1
|
Liang G, Lv XF, Huang W, Jin YJ, Roquid KA, Kawase H, Offermanns S. Loss of Smooth Muscle Tenascin-X Inhibits Vascular Remodeling Through Increased TGF-β Signaling. Arterioscler Thromb Vasc Biol 2024; 44:1748-1763. [PMID: 38934115 DOI: 10.1161/atvbaha.123.321067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Vascular smooth muscle cells (VSMCs) are highly plastic. Vessel injury induces a phenotypic transformation from differentiated to dedifferentiated VSMCs, which involves reduced expression of contractile proteins and increased production of extracellular matrix and inflammatory cytokines. This transition plays an important role in several cardiovascular diseases such as atherosclerosis, hypertension, and aortic aneurysm. TGF-β (transforming growth factor-β) is critical for VSMC differentiation and to counterbalance the effect of dedifferentiating factors. However, the mechanisms controlling TGF-β activity and VSMC phenotypic regulation under in vivo conditions are poorly understood. The extracellular matrix protein TN-X (tenascin-X) has recently been shown to bind TGF-β and to prevent it from activating its receptor. METHODS We studied the role of TN-X in VSMCs in various murine disease models using tamoxifen-inducible SMC-specific knockout and adeno-associated virus-mediated knockdown. RESULTS In hypertensive and high-fat diet-fed mice, after carotid artery ligation as well as in human aneurysmal aortae, expression of Tnxb, the gene encoding TN-X, was increased in VSMCs. Mice with smooth muscle cell-specific loss of TN-X (SMC-Tnxb-KO) showed increased TGF-β signaling in VSMCs, as well as upregulated expression of VSMC differentiation marker genes during vascular remodeling compared with controls. SMC-specific TN-X deficiency decreased neointima formation after carotid artery ligation and reduced vessel wall thickening during Ang II (angiotensin II)-induced hypertension. SMC-Tnxb-KO mice lacking ApoE showed reduced atherosclerosis and Ang II-induced aneurysm formation under high-fat diet. Adeno-associated virus-mediated SMC-specific expression of short hairpin RNA against Tnxb showed similar beneficial effects. Treatment with an anti-TGF-β antibody or additional SMC-specific loss of the TGF-β receptor reverted the effects of SMC-specific TN-X deficiency. CONCLUSIONS In summary, TN-X critically regulates VSMC plasticity during vascular injury by inhibiting TGF-β signaling. Our data indicate that inhibition of vascular smooth muscle TN-X may represent a strategy to prevent and treat pathological vascular remodeling.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Angiotensin II
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/pathology
- Aortic Aneurysm/genetics
- Aortic Aneurysm/prevention & control
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/genetics
- Cells, Cultured
- Diet, High-Fat
- Disease Models, Animal
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/physiopathology
- Hypertension/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima
- Phenotype
- Signal Transduction
- Tenascin/metabolism
- Tenascin/genetics
- Tenascin/deficiency
- Transforming Growth Factor beta/metabolism
- Vascular Remodeling
Collapse
Affiliation(s)
- Guozheng Liang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (G.L., X.-F.L., W.H., Y.-J.J., K.A.R., H.K., S.O.)
| | - Xiao-Fei Lv
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (G.L., X.-F.L., W.H., Y.-J.J., K.A.R., H.K., S.O.)
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China (X.-F.L.)
| | - Wei Huang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (G.L., X.-F.L., W.H., Y.-J.J., K.A.R., H.K., S.O.)
| | - Young-June Jin
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (G.L., X.-F.L., W.H., Y.-J.J., K.A.R., H.K., S.O.)
| | - Kenneth Anthony Roquid
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (G.L., X.-F.L., W.H., Y.-J.J., K.A.R., H.K., S.O.)
| | - Haruya Kawase
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (G.L., X.-F.L., W.H., Y.-J.J., K.A.R., H.K., S.O.)
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (G.L., X.-F.L., W.H., Y.-J.J., K.A.R., H.K., S.O.)
- Center for Molecular Medicine, Goethe University Frankfurt, Germany (S.O.)
- Cardiopulmonary Institute, Bad Nauheim, Germany (S.O.)
