and, therefore, can alter cellular redox state. DCE and CS can trigger S-glutathionylation of various substrates, including the transcription factor STAT3 and JAK1/2 proteins. In the present study, we investigated on the potential role of DCE and CS in regulating inflammatory and proliferative responses of human keratinocytes to cytokines. We demonstrated that DCE and CS decreased intracellular GSH levels in human keratinocytes, as well as inhibited STAT3 and STAT1 phosphorylation and activation triggered by IL-22 or IFN-γ, respectively. Consequently, DCE and CS decreased the IL-22- and IFN-γ-induced expression of inflammatory and regulatory genes in keratinocytes, including CCL2, CXCL10, ICAM-1 and SOCS3. DCE and CS also inhibited proliferation and cell-cycle progression-related gene expression, as well as they promoted cell cycle arrest and apoptosis. In parallel, DCE and CS activated the anti-inflammatory EGFR and ERK1/2 molecules in keratinocytes, and, thus, wound healing in an in vitro injury model. In light of our findings, we can hypothesize that the employment of DCE and CS in psoriasis could efficiently counteract the pro-inflammatory effects of IFN-γ and IL-22 on keratinocytes, revert the apoptosis-resistant phenotype, as well as inhibit hyperproliferation in the psoriatic epidermis.
Collapse
Affiliation(s)
| | - Elena Butturini
- Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | | | | | - Andrea Cavani
- Experimental Immunology Laboratory, IDI-IRCCS, Rome, Italy
| | - Sofia Mariotto
- Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | | |
Collapse
|
38
|
Shen S, Zhang Y, Zhang R, Tu X, Gong X. Ursolic acid induces autophagy in U87MG cells via ROS-dependent endoplasmic reticulum stress. Chem Biol Interact 2014; 218:28-41. [PMID: 24802810 DOI: 10.1016/j.cbi.2014.04.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/20/2014] [Accepted: 04/23/2014] [Indexed: 12/19/2022]
Abstract
Malignant gliomas are the most common primary brain tumors, and novel ways of treating gliomas are urgently needed. Ursolic acid (UA), a pentacyclic triterpenoid, has been reported to exhibit promising antitumor activity. Here, we evaluated the effects of UA on U87MG cells and explored the underlying molecular mechanisms. The results demonstrated that both G1-phase arrest and autophagy were induced by UA in U87MG cells. Evidence of UA-induced autophagy included the formation of acidic vesicular organelles, increase of autophagolysosomes and LC3-II accumulation. UA was also found to induce ER stress and an increase in intracellular calcium accompanied by ROS production. The increase in free cytosolic calcium induced by UA activated the CaMKK-AMPK-mTOR kinase signaling cascade, which ultimately triggered autophagy. Western blot analysis showed that UA promoted the phosphorylation of PERK and eIF2α; this was followed by the upregulation of the downstream protein CHOP, implying the involvement of the ER stress-mediated PERK/eIF2α/CHOP pathway in glioma cells. Meanwhile, UA activated IRE1α and subsequently increased the levels of phosphorylated JNK and Bcl-2, resulting in the dissociation of Beclin1 from Bcl-2. Furthermore, TUDCA and the silencing of either PERK or IRE1α partially blocked the UA-induced accumulation of LC3-II, suggesting that ER stress precedes the process of autophagy. Additionally, NAC attenuated the UA-induced elevation in cytosolic calcium, ER stress markers and autophagy-related proteins, indicating that UA triggered ER stress and autophagy via a ROS-dependent pathway. Collectively, our findings revealed a novel cellular mechanism triggered by UA and provide a molecular basis for developing UA into a drug candidate.
