1
|
Straumann I, Avedisian I, Klaiber A, Varghese N, Eckert A, Rudin D, Luethi D, Liechti ME. Acute effects of R-MDMA, S-MDMA, and racemic MDMA in a randomized double-blind cross-over trial in healthy participants. Neuropsychopharmacology 2024; 50:362-371. [PMID: 39179638 PMCID: PMC11631982 DOI: 10.1038/s41386-024-01972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
Racemic 3,4-methylenedioxymethamphetamine (MDMA) acutely increases mood, feelings of empathy, trust, and closeness to others and is investigated to assist psychotherapy. Preclinical research indicates that S-MDMA releases monoamines and oxytocin more potently than R-MDMA, whereas R-MDMA more potently stimulates serotonin 5-hydroxytryptamine-2A receptors. S-MDMA may have more stimulant properties, and R-MDMA may be more psychedelic-like. However, acute effects of S- and R-MDMA have not been examined in a controlled human study. We used a double-blind, randomized, placebo-controlled, crossover design to compare acute effects of MDMA (125 mg), S-MDMA (125 mg), R-MDMA (125 mg and 250 mg), and placebo in 24 healthy participants. Outcome measures included subjective, autonomic, and adverse effects, pharmacokinetics, and plasma oxytocin, prolactin, and cortisol concentrations. S-MDMA (125 mg) induced greater subjective effects ("stimulation," "drug high," "happy," "open") and higher increases in blood pressure than R-MDMA (both 125 and 250 mg) and MDMA (125 mg). Unexpectedly, R-MDMA did not produce more psychedelic-like effects than S-MDMA. S-MDMA increased plasma prolactin more than MDMA, and S-MDMA increased plasma cortisol and oxytocin more than MDMA and R-MDMA. The plasma elimination half-life of S-MDMA was 4.1 h after administration. The half-life of R-MDMA was 12 and 14 h after the administration of 125 and 250 mg, respectively. Half-lives for S-MDMA and R-MDMA were 5.1 h and 11 h, respectively, after racemic MDMA administration. Concentrations of the CYP2D6-formed MDMA-metabolite 4-hydroxy-3-methoxymethamphetamine were lower after R-MDMA administration compared with S-MDMA administration. The pharmacokinetic findings are consistent with the R-MDMA-mediated inhibition of CYP2D6. Stronger stimulant-like effects of S-MDMA in the present study may reflect the higher potency of S-MDMA rather than qualitative differences between S-MDMA and R-MDMA. Equivalent acute effects of S-MDMA, MDMA, and R-MDMA can be expected at doses of 100, 125, and 300 mg, respectively, and need to be investigated.Trial registration: ClinicalTrials.gov identifier: NCT05277636.
Collapse
Affiliation(s)
- Isabelle Straumann
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isidora Avedisian
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Aaron Klaiber
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Nimmy Varghese
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Deborah Rudin
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Dino Luethi
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Matthias E Liechti
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland.