- German Center for Cardiovascular Research, Bad Nauheim, Germany (S.O.)
| |
Collapse
|
2
|
Hong Q, Ling L, Huang W, Liu Y, Zhuo Y, Hong Z, Wu B, Zhang Y. LncRNA RNCR3 promotes endothelial cell proliferation and inflammatory cytokine secretion via regulating miR-185-5p/cyclin D2 axis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27025-27032. [PMID: 33501579 DOI: 10.1007/s11356-020-12117-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Endothelial cell is one critical structure of blood vessels, and irregular migration and proliferation of endothelial cell might cause progression of several vascular diseases such as atherosclerosis and restenosis. We showed that TNF-α, PDGF-bb, and IL-1β promote RNCR3 expression in a dose-dependent manner inhuman endothelial cell. RNCR3 level is higher in serum of atherosclerosis patients compared with those in control volunteers. Overexpression of RNCR3 promotes cell proliferation and three inflammatory cytokine secretion including IL-6, IL-1β, and TNF-α in endothelial cell. We illustrated that overexpression of RNCR3 inhibits miR-185-5p expression in endothelial cell. Furthermore, we indicated that miR-185-5p level is lower in the serum of patients with atherosclerosis compared with those in control volunteers. There is a negative correlation between miR-185-5p and RNCR3 expression in serum of patients with atherosclerosis. Using Targetscan, it predicted that miR-185-5p may bind to cyclin D2 and miR-185-5p is one potential target of miR-185-5p. Luciferase reporter data indicated that miR-185-5p suppresses luciferase value of wild-type cyclin D2 while it has no influence of cyclin D2 mutant. Overexpression of RNCR3 enhances cyclin D2 expression in endothelial cell. Moreover, RNCR3 induces cell growth and enhances inflammatory cytokine secretion through modulating cyclin D2 expression in endothelial cell. These results suggested that RNCR3 may serve as one new target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Quanlong Hong
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Lin Ling
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Wenli Huang
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Yilan Liu
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Yafen Zhuo
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Zhenzhen Hong
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Bing Wu
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China.
| | - Yi Zhang
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
3
|
Liu G, Fu D, Tian H, Dai A. The mechanism of ions in pulmonary hypertension. Pulm Circ 2021; 11:2045894020987948. [PMID: 33614016 PMCID: PMC7869166 DOI: 10.1177/2045894020987948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary hypertension(PH)is a kind of hemodynamic and pathophysiological state, in which the pulmonary artery pressure (PAP) rises above a certain threshold. The main pathological manifestation is pulmonary vasoconstriction and remodelling progressively. More and more studies have found that ions play a major role in the pathogenesis of PH. Many vasoactive substances, inflammatory mediators, transcription-inducing factors, apoptosis mediators, redox substances and translation modifiers can control the concentration of ions inside and outside the cell by regulating the activity of ion channels, which can regulate vascular contraction, cell proliferation, migration, apoptosis, inflammation and other functions. We all know that there are no effective drugs to treat PH. Ions are involved in the occurrence and development of PH, so it is necessary to clarify the mechanism of ions in PH as a therapeutic target for PH. The main ions involved in PH are calcium ion (Ca2+), potassium ion (K+), sodium ion (Na+) and chloride ion (Cl-). Here, we mainly discuss the distribution of these ions and their channels in pulmonary arteries and their role in the pathogenesis of PH.
Collapse
Affiliation(s)
- Guogu Liu
- Department of Graduate School, University of South China,
Hengyang, China
- Department of Respiratory Medicine, Hunan Provincial People’s
Hospital, Changsha, China
| | - Daiyan Fu
- Department of Respiratory Medicine, Hunan Provincial People’s
Hospital, Changsha, China
| | - Heshen Tian
- Department of Graduate School, University of South China,
Hengyang, China
- Department of Respiratory Medicine, Hunan Provincial People’s
Hospital, Changsha, China
| | - Aiguo Dai
- Department of Respiratory Diseases, Hunan University of Chinese
Medicine, Changsha, China
| |
Collapse
|
4
|