Collapse
Affiliation(s)
- Shuying Shen
- The Institute of Biochemistry, Zhejiang University, Hangzhou 310058, China.
| | - Yi Zhang
- The Institute of Biochemistry, Zhejiang University, Hangzhou 310058, China.
| | - Rui Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China.
| | - Xintao Tu
- The Institute of Biochemistry, Zhejiang University, Hangzhou 310058, China
| | - Xingguo Gong
- The Institute of Biochemistry, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
39
|
Butturini E, Di Paola R, Suzuki H, Paterniti I, Ahmad A, Mariotto S, Cuzzocrea S. Costunolide and Dehydrocostuslactone, two natural sesquiterpene lactones, ameliorate the inflammatory process associated to experimental pleurisy in mice. Eur J Pharmacol 2014; 730:107-15. [PMID: 24625594 DOI: 10.1016/j.ejphar.2014.02.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 02/19/2014] [Accepted: 02/28/2014] [Indexed: 12/31/2022]
Abstract
The aim of this study was to investigate the effect of costunolide (CS) and dehydrocostuslactone (DCE) a well-known sesquiterpene lactones contained in many plants, in a model of lung injury induced by carrageenan administration in the mice. Injection of carrageenan into the pleural cavity of mice elicited an acute inflammatory response characterized by fluid accumulation in the pleural cavity which contained a large number of polymorphonuclear cells (PMNs) as well as an infiltration of PMNs in lung tissues and increased production of tumour necrosis factor α (TNF-α). All parameters of inflammation were attenuated by CS and DCE (15mg/kg 10% DMSO i.p.) administered 1h before carrageenan. Carrageenan induced an up regulation of the intracellular adhesion molecules-1 (ICAM-1) and P-selectin, as well as nitrotyrosine and poly (ADP-ribose) (PAR) as determined by immunohistochemical analysis of lung tissues. The degree of staining for the ICAM-1, P-selectin, nitrotyrosine and PAR was reduced by CS and DCE. Additionally we show that this inflammatory events were associated with NF-κB and STAT3 activation and these sesquiterpenes down-regulated it. Taken together, ours results clearly shown that CS and DCE may offer a novel therapeutic approach for the management of inflammatory diseases.
Collapse
Affiliation(s)
- Elena Butturini
- Department of Life and Reproduction Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Rosanna Di Paola
- Department of Biological and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Hisanori Suzuki
- Department of Life and Reproduction Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Irene Paterniti
- Department of Biological and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Akbar Ahmad
- Department of Biological and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sofia Mariotto
- Department of Life and Reproduction Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, 98166 Messina, Italy; Manchester University, Manchester, United Kingdom.
| |
Collapse
|
40
|
Galangin inhibits proliferation of hepatocellular carcinoma cells by inducing endoplasmic reticulum stress. Food Chem Toxicol 2013; 62:810-6. [DOI: 10.1016/j.fct.2013.10.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/09/2013] [Accepted: 10/12/2013] [Indexed: 01/17/2023]
|
41
|
Bruno M, Bancheva S, Rosselli S, Maggio A. Sesquiterpenoids in subtribe Centaureinae (Cass.) Dumort (tribe Cardueae, Asteraceae): distribution, (13)C NMR spectral data and biological properties. PHYTOCHEMISTRY 2013; 95:19-93. [PMID: 23948259 DOI: 10.1016/j.phytochem.2013.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 07/05/2013] [Accepted: 07/05/2013] [Indexed: 05/22/2023]
Abstract
Asteraceae Bercht. & J. Presl is one of the biggest and most economically important plant families. The taxonomy and phylogeny of Asteraceae is rather complex and according to the latest and most reliable taxonomic classification of Panero & Funk, based on the analysis of nine chloroplast regions, the family is divided into 12 subfamilies and 35 tribes. One of the largest tribes of Asteraceae is Cardueae Cass. with four subtribes (Carlininae, Echinopinae, Carduinae and Centaureinae) and more than 2500 species. Susanna & Garcia-Jacas have organized the genera of Centaureinae (about 800 species) into seven informal groups, which recent molecular studies have confirmed: 1. Basal genera; 2. Volutaria group; 3. Rhaponticum group; 4. Serratula group; 5. Carthamus group; 6. Crocodylium group; 7. Centaurea group. This review summarizes reports on sesquiterpenoids from the Centaureinae subtribe of the Asteraceae family, as well as the (13)C NMR spectral data described in the literature. It further reviews studies concerning the biological activities of these metabolites. For this work, literature data on sesquiterpenes from the Centaureinae subtribe were retrieved with the help of the SciFinder database and other similar data banks. All entries from 1958 until the end of 2011 were considered. This review is addressed to scientists working in the metabolomics field such as chemists, botanists, etc., the spectroscopic data reported make this work a good tool for structural elucidation, the biological section gives useful information to those who wish to study the structure activity relationships.