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Fantegrossi WE, Gannon BM. A "Furious" Effort to Develop Novel 3,4-Methylenedioxymethamphetamine-Like Therapeutics. J Pharmacol Exp Ther 2024; 391:18-21. [PMID: 39293859 DOI: 10.1124/jpet.124.002183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/20/2024] [Indexed: 09/20/2024] Open
Affiliation(s)
- William E Fantegrossi
- University of Arkansas for Medical Sciences, College of Medicine, Department of Pharmacology and Toxicology, Little Rock, Arkansas
| | - Brenda M Gannon
- University of Arkansas for Medical Sciences, College of Medicine, Department of Pharmacology and Toxicology, Little Rock, Arkansas
| |
Collapse
|
3
|
Adam AS, LaMalfa KS, Razavi Y, Kohut SJ, Kangas BD. A Multimodal Preclinical Assessment of MDMA in Female and Male Rats: Prohedonic, Cognition Disruptive, and Prosocial Effects. PSYCHEDELIC MEDICINE (NEW ROCHELLE, N.Y.) 2024; 2:96-108. [PMID: 39149579 PMCID: PMC11324000 DOI: 10.1089/psymed.2023.0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background Frontline antidepressants such as selective serotonin reuptake inhibitors (SSRIs) leave many patients with unmet treatment needs. Moreover, even when SSRIs reduce depressive symptoms, anhedonia, the loss of pleasure to previously rewarding activities, often remains unabated. This state of affairs is disheartening and calls for the development of medications to more directly treat anhedonia. The atypical psychedelic 3,4-methylenedioxymethamphetamine (MDMA) might have promise as a prohedonic medication given its efficacious applications for treatment-resistant post-traumatic stress disorder and comorbid depression. However, in addition to its prosocial effects as an entactogen, MDMA is also associated with neurotoxic cognitive deficits. The present studies were designed to examine the relative potency of MDMA in female and male rats across three distinct behavioral domains to assist in defining a preclinical profile of MDMA as a candidate prohedonic therapeutic. Methods First, signal detection metrics of reward responsivity were examined using the touchscreen probabilistic reward task (PRT), a reverse-translated assay used to objectively quantify anhedonic phenotypes in humans. Second, to probe potential cognitive deficits, touchscreen-based assays of psychomotor vigilance and delayed matching-to-position were used to examine attentional processes and short-term spatial memory, respectively. Finally, MDMA's entactogenic effects were studied via pairwise assessments of social interaction facilitated by machine-learning analyses. Results Findings show (1) dose-dependent increases in reward responsivity as quantified by the PRT, (2) dose-dependent deficits in attention and short-term memory, and (3) dose-dependent increases in aspects of prosocial interaction in male but not female subjects. Neither the desirable (prohedonic) nor undesirable (cognition disruptive) effects of MDMA persisted beyond 24 h. Conclusions The present results characterize MDMA as a promising prohedonic treatment, notwithstanding some liability for short-lived cognitive impairment following acute administration.
Collapse
Affiliation(s)
- Abshir S. Adam
- Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| | | | - Yasaman Razavi
- Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| | - Stephen J. Kohut
- Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| | - Brian D. Kangas
- Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| |
Collapse
|
4
|
Fagan P, Spálovská D, Kuchař M, Černohorský T, Komorousová L, Kocourková L, Setnička V. Ecstasy tablets: Rapid identification and determination of enantiomeric excess of MDMA. Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Serotonin 2A receptors are a stress response system: implications for post-traumatic stress disorder. Behav Pharmacol 2020; 30:151-162. [PMID: 30632995 DOI: 10.1097/fbp.0000000000000459] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Serotonin, one of the first neurotransmitters to be identified, is an evolutionarily old molecule that is highly conserved across the animal kingdom, and widely used throughout the brain. Despite this, ascribing a specific set of functions to brain serotonin and its receptors has been difficult and controversial. The 2A subtype of serotonin receptors (5-HT2A receptor) is the major excitatory serotonin receptor in the brain and has been linked to the effects of drugs that produce profound sensory and cognitive changes. Numerous studies have shown that this receptor is upregulated by a broad variety of stressors, and have related 5-HT2A receptor function to associative learning. This review proposes that stress, particularly stress related to danger and existential threats, increases the expression and function of 5-HT2A receptors. It is argued that this is a neurobiological adaptation to promote learning and avoidance of danger in the future. Upregulation of 5-HT2A receptors during stressful events forms associations that tune the brain to environmental cues that signal danger. It is speculated that life-threatening situations may activate this system and contribute to the symptoms associated with post-traumatic stress disorder (PTSD). 3,4-Methylenedioxymethamphetamine, which activates 5-HT2A receptors, has been successful in the treatment of PTSD and has recently achieved status as a breakthrough therapy. An argument is presented that 3,4-methylenedioxymethamphetamine may paradoxically act through these same 5-HT2A receptors to ameliorate the symptoms of PTSD. The central thematic contention is that a key role of serotonin may be to function as a stress detection and response system.