Hu Z, Li G, Wang JW, Chong SY, Yu D, Wang X, Soon JL, Liang MC, Wong YP, Huang N, Colecraft HM, Liao P, Soong TW. Regulation of Blood Pressure by Targeting Ca V1.2-Galectin-1 Protein Interaction. Circulation 2019; 138:1431-1445. [PMID: 29650545 DOI: 10.1161/circulationaha.117.031231] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND L-type CaV1.2 channels play crucial roles in the regulation of blood pressure. Galectin-1 (Gal-1) has been reported to bind to the I-II loop of CaV1.2 channels to reduce their current density. However, the mechanistic understanding for the downregulation of CaV1.2 channels by Gal-1 and whether Gal-1 plays a direct role in blood pressure regulation remain unclear. METHODS In vitro experiments involving coimmunoprecipitation, Western blot, patch-clamp recordings, immunohistochemistry, and pressure myography were used to evaluate the molecular mechanisms by which Gal-1 downregulates CaV1.2 channel in transfected, human embryonic kidney 293 cells, smooth muscle cells, arteries from Lgasl1-/- mice, rat, and human patients. In vivo experiments involving the delivery of Tat-e9c peptide and AAV5-Gal-1 into rats were performed to investigate the effect of targeting CaV1.2-Gal-1 interaction on blood pressure monitored by tail-cuff or telemetry methods. RESULTS Our study reveals that Gal-1 is a key regulator for proteasomal degradation of CaV1.2 channels. Gal-1 competed allosterically with the CaVβ subunit for binding to the I-II loop of the CaV1.2 channel. This competitive disruption of CaVβ binding led to CaV1.2 degradation by exposing the channels to polyubiquitination. It is notable that we demonstrated that the inverse relationship of reduced Gal-1 and increased CaV1.2 protein levels in arteries was associated with hypertension in hypertensive rats and patients, and Gal-1 deficiency induces higher blood pressure in mice because of the upregulated CaV1.2 protein level in arteries. To directly regulate blood pressure by targeting the CaV1.2-Gal-1 interaction, we administered Tat-e9c, a peptide that competed for binding of Gal-1 by a miniosmotic pump, and this specific disruption of CaV1.2-Gal-1 coupling increased smooth muscle CaV1.2 currents, induced larger arterial contraction, and caused hypertension in rats. In contrasting experiments, overexpression of Gal-1 in smooth muscle by a single bolus of AAV5-Gal-1 significantly reduced blood pressure in spontaneously hypertensive rats. CONCLUSIONS We have defined molecularly that Gal-1 promotes CaV1.2 degradation by replacing CaVβ and thereby exposing specific lysines for polyubiquitination and by masking I-II loop endoplasmic reticulum export signals. This mechanistic understanding provided the basis for targeting CaV1.2-Gal-1 interaction to demonstrate clearly the modulatory role that Gal-1 plays in regulating blood pressure, and offering a potential approach for therapeutic management of hypertension.
Collapse
Affiliation(s)
- Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine (Z.Y.H., J.-W.W., D.Y., M.C.L., Y.P.W., T.W.S.), National University of Singapore
| | - Guang Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (G.L.)
| | - Jiong-Wei Wang
- Department of Physiology, Yong Loo Lin School of Medicine (Z.Y.H., J.-W.W., D.Y., M.C.L., Y.P.W., T.W.S.), National University of Singapore.,Department of Surgery, Yong Loo Lin School of Medicine (J.-W.W., S.Y.C., X.W.), National University of Singapore.,Cardiovascular Research Institute, National University Heart Center, National University Health Systems, Centre for Translational Medicine, Singapore (J.-W.W., S.Y.C., X.W.)
| | - Suet Yen Chong
- Department of Surgery, Yong Loo Lin School of Medicine (J.-W.W., S.Y.C., X.W.), National University of Singapore.,Cardiovascular Research Institute, National University Heart Center, National University Health Systems, Centre for Translational Medicine, Singapore (J.-W.W., S.Y.C., X.W.)
| | - Dejie Yu
- Department of Physiology, Yong Loo Lin School of Medicine (Z.Y.H., J.-W.W., D.Y., M.C.L., Y.P.W., T.W.S.), National University of Singapore
| | - Xiaoyuan Wang
- Department of Surgery, Yong Loo Lin School of Medicine (J.-W.W., S.Y.C., X.W.), National University of Singapore.,Cardiovascular Research Institute, National University Heart Center, National University Health Systems, Centre for Translational Medicine, Singapore (J.-W.W., S.Y.C., X.W.)
| | | | - Mui Cheng Liang
- Department of Physiology, Yong Loo Lin School of Medicine (Z.Y.H., J.-W.W., D.Y., M.C.L., Y.P.W., T.W.S.), National University of Singapore
| | - Yuk Peng Wong
- Department of Physiology, Yong Loo Lin School of Medicine (Z.Y.H., J.-W.W., D.Y., M.C.L., Y.P.W., T.W.S.), National University of Singapore
| | - Na Huang
- National Heart Centre Singapore (J.L.S., N.H.)
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, New York (H.M.C.)
| | | | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine (Z.Y.H., J.-W.W., D.Y., M.C.L., Y.P.W., T.W.S.), National University of Singapore.,Neurobiology/Ageing Programme (T.W.S.), National University of Singapore.,Graduate School for Integrative Sciences and Engineering (T.W.S.), National University of Singapore.,National Neuroscience Institute, Singapore (T.W.S.)