Collapse
Affiliation(s)
- Maurizio Bruno
- STEBICEF, Section of Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Italy.
| | | | | | | |
Collapse
|
42
|
|
43
|
Lohberger B, Rinner B, Stuendl N, Kaltenegger H, Steinecker-Frohnwieser B, Bernhart E, Bonyadi Rad E, Weinberg AM, Leithner A, Bauer R, Kretschmer N. Sesquiterpene lactones downregulate G2/M cell cycle regulator proteins and affect the invasive potential of human soft tissue sarcoma cells. PLoS One 2013; 8:e66300. [PMID: 23799090 PMCID: PMC3682952 DOI: 10.1371/journal.pone.0066300] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/03/2013] [Indexed: 11/20/2022] Open
Abstract
Soft tissue sarcomas (STS) represent a rare group of malignant tumors that frequently exhibit chemotherapeutic resistance and increased metastatic potential. Many studies have demonstrated the great potential of plant-derived agents in the treatment of various malignant entities. The present study investigates the effects of the sesquiterpene lactones costunolide and dehydrocostus lactone on cell cycle, MMP expression, and invasive potential of three human STS cell lines of various origins. Both compounds reduced cell proliferation in a time- and dose-dependent manner. Dehydrocostus lactone significantly inhibited cell proliferation, arrested the cells at the G2/M interface and caused a decrease in the expression of the cyclin-dependent kinase CDK2 and the cyclin-dependent kinase inhibitor p27Kip1. In addition, accumulation of cells at the G2/M phase transition interface resulted in a significant decrease in cdc2 (CDK1) together with cyclin B1. Costunolide had no effect on the cell cycle. Based on the fact that STS tend to form daughter cell nests and metastasize, the expression levels of matrix metalloproteinases (MMPs), which play a crucial role in extracellular matrix degradation and metastasis, were investigated by Luminex® technology and real-time RT-PCR. In the presence of costunolide, MMP-2 and -9 levels were significantly increased in SW-982 and TE-671 cells. Dehydrocostus lactone treatment significantly reduced MMP-2 and -9 expression in TE-671 cells, but increased MMP-9 level in SW-982 cells. In addition, the invasion potential was significantly reduced after treatment with both sesquiterpene lactones as investigated by the HTS FluoroBlock™ insert system.
Collapse
Affiliation(s)
- Birgit Lohberger
- Department of Orthopedic Surgery, Medical University of Graz, Graz, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide. Anticancer Drugs 2013; 23:883-96. [PMID: 22797176 DOI: 10.1097/cad.0b013e328356cad9] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sesquiterpene lactones (SLs) constitute a large and diverse group of biologically active plant compounds that possess anti-inflammatory and antitumor activity. The subclass germacranolides is one of the major groups of SLs. It includes parthenolide, a highly cytotoxic SL that is being tested in clinical trials as an anti-cancer agent. In this review, we focus on SL antitumor activity related to cell-cycle arrest, differentiation, apoptosis induction through the intrinsic pathway, and sensitization of the extrinsic pathway. We also address the regression of tumors in response to cotreatment with conventional chemotherapeutics. We review the nuclear factor-κB-targeted anti-inflammatory activity in vitro and in vivo and relate it to the SL structural features involved in the molecular mechanisms. It is obvious that SLs are emerging as promising anticancer agents, but more investigations are required to fully understand the molecular mechanisms of known SLs in different cell death modalities and how these mechanisms contribute toward the potent antitumor and anti-inflammatory activities of SLs.