Collapse
|
6
|
Chitre NM, Bagwell MS, Murnane KS. The acute toxic and neurotoxic effects of 3,4-methylenedioxymethamphetamine are more pronounced in adolescent than adult mice. Behav Brain Res 2019; 380:112413. [PMID: 31809766 DOI: 10.1016/j.bbr.2019.112413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 01/31/2023]
Abstract
3,4-methylenedioxymethamphetamine (MDMA) recently achieved breakthrough status from the Food and Drug Administration (FDA) for post-traumatic stress disorder (PTSD). However, evidence indicates that exposure to toxic doses of MDMA can lead to long-lasting dysregulation of brain monoaminergic neurotransmitters, primarily from studies conducted in young adult rodents. To date, there is a paucity of data on whether toxic doses of MDMA can differentially affect neurotransmitter systems in adolescents and mature adults, which is an important question as adolescents and adults may be differentially vulnerable to MDMA abuse. In the current study, adolescent (6-7 weeks of age) and mature adult (16-18 weeks of age) male, Swiss-Webster mice were exposed to MDMA (20 mg/kg) using a binge-like dosing regimen (4 administrations spaced every 2 h). Acute lethality, acute hyperthermia, and acute decreases in body weight following MDMA administration were more pronounced in adolescent than adult mice. Likewise, acute loss of striatal dopamine neurochemistry was also exacerbated in adolescents, as determined by high-pressure liquid chromatography coupled to electrochemical detection. Exposure to MDMA induced greater turnover of dopamine into its major metabolite dihydroxyphenylacetic acid (DOPAC) in adolescents, but not in adults, suggesting a novel mechanism through which adolescents may show increased vulnerability to the acute toxic and neurotoxic effects of MDMA, or conversely that mature adults show greater protection. These data caution that MDMA exposure in adolescence may be particularly dangerous and that the therapeutic window for MDMA may differ between adolescents and mature adults.
Collapse
Affiliation(s)
- Neha Milind Chitre
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Monique Simone Bagwell
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Kevin Sean Murnane
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA.
| |
Collapse
|
7
|
Stereochemistry of phase-1 metabolites of mephedrone determines their effectiveness as releasers at the serotonin transporter. Neuropharmacology 2019; 148:199-209. [DOI: 10.1016/j.neuropharm.2018.12.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/17/2018] [Accepted: 12/31/2018] [Indexed: 12/20/2022]
|
8
|
Curry DW, Berro LF, Belkoff AR, Sulima A, Rice KC, Howell LL. Sensitization to the prosocial effects of 3,4-methylenedioxymethamphetamine (MDMA). Neuropharmacology 2019; 151:13-20. [PMID: 30922893 DOI: 10.1016/j.neuropharm.2019.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/13/2019] [Accepted: 03/13/2019] [Indexed: 01/11/2023]
Abstract
The recreational drug 3,4-methylenedioxymethamphetamine (MDMA) has well documented prosocial effects and is currently under clinical investigation as a treatment for patients with PTSD, autism, and other conditions. Early clinical trials have found that MDMA-assisted therapy may have robust long-lasting therapeutic effects, yet the mechanism by which acute treatments produce these long-term effects is unclear. Sensitization to certain behavioral drug effects is a common rodent model used to assess long-lasting neurobiological adaptations induced by acute drug treatments. Nine independent experiments were undertaken to investigate if and how mice sensitize to the prosocial effects of MDMA. When treated with 7.8 mg/kg MDMA and paired every other day for a week, MDMA-induced social interaction increased precipitously across treatment sessions. This previously unreported phenomenon was investigated and found to be heavily influenced by a social context and 5-HT2AR activation. Social sensitization did not appear to develop if mice were administered MDMA in isolation, and pretreatment with MDL100907, a selective 5-HT2AR antagonist, inhibited the development of social sensitization. However, when MDL100907 was administered to mice that had already been sensitized, it did not attenuate social interaction, suggesting that 5-HT2AR activity may be necessary for the development of social sensitization but not the expression of MDMA-induced social behavior. Additional investigation is warranted to further explore the phenomenon of social sensitization and to determine the underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Daniel W Curry
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Laís F Berro
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Andie R Belkoff
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Leonard L Howell