| |
Collapse
|
5
|
Soloviev AI, Kizub IV. Mechanisms of vascular dysfunction evoked by ionizing radiation and possible targets for its pharmacological correction. Biochem Pharmacol 2018; 159:121-139. [PMID: 30508525 DOI: 10.1016/j.bcp.2018.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
Ionizing radiation (IR) leads to a variety of the cardiovascular diseases, including the arterial hypertension. A number of studies have demonstrated that blood vessels represent important target for IR, and the endothelium is one of the most vulnerable components of the vascular wall. IR causes an inhibition of nitric oxide (NO)-mediated endothelium-dependent vasodilatation and generation of reactive oxygen (ROS) and nitrogen (RNS) species trigger this process. Inhibition of NO-mediated vasodilatation could be due to endothelial NO synthase (eNOS) down-regulation, inactivation of endothelium-derived NO, and abnormalities in diffusion of NO from the endothelial cells (ECs) leading to a decrease in NO bioavailability. Beside this, IR suppresses endothelial large conductance Ca2+-activated K+ channels (BKCa) activity, which control NO synthesis. IR also leads to inhibition of the BKCa current in vascular smooth muscle cells (SMCs) which is mediated by protein kinase C (PKC). On the other hand, IR-evoked enhanced vascular contractility may result from PKC-mediated increase in SMCs myofilament Ca2+ sensitivity. Also, IR evokes vascular wall inflammation and atherosclerosis development. Vascular function damaged by IR can be effectively restored by quercetin-filled phosphatidylcholine liposomes and mesenchymal stem cells injection. Using RNA-interference technique targeted to different PKC isoforms can also be a perspective approach for pharmacological treatment of IR-induced vascular dysfunction.
Collapse
Affiliation(s)
- Anatoly I Soloviev
- Department of Pharmacology of Cellular Signaling Systems and Experimental Therapy, Institute of Pharmacology and Toxicology, National Academy of Medical Sciences of Ukraine, 14 Eugene Pottier Street, Kiev 03068, Ukraine
| | - Igor V Kizub
- Department of Pharmacology, New York Medical College, 15 Dana Road, Valhalla 10595, NY, United States.
| |
Collapse
|
6
|
Coll-Bonfill N, de la Cruz-Thea B, Pisano MV, Musri MM. Noncoding RNAs in smooth muscle cell homeostasis: implications in phenotypic switch and vascular disorders. Pflugers Arch 2016; 468:1071-87. [PMID: 27109570 DOI: 10.1007/s00424-016-1821-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2022]
Abstract
Vascular smooth muscle cells (SMC) are a highly specialized cell type that exhibit extraordinary plasticity in adult animals in response to a number of environmental cues. Upon vascular injury, SMC undergo phenotypic switch from a contractile-differentiated to a proliferative/migratory-dedifferentiated phenotype. This process plays a major role in vascular lesion formation and during the development of vascular remodeling. Vascular remodeling comprises the accumulation of dedifferentiated SMC in the intima of arteries and is central to a number of vascular diseases such as arteriosclerosis, chronic obstructive pulmonary disease or pulmonary hypertension. Therefore, it is critical to understand the molecular mechanisms that govern SMC phenotype. In the last decade, a number of new classes of noncoding RNAs have been described. These molecules have emerged as key factors controlling tissue homeostasis during physiological and pathological conditions. In this review, we will discuss the role of noncoding RNAs, including microRNAs and long noncoding RNAs, in the regulation of SMC plasticity.
Collapse
Affiliation(s)
- N Coll-Bonfill
- Department of Pulmonary Medicine Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - B de la Cruz-Thea
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina
| | - M V Pisano
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina
| | - M M Musri
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, 5016, Córdoba, Argentina.
| |
Collapse
|
7
|
Galka-Marciniak P, Olejniczak M, Starega-Roslan J, Szczesniak MW, Makalowska I, Krzyzosiak WJ. siRNA release from pri-miRNA scaffolds is controlled by the sequence and structure of RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:639-49. [DOI: 10.1016/j.bbagrm.2016.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 01/17/2023]
|
8
|
Parhi R, Suresh P. Transdermal delivery of Diltiazem HCl from matrix film: Effect of penetration enhancers and study of antihypertensive activity in rabbit model. J Adv Res 2015; 7:539-50. [PMID: 27222758 DOI: 10.1016/j.jare.2015.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 11/27/2022] Open
Abstract
The present investigation focused on the development of Diltiazem HCl (DTH) matrix film and its characterization by in-vitro, ex-vivo and in-vivo methods. Films were prepared by solvent casting method by taking different ratios of hydroxypropyl methylcellulose K4M (HPMC K4M) and Eudragit RS100. Various parameters of the films were analyzed such as mechanical property using tensile tester, interaction study by Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric analysis (TGA), in-vitro drug release through cellulose acetate membrane, ex-vivo permeation study using abdominal skin of rat employing Franz diffusion cell, and in-vivo antihypertensive activity using rabbit model. The FTIR studies confirmed the absence of interaction between DTH and selected polymers. Thermal analysis showed the shifting of endothermic peak of DTH in film, indicating the dispersion of DTH in molecular form throughout the film. Incorporation of 1,8-cineole showed highest flux (89.7 μg/cm(2)/h) of DTH compared to other penetration enhancers such as capsaicin, dimethyl sulfoxide (DMSO), and N-methyl pyrrolidone (NMP). Photomicrographs of histology study on optimized formulation (DF9) illustrated disruption of stratum corneum (SC) supporting the ex-vivo results. The in-vivo antihypertensive activity results demonstrated that formulation DF9 was effective in reducing arterial blood pressure in normotensive rabbits. SEM analysis of films kept for stability study (40 ± 2 °C/75% ± 5%RH for 3 months) revealed the formation of drug crystals which may be due to higher temperature. The findings of the study provide a better alternative dosage form of DTH for the effective treatment of hypertension with enhanced patient compliance.