Collapse
|
45
|
Shi JM, Bai LL, Zhang DM, Yiu A, Yin ZQ, Han WL, Liu JS, Li Y, Fu DY, Ye WC. Saxifragifolin D induces the interplay between apoptosis and autophagy in breast cancer cells through ROS-dependent endoplasmic reticulum stress. Biochem Pharmacol 2013; 85:913-26. [PMID: 23348250 DOI: 10.1016/j.bcp.2013.01.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/02/2013] [Accepted: 01/08/2013] [Indexed: 12/16/2022]
Abstract
Breast cancer is the leading cause of cancer death among females, and novel chemotherapeutic drugs for treating breast cancer are needed urgently. Saxifragifolin D (SD) was isolated by our group from Androsace umbellata which is commonly used to treat solid tumor. In this study, we evaluated its growth inhibitory effect on breast cancer cells and explored the underlying molecular mechanisms. Our results showed that SD inhibited the growth of both MCF-7 and MDA-MB-231 cells significantly. Mechanistic studies demonstrated that SD induced apoptosis through mitochondrial apoptotic pathway. Evidence of SD-induced autophagy included the occurrence of autophagic vacuoles, up-regulation of LC3-II, Beclin1 and Vps34. Inhibition of autophagy by bafilomycin A1 or Beclin1 siRNA pretreatment decreased the ratio of apoptosis, indicating that autophagy induction contributes to apoptosis and is required for the latter. SD was also found to induce endoplasmic reticulum stress, accompanied by ROS production, increase of intracellular calcium and up-regulation of Bip, IRE1α and XBP-1s. Inhibition of endoplasmic reticulum stress by N-acetyl-l-cysteine, tauroursodeoxycholic acid or IRE1α siRNA pretreatment could suppress both apoptosis and autophagy. Besides, increases in CHOP, calnexin, calpain, p-JNK and p-Bcl-2 were followed by subsequent dissociation of Beclin1 from Bcl-2, further suggesting endoplasmic reticulum stress to be the common signaling pathway shared by SD-induced apoptosis and autophagy. In conclusion, SD inhibits breast cancer cell growth and induces interplay between apoptosis and autophagy through ROS-mediated endoplasmic reticulum stress. It will provide molecular bases for developing SD into a drug candidate for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jun-Min Shi
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Endoplasmic reticulum stress (ERS) is an important self-defense mechanism of the cell. ERS initially activates survival pathway, but sustained ERS will induce apoptosis. ERS and apoptosis induced by ERS are involved in the pathogenesis of many liver diseases, including viral hepatitis, alcohol-induced liver injury, nonalcoholic fatty liver disease, drug-induced liver disease, acute hepatic failure, and hepatocellular carcinoma. It is of important theoretical and practical significance for curing liver diseases to find some new drugs targeting ERS-induced apoptosis. The present review will discuss the survival and death pathways mediated by ERS, the role of ERS in the pathogenesis of hepatic diseases, and therapeutic interventions for these diseases.
Collapse
|
47
|
Dehydrocostuslactone suppresses angiogenesis in vitro and in vivo through inhibition of Akt/GSK-3β and mTOR signaling pathways. PLoS One 2012; 7:e31195. [PMID: 22359572 PMCID: PMC3281050 DOI: 10.1371/journal.pone.0031195] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 01/03/2012] [Indexed: 01/04/2023] Open
Abstract
The traditional Chinese medicine component dehydrocostuslactone (DHC) isolated from Saussurea costus (Falc.) Lipschitz, has been shown to have anti-cancer activity. Angiogenesis is an essential process in the growth and progression of cancer. In this study, we demonstrated, for the first time, the anti-angiogenic mechanism of action of DHC to be via the induction of cell cycle progression at the G0/G1 phase due to abrogation of the Akt/glycogen synthase kinase-3β (GSK-3β)/cyclin D1 and mTOR signaling pathway. First, we demonstrated that DHC has an anti-angiogenic effect in the matrigel-plug nude mice model and an inhibitory effect on human umbilical vein endothelial cell (HUVEC) proliferation and capillary-like tube formation in vitro. DHC caused G0/G1 cell cycle arrest, which was associated with the down-regulation of cyclin D1 expression, leading to the suppression of retinoblastoma protein phosphorylation and subsequent inhibition of cyclin A and cdk2 expression. With respect to the molecular mechanisms underlying the DHC-induced cyclin D1 down-regulation, this study demonstrated that DHC significantly inhibits Akt expression, resulting in the suppression of GSK-3β phosphorylation and mTOR expression. These effects are capable of regulating cyclin D1 degradation, but they were significantly reversed by constitutively active myristoylated (myr)-Akt. Furthermore, the abrogation of tube formation induced by DHC was also reversed by overexpression of Akt. And the co-treatment with LiCl and DHC significantly reversed the growth inhibition induced by DHC. Taken together, our study has identified Akt/GSK-3β and mTOR as important targets of DHC and has thus highlighted its potential application in angiogenesis-related diseases, such as cancer.