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
9
|
Steele TWE, Eltit JM. Using Ca 2+-channel biosensors to profile amphetamines and cathinones at monoamine transporters: electro-engineering cells to detect potential new psychoactive substances. Psychopharmacology (Berl) 2019; 236:973-988. [PMID: 30448989 PMCID: PMC6525079 DOI: 10.1007/s00213-018-5103-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/02/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND The appearance of stimulant-class new psychoactive substances (NPS) is a frequent and significant problem in our society. Cathinone variants are often sold illegally as 3,4-methylenedioxy methamphetamine ("ecstasy") or disguised for legal sale using misleading names such as "bath salts" and carry the risk of promoting disruptive mental states, addiction, and fatal overdose. The principal targets of these recreational drugs are monoamine transporters expressed in catecholaminergic and serotonergic neurons. Some transporter ligands can be transported into cells, where they can promote a massive release of neurotransmitters through reverse transport, and others can block uptake. A ligand's dopamine vs. serotonin transporter selectivity, potency, and activity as a substrate or blocker can help elucidate the abuse liability and subjective effects of a drug. OBJECTIVES Here, we describe the discovery, development, and validation of an emerging methodology for compound activity assessment at monoamine transporters. KEY FINDINGS Substrates generate inward electrical currents through transporters and can depolarize the plasma membrane, whereas blockers work as a "cork in a bottle" and function as antagonists. Voltage-gated Ca2+ channels were co-expressed with monoamine transporters in cultured cells and used to measure fluctuations of the membrane electrical potential. In this system, substrates of monoamine transporters produce reliable dose-dependent Ca2+ signals, while blockers hinder them. DISCUSSION This system constitutes a novel use of voltage-gated Ca2+ channels as biosensors for the purpose of characterizing ligand activity at monoamine transporters using fluorimetry. This approach in combination with in vivo evaluations of drugs' abuse-related effects is a powerful strategy for anticipating potential stimulant-class NPS.
Collapse
Affiliation(s)
- Tyler W E Steele
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, 1101 E Marshall St. Rm# 3-038H, Richmond, VA, 23298, USA
| | - Jose M Eltit
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, 1101 E Marshall St. Rm# 3-038H, Richmond, VA, 23298, USA.
| |
Collapse
|
10
|
Oppong-Damoah A, Zaman RU, D'Souza MJ, Murnane KS. Nanoparticle encapsulation increases the brain penetrance and duration of action of intranasal oxytocin. Horm Behav 2019; 108:20-29. [PMID: 30593782 PMCID: PMC7001472 DOI: 10.1016/j.yhbeh.2018.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 12/27/2022]
Abstract
The blood-brain barrier (BBB) limits the therapeutic use of large molecules as it prevents them from passively entering the brain following administration by conventional routes. It also limits the capacity of researchers to study the role of large molecules in behavior, as it often necessitates intracerebroventricular administration. Oxytocin is a large-molecule neuropeptide with pro-social behavioral effects and therapeutic promise for social-deficit disorders. Although preclinical and clinical studies are using intranasal delivery of oxytocin to improve brain bioavailability, it remains of interest to further improve the brain penetrance and duration of action of oxytocin, even with intranasal administration. In this study, we evaluated a nanoparticle drug-delivery system for oxytocin, designed to increase its brain bioavailability through active transport and increase its duration of action through encapsulation and sustained release. We first evaluated transport of oxytocin-like large molecules in a cell-culture model of the BBB. We then determined in vivo brain transport using bioimaging and cerebrospinal fluid analysis in mice. Finally, we determined the pro-social effects of oxytocin (50 μg, intranasal) in two different brain targeting and sustained-release formulations. We found that nanoparticle formulation increased BBB transport both in vitro and in vivo. Moreover, nanoparticle-encapsulated oxytocin administered intranasally exhibited greater pro-social effects both acutely and 3 days after administration, in comparison to oxytocin alone, in mouse social-interaction experiments. These multimodal data validate this brain targeting and sustained-release formulation of oxytocin, which can now be used in animal models of social-deficit disorders as well as to enhance the brain delivery of other neuropeptides.