Collapse
Affiliation(s)
- Rabinarayan Parhi
- Institute of Pharmacy, GITAM University, Gandhi Nagar Campus, Rushikunda, Visakhapatnam 530045, Andhra Pradesh, India
| | - Padilam Suresh
- Institute of Pharmacy and Technology, Salipur 754202, Cuttack, Odisha, India
| |
Collapse
|
9
|
Murakami K. Non-coding RNAs and hypertension-unveiling unexpected mechanisms of hypertension by the dark matter of the genome. Curr Hypertens Rev 2015; 11:80-90. [PMID: 25828869 PMCID: PMC5384352 DOI: 10.2174/1573402111666150401105317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/05/2015] [Accepted: 03/30/2015] [Indexed: 12/23/2022]
Abstract
Hypertension is a major risk factor of cardiovascular diseases and a most important health problem in developed countries. Investigations on pathophysiology of hypertension have been based on gene products from coding region that occupies only about 1% of total genome region. On the other hand, non-coding region that occupies almost 99% of human genome has been regarded as "junk" for a long time and went unnoticed until these days. But recently, it turned out that noncoding region is extensively transcribed to non-coding RNAs and has various functions. This review highlights recent updates on the significance of non-coding RNAs such as micro RNAs and long non-coding RNAs (lncRNAs) on the pathogenesis of hypertension, also providing an introduction to basic biology of noncoding RNAs. For example, microRNAs are associated with hypertension via neuro-fumoral factor, sympathetic nerve activity, ion transporters in kidneys, endothelial function, vascular smooth muscle phenotype transformation, or communication between cells. Although reports of lncRNAs on pathogenesis of hypertension are scarce at the moment, new lncRNAs in relation to hypertension are being discovered at a rapid pace owing to novel techniques such as microarray or next-generation sequencing. In the clinical settings, clinical use of non-coding RNAs in identifying cardiovascular risks or developing novel tools for treating hypertension such as molecular decoy or mimicks is promising, although improvement in chemical modification or drug delivery system is necessary.
Collapse
Affiliation(s)
- Kazuo Murakami
- Department of Health Care and Preventive Medicine, Matsuyama Red Cross Hospital, 1 Bunkyo-cho, Matsuyama, Ehime, 790-8524, Japan.
| |
Collapse
|
10
|
Michiels CF, Van Hove CE, Martinet W, De Meyer GRY, Fransen P. L-type Ca2+ channel blockers inhibit the window contraction of mouse aorta segments with high affinity. Eur J Pharmacol 2014; 738:170-8. [PMID: 24886884 DOI: 10.1016/j.ejphar.2014.05.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/28/2022]
Abstract
L-type calcium channel blockers (LCCBs) reduce blood pressure more effectively in hypertensive than in normotensive subjects and are more effective in vascular smooth muscle (VSM) than in cardiac muscle. This has been explained by the depolarized resting potential of VSM in comparison with heart muscle cells and during hypertension, because both favor the "high affinity" inactivated state of the L-type calcium channel (LCC). Depolarized resting potentials, however, also increase Ca(2+) influx via window, non-inactivating LCC. The present study investigated whether these channels can be effectively blocked by nifedipine, verapamil or diltiazem, as representatives of different LCCB classes. C57Bl6 mouse aortic segments were depolarized by 50mM K(+) to attain similar degree of inactivation. The depolarization evoked biphasic contractions with the slow force component displaying higher sensitivity to LCCBs than the fast component. Removal of the fast force component increased, whereas stimulation of Ca(2+) influx with the dihydropyridine BAY K8644, a structural analog of nifedipine, decreased the efficacy of the LCCBs. Addition of LCCBs during the contraction caused concentration-dependent relaxation, which was independent of the presence of a fast force component, but still showed lower sensitivity in the presence of BAY K8644. Our data suggest that steady-state contractions by depolarization with 50mM K(+) are completely due to window Ca(2+) influx, which is preferentially inhibited by LCCBs. Furthermore, results point to interactions between the LCCB receptors and Ca(2+) ions or BAY K8644. The high affinity for open, non-inactivating LCC may play a dominant role in the anti-hypertensive effects of LCCBs.