Collapse
|
48
|
Kim EJ, Hong JE, Lim SS, Kwon GT, Kim J, Kim JS, Lee KW, Park JHY. The Hexane Extract of Saussurea lappa and Its Active Principle, Dehydrocostus Lactone, Inhibit Prostate Cancer Cell Migration. J Med Food 2012; 15:24-32. [DOI: 10.1089/jmf.2011.1735] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Eun Ji Kim
- Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University, Chuncheon, Korea
| | - Ji Eun Hong
- Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University, Chuncheon, Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
| | - Gyoo Taik Kwon
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
| | - Jongdai Kim
- Medical & Bio-Materials Research Center, Kangwon National University, Chuncheon, Korea
- Department of Food Science & Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Jong-Sang Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Jung Han Yoon Park
- Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University, Chuncheon, Korea
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
- Medical & Bio-Materials Research Center, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
49
|
Thoppil RJ, Bishayee A. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World J Hepatol 2011; 3:228-49. [PMID: 21969877 PMCID: PMC3182282 DOI: 10.4254/wjh.v3.i9.228] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 08/15/2011] [Accepted: 08/22/2011] [Indexed: 02/06/2023] Open
Abstract
Despite significant advances in medicine, liver cancer, predominantly hepatocellular carcinoma remains a major cause of death in the United States as well as the rest of the world. As limited treatment options are currently available to patients with liver cancer, novel preventive control and effective therapeutic approaches are considered to be reasonable and decisive measures to combat this disease. Several naturally occurring dietary and non-dietary phytochemicals have shown enormous potential in the prevention and treatment of several cancers, especially those of the gastrointestinal tract. Terpenoids, the largest group of phytochemicals, traditionally used for medicinal purposes in India and China, are currently being explored as anticancer agents in clinical trials. Terpenoids (also called "isoprenoids") are secondary metabolites occurring in most organisms, particularly plants. More than 40 000 individual terpenoids are known to exist in nature with new compounds being discovered every year. A large number of terpenoids exhibit cytotoxicity against a variety of tumor cells and cancer preventive as well as anticancer efficacy in preclinical animal models. This review critically examines the potential role of naturally occurring terpenoids, from diverse origins, in the chemoprevention and treatment of liver tumors. Both in vitro and in vivo effects of these agents and related cellular and molecular mechanisms are highlighted. Potential challenges and future directions involved in the advancement of these promising natural compounds in the chemoprevention and therapy of human liver cancer are also discussed.
Collapse
Affiliation(s)
- Roslin J Thoppil
- Roslin J Thoppil, Anupam Bishayee, Cancer Therapeutics and Chemoprevention Group, Department of Pharmaceutical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, United States
| | | |
Collapse
|
50
|
Zhang Q, Cai D, Liu J. Matrix solid-phase dispersion extraction coupled with HPLC-diode array detection method for the analysis of sesquiterpene lactones in root of Saussurea lappa C.B.Clarke. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2809-14. [DOI: 10.1016/j.jchromb.2011.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/07/2011] [Accepted: 08/08/2011] [Indexed: 11/29/2022]
|