Collapse
Affiliation(s)
- Aboagyewaah Oppong-Damoah
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Rokon Uz Zaman
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Martin J D'Souza
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Kevin Sean Murnane
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA.
| |
Collapse
|
11
|
Abstract
BACKGROUND For a number of mental health disorders, including posttraumatic stress disorders (PTSD), there are not many available treatment options. Recently, there has been renewed interest in the potential of methylenedioxymethamphetamine (MDMA) to restore function for patients with these disorders. The primary hypothesis is that MDMA, via prosocial effects, increases the ability of patients to address the underlying psychopathology of the disorder. However, the use of MDMA poses potential problems of neurotoxicity, in addition to its own potential for misuse. METHODS In this article, the proposed potential of MDMA as an adjunct to psychotherapy for PTSD is evaluated. The rationale for the use of MDMA and the positive results of studies that have administered MDMA in the treatment of PTSD are provided (pros). A description of potential adverse effects of treatment is also presented (cons). An overview of MDMA pharmacology and pharmacokinetics and a description of potential adverse effects of treatments are also presented. Methylenedioxymethamphetamine-produced oxytocin release and decreased expression of fear conditioning as well as one of the MDMA enantiomers (the n R- entaniomer) are suggested as potential mechanisms for the beneficial effects of MDMA in PTSD (suggestions). RESULTS There is some evidence that MDMA facilitates recovery of PTSD. However, the significant adverse effects of MDMA raise concern for its adoption as a pharmacotherapy. Alternative potential treatments with less adverse effects and that are based on the ubiquitous pharmacology of MDMA are presented. CONCLUSIONS We suggest that additional research investigating the basis for the putative beneficial effects of MDMA might reveal an effective treatment with fewer adverse effects. Suggestions of alternative treatments based on the behavioral pharmacology and toxicology of MDMA and its enantiomers are presented.
Collapse
|
12
|
Murphy TJ, Murnane KS. The serotonin 2C receptor agonist WAY-163909 attenuates ketamine-induced hypothermia in mice. Eur J Pharmacol 2018; 842:255-261. [PMID: 30412729 DOI: 10.1016/j.ejphar.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
Abstract
Anesthesia-Induced Hypothermia (AIH) has been reported to be the cause of many postoperative adverse effects, including increased mortality, decreased immune responses, cardiac events, and a greater prevalence of postoperative surgical wound infections. AIH can in some cases be minimized with pre-warming fluids and gases and forced-air heating systems, but such techniques are not always effective and can result in patient burns or other adverse effects. Stimulation of 5-HT2 receptors has been reported to increase body temperature through a variety of mechanisms, and as such, may be a viable target for pharmacologically minimizing AIH. In the present study, we examined the effects of 5-HT2 receptor stimulation on hypothermia induced by the injectable anesthetic ketamine in Swiss-Webster mice using rectal thermometry. We report that ketamine dose-dependently induced hypothermia, and mice did not become tolerant to this effect of ketamine over the course of three injections spaced at once per week. Ketamine-induced hypothermia was significantly attenuated by pretreatment with the selective 5-HT2C receptor agonist WAY-163909 but not by pretreatment with the mixed 5-HT2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI). Moreover, the blockade of ketamine-induced hypothermia by WAY-163909 was reversed by pretreatment with the selective 5-HT2C receptor antagonist SB-242084. These findings demonstrate that stimulation of 5-HT2C receptors can reduce AIH, at least for ketamine-induced hypothermia. They warrant further study of the pharmacological and neurobiological mechanisms underlying this interaction and its extension to other anesthetics. Furthermore, these findings suggest that the maintenance of body temperature during surgery may be a new clinical use for 5-HT2C receptor agonists.
Collapse
Affiliation(s)
- Tyler J Murphy
- Department of Biology, Oglethorpe University, Atlanta, GA, USA
| | - Kevin S Murnane
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA.