Collapse
Affiliation(s)
- Cédéric F Michiels
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Cor E Van Hove
- Laboratory of Pharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Paul Fransen
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
11
|
Correction of vascular hypercontractility in spontaneously hypertensive rats using shRNAs-induced delta protein kinase C gene silencing. Eur J Pharmacol 2013; 718:401-7. [DOI: 10.1016/j.ejphar.2013.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/16/2013] [Accepted: 08/03/2013] [Indexed: 01/08/2023]
|
12
|
Joseph BK, Thakali KM, Moore CL, Rhee SW. Ion channel remodeling in vascular smooth muscle during hypertension: Implications for novel therapeutic approaches. Pharmacol Res 2013; 70:126-38. [PMID: 23376354 PMCID: PMC3607210 DOI: 10.1016/j.phrs.2013.01.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 02/07/2023]
Abstract
Ion channels are multimeric, transmembrane proteins that selectively mediate ion flux across the plasma membrane in a variety of cells including vascular smooth muscle cells (VSMCs). The dynamic interplay of Ca(2+) and K(+) channels on the plasma membrane of VSMCs plays a pivotal role in modulating the vascular tone of small arteries and arterioles. The abnormally-elevated arterial tone observed in hypertension thus points to an aberrant expression and function of Ca(2+) and K(+) channels in the VSMCs. In this short review, we focus on the three well-studied ion channels in VSMCs, namely the L-type Ca(2+) (CaV1.2) channels, the voltage-gated K(+) (KV) channels, and the large-conductance Ca(2+)-activated K(+) (BK) channels. First, we provide a brief overview on the physiological role of vascular CaV1.2, KV and BK channels in regulating arterial tone. Second, we discuss the current understanding of the expression changes and regulation of CaV1.2, KV and BK channels in the vasculature during hypertension. Third, based on available proof-of-concept studies, we describe the potential therapeutic approaches targeting these vascular ion channels in order to restore blood pressure to normotensive levels.
Collapse
Affiliation(s)
- Biny K Joseph
- Venenum Biodesign, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | | | | | | |
Collapse
|
13
|
Ion channels/transporters as epigenetic regulators? -a microRNA perspective. SCIENCE CHINA-LIFE SCIENCES 2012; 55:753-60. [PMID: 23015123 DOI: 10.1007/s11427-012-4369-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/30/2012] [Indexed: 10/27/2022]
Abstract
MicroRNA (miRNA) alterations in response to changes in an extracellular microenvironment have been observed and considered as one of the major mechanisms for epigenetic modifications of the cell. While enormous efforts have been made in the understanding of the role of miRNAs in regulating cellular responses to the microenvironment, the mechanistic insight into how extracellular signals can be transduced into miRNA alterations in cells is still lacking. Interestingly, recent studies have shown that ion channels/transporters, which are known to conduct or transport ions across the cell membrane, also exhibit changes in levels of expression and activities in response to changes of extracellular microenvironment. More importantly, alterations in expression and function of ion channels/transporters have been shown to result in changes in miRNAs that are known to change in response to alteration of the microenvironment. In this review, we aim to summarize the recent data demonstrating the ability of ion channels/transporters to transduce extracellular signals into miRNA changes and propose a potential link between cells and their microenvironment through ion channels/transporters. At the same time, we hope to provide new insights into epigenetic regulatory mechanisms underlying a number of physiological and pathological processes, including embryo development and cancer metastasis.
Collapse
|
14
|
Fransen P, Van Hove CE, van Langen J, Schrijvers DM, Martinet W, De Meyer GRY, Bult H. Contribution of transient and sustained calcium influx, and sensitization to depolarization-induced contractions of the intact mouse aorta. BMC PHYSIOLOGY 2012; 12:9. [PMID: 22943445 PMCID: PMC3499395 DOI: 10.1186/1472-6793-12-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/28/2012] [Indexed: 01/31/2023]
Abstract
Background Electrophysiological studies of L-type Ca2+ channels in isolated vascular smooth muscle cells revealed that depolarization of these cells evoked a transient and a time-independent Ca2+ current. The sustained, non-inactivating current occurred at voltages where voltage-dependent activation and inactivation overlapped (voltage window) and its contribution to basal tone or active tension in larger multicellular blood vessel preparations is unknown at present. This study investigated whether window Ca2+ influx affects isometric contraction of multicellular C57Bl6 mouse aortic segments. Results Intracellular Ca2+ (Cai2+, Fura-2), membrane potential and isometric force were measured in aortic segments, which were clamped at fixed membrane potentials by increasing extracellular K+ concentrations. K+ above 20 mM evoked biphasic contractions, which were not affected by inhibition of IP3- or Ca2+ induced Ca2+ release with 2-aminoethoxydiphenyl borate or ryanodine, respectively, ruling out the contribution of intracellular Ca2+ release. The fast force component paralleled Cai2+ increase, but the slow contraction coincided with Cai2+ decrease. In the absence of extracellular Ca2+, basal tension and Cai2+ declined, and depolarization failed to evoke Cai2+ signals or contraction. Subsequent re-introduction of external Ca2+ elicited only slow contractions, which were now matched by Cai2+ increase. After Cai2+ attained steady-state, isometric force kept increasing due to Ca2+- sensitization of the contractile elements. The slow force responses displayed a bell-shaped voltage-dependence, were suppressed by hyperpolarization with levcromakalim, and enhanced by an agonist of L-type Ca2+ channels (BAY K8644). Conclusion The isometric response of mouse aortic segments to depolarization consists of a fast, transient contraction paralleled by a transient Ca2+ influx via Ca2+ channels which completely inactivate. Ca2+ channels, which did not completely inactivate during the depolarization, initiated a second, sustained phase of contraction, which was matched by a sustained non-inactivating window Ca2+ influx. Together with sensitization, this window L-type Ca2+ influx is a major determinant of basal and active tension of mouse aortic smooth muscle.
Collapse
Affiliation(s)
- Paul Fransen
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1 Building T, 2.18, Wilrijk B-2610, Belgium.
| | | | | | | | | | | | | |
Collapse
|
15
|
Raghunathan S, Patel BM. Therapeutic implications of small interfering RNA in cardiovascular diseases. Fundam Clin Pharmacol 2012; 27:1-20. [DOI: 10.1111/j.1472-8206.2012.01051.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 04/17/2012] [Accepted: 06/01/2012] [Indexed: 01/07/2023]
Affiliation(s)
- Suchi Raghunathan
- Institute of Pharmacy; Nirma University; Ahmedabad; 382 481; Gujarat; India
| | - Bhoomika M. Patel
- Institute of Pharmacy; Nirma University; Ahmedabad; 382 481; Gujarat; India
| |
Collapse
|
16
|
Abstract
Vascular smooth muscle cells (VSMCs) exhibit extraordinary plasticity during postnatal development. Vascular injury initiates VSMC phenotypic switch from the contractile to proliferative phenotype, which plays a central role in vascular lesion formation and diverse vascular diseases. MicroRNAs (miRNAs) regulate gene expression posttranscriptionally by either degrading target mRNAs or repressing their translation. Emerging evidence has revealed miRNAs are critical regulators in VSMC differentiation from stem cells, phenotypic switch, and various vascular pathogenesis. Here, we review recent advances regarding functions of specific miRNAs in vasculature and discuss possible mechanisms by which miRNAs affect VSMC biology.
Collapse
Affiliation(s)
- Changqing Xie
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
17
|
Sibley CR, Seow Y, Wood MJA. Novel RNA-based strategies for therapeutic gene silencing. Mol Ther 2010; 18:466-76. [PMID: 20087319 DOI: 10.1038/mt.2009.306] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The past decade has seen intense scientific interest in non-coding RNAs. In particular, the discovery and subsequent exploitation of gene silencing via RNA interference (RNAi) has revolutionized the way in which gene expression is now studied and understood. It is now well established that post-transcriptional gene silencing (PTGS) by the microRNA (miRNA) and other RNAi-associated pathways represents an essential layer of complexity to gene regulation. Gene silencing using RNAi additionally demonstrates huge potential as a therapeutic strategy for eliminating pathogenic gene expression. Yet despite the early promise and excitement of gene-specific silencing, several critical hurdles remain to be overcome before widespread clinical adoption. These include off-target effects, toxicity due to saturation of the endogenous RNAi functions, limited duration of silencing, and effective targeted delivery. In recent years, a range of novel strategies for producing RNA-mediated silencing have been developed that can circumvent many of these hurdles, including small internally segmented interfering RNAs, tandem hairpin RNAs, and pri-miRNA cluster mimics. This review discusses RNA-mediated silencing in light of this recent research, and highlights the benefits and limitations conferred by these novel gene-silencing strategies.
Collapse
Affiliation(s)
- Christopher R Sibley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
18
|
Olejniczak M, Galka P, Krzyzosiak WJ. Sequence-non-specific effects of RNA interference triggers and microRNA regulators. Nucleic Acids Res 2009; 38:1-16. [PMID: 19843612 PMCID: PMC2800214 DOI: 10.1093/nar/gkp829] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RNA reagents of diverse lengths and structures, unmodified or containing various chemical modifications are powerful tools of RNA interference and microRNA technologies. These reagents which are either delivered to cells using appropriate carriers or are expressed in cells from suitable vectors often cause unintended sequence-non-specific immune responses besides triggering intended sequence-specific silencing effects. This article reviews the present state of knowledge regarding the cellular sensors of foreign RNA, the signaling pathways these sensors mobilize and shows which specific features of the RNA reagents set the responsive systems on alert. The representative examples of toxic effects caused in the investigated cell lines and tissues by the RNAs of specific types and structures are collected and may be instructive for further studies of sequence-non-specific responses to foreign RNA in human cells.
Collapse
Affiliation(s)
- Marta Olejniczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | |
Collapse
|
19
|
Nystoriak MA, Murakami K, Penar PL, Wellman GC. Ca(v)1.2 splice variant with exon 9* is critical for regulation of cerebral artery diameter. Am J Physiol Heart Circ Physiol 2009; 297:H1820-8. [PMID: 19717733 DOI: 10.1152/ajpheart.00326.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
L-type voltage-dependent Ca(2+) channels (VDCCs) are essential for numerous processes in the cardiovascular and nervous systems. Alternative splicing modulates proteomic composition of Ca(v)1.2 to generate functional variation between channel isoforms. Here, we describe expression and function of Ca(v)1.2 channels containing alternatively spliced exon 9* in cerebral artery myocytes. RT-PCR showed expression of Ca(v)1.2 splice variants both containing (alpha(1)C(9/9*/10)) and lacking (alpha(1)C(9/10)) exon 9* in intact rabbit and human cerebral arteries. With the use of laser capture microdissection and RT-PCR, expression of mRNA for both alpha(1)C(9/9*/10) and alpha(1)C(9/10) was demonstrated in isolated cerebral artery myocytes. Quantitative real-time PCR revealed significantly greater alpha(1)C(9/9*/10) expression relative to alpha(1)C(9/10) in intact rabbit cerebral arteries compared with cardiac tissue and cerebral cortex. To demonstrate a functional role for alpha(1)C(9/9*/10), smooth muscle of intact cerebral arteries was treated with antisense oligonucleotides targeting alpha(1)C(9/9*/10) (alpha(1)C(9/9*/10)-AS) or exon 9 (alpha(1)C-AS), expressed in all Ca(v)1.2 splice variants, by reversible permeabilization and organ cultured for 1-4 days. Treatment with alpha(1)C(9/9*/10)-AS reduced maximal constriction induced by elevated extracellular K(+) ([K(+)](o)) by approximately 75% compared with alpha(1)C(9/9*/10-)sense-treated arteries. Maximal constriction in response to the Ca(2+) ionophore ionomycin and [K(+)](o) EC(50) values were not altered by antisense treatment. Decreases in maximal [K(+)](o)-induced constriction were similar between alpha(1)C(9/9*/10)-AS and alpha(1)C-AS groups (22.7 + or - 9% and 25.6 + or - 4% constriction, respectively). We conclude that although cerebral artery myocytes express both alpha(1)C(9/9*/10) and alpha(1)C(9/10) VDCC splice variants, alpha(1)C(9/9*/10) is functionally dominant in the control of cerebral artery diameter.
Collapse
Affiliation(s)
- Matthew A Nystoriak
- Department of Pharmacology and Surgery, University of Vermont, College of Medicine, Burlington, VT 05405-0068, USA
| | | | | | | |
Collapse
|
20
|
Telemaque S, Marsh JD. Modification of cardiovascular ion channels by gene therapy. Expert Rev Cardiovasc Ther 2009; 7:939-53. [PMID: 19673672 DOI: 10.1586/erc.09.76] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Delivery of genes to the heart and vasculature for therapeutic purposes is an exciting strategy that is approaching clinical reality. Abnormalities of expression or function of ion channels is central to many cardiovascular diseases and gene delivery to modify ion channels is an appealing alternative to traditional therapy with small-molecule drugs. Potential therapeutic targets include hypertrophy and heart failure, atrioventricular node modification in atrial fibrillation, ventricular tachycardia and hypertension. Numerous approaches for gene delivery are under development, including use of tissue-specific promoters in viral vectors. For other applications, such as development of biological pacemakers, cells can be transduced with pacemaker genes in vitro, and then the cells implanted within the heart. There are short-term hurdles to therapeutic gene delivery to modify cardiovascular ion channels, but in the intermediate and longer term, the outlook is promising.
Collapse
Affiliation(s)
- Sabine Telemaque
- Department of Internal Medicine, University of Arkansas for Medical Sciences, #832, 4301 W Markham Avenue, Little Rock, AR 72205, USA
| | | |
Collapse
|