| |
Collapse
|
13
|
Dunlap LE, Andrews AM, Olson DE. Dark Classics in Chemical Neuroscience: 3,4-Methylenedioxymethamphetamine. ACS Chem Neurosci 2018; 9:2408-2427. [PMID: 30001118 PMCID: PMC6197894 DOI: 10.1021/acschemneuro.8b00155] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Better known as "ecstasy", 3,4-methylenedioxymethamphetamine (MDMA) is a small molecule that has played a prominent role in defining the ethos of today's teenagers and young adults, much like lysergic acid diethylamide (LSD) did in the 1960s. Though MDMA possesses structural similarities to compounds like amphetamine and mescaline, it produces subjective effects that are unlike any of the classical psychostimulants or hallucinogens and is one of the few compounds capable of reliably producing prosocial behavioral states. As a result, MDMA has captured the attention of recreational users, the media, artists, psychiatrists, and neuropharmacologists alike. Here, we detail the synthesis of MDMA as well as its pharmacology, metabolism, adverse effects, and potential use in medicine. Finally, we discuss its history and why it is perhaps the most important compound for the future of psychedelic science-having the potential to either facilitate new psychedelic research initiatives, or to usher in a second Dark Age for the field.
Collapse
Affiliation(s)
- Lee E Dunlap
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Anne M Andrews
- Departments of Psychiatry and Chemistry & Biochemistry, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology , University of California , Los Angeles , California 90095 , United States
| | - David E Olson
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
- Department of Biochemistry & Molecular Medicine, School of Medicine , University of California, Davis , 2700 Stockton Blvd, Suite 2102 , Sacramento , California 95817 , United States
- Center for Neuroscience , University of California, Davis , 1544 Newton Ct , Davis , California 95616 , United States
| |
Collapse
|
14
|
Berro LF, Shields H, Odabas-Geldiay M, Rothbaum BO, Andersen ML, Howell LL. Acute effects of 3,4-methylenedioxymethamphetamine (MDMA) and R(-) MDMA on actigraphy-based daytime activity and sleep parameters in rhesus monkeys. Exp Clin Psychopharmacol 2018; 26:410-420. [PMID: 29939048 PMCID: PMC6072597 DOI: 10.1037/pha0000196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) affects monoaminergic pathways that play a critical role in sleep-wake cycles. Dopaminergic mechanisms are thought to mediate the sleep-disrupting effects of stimulant drugs. However, the mechanisms underlying the effects of MDMA on sleep-wake cycles and the effects of R(-) MDMA, a stereoisomer that lacks dopaminergic activity, on sleep remain unknown. The aim of the present study was to investigate the effects of racemic MDMA and R(-) MDMA on daytime activity and sleep-like parameters evaluated with actigraphy in adult rhesus macaques (Macaca mulatta, n = 6). Actiwatch monitors were attached to the monkeys' collars and actigraphy recording was conducted during baseline conditions and after the administration of acute intramuscular injections of saline (vehicle), racemic MDMA (0.3, 1.0, or 1.7 mg/kg), or R(-) MDMA (0.3, 1.0, or 1.7 mg/kg) at 9 or 16 h (3 h before "lights off"). Morning treatments had no effects on sleep-like parameters. Racemic MDMA decreased general daytime activity during the first hour after injection and increased daytime activity at 3 hr posttreatment. Although afternoon administration of racemic MDMA increased sleep latency, it improved other sleep parameters, decreasing wake time after sleep onset (WASO) and increasing sleep efficiency for subjects with low baseline sleep efficiency. Afternoon treatment with R(-) MDMA improved sleep measures, increasing sleep efficiency and decreasing sleep latency and WASO, while having no effects on daytime activity. The stimulant and sleep-disrupting effects of racemic MDMA are likely mediated by dopaminergic and noradrenergic mechanisms, while serotonergic pathways appear to be involved in the sleep-promoting effects of MDMA. (PsycINFO Database Record
Collapse
Affiliation(s)
- Laís F. Berro
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E., Atlanta, GA, USA, 30329
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, USA 39216
| | - Hannah Shields
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E., Atlanta, GA, USA, 30329
| | - Melis Odabas-Geldiay
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E., Atlanta, GA, USA, 30329
| | - Barbara O. Rothbaum
- Department of Psychiatry and Behavioral Science, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E., Atlanta, GA, USA, 30329
| | - Monica L. Andersen
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E., Atlanta, GA, USA, 30329
- Department of Psychobiology, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04021002 São Paulo, SP, Brazil
| | - Leonard L. Howell
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E., Atlanta, GA, USA, 30329
- Department of Psychiatry and Behavioral Science, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E., Atlanta, GA, USA, 30329
| |
Collapse
|
15
|
(±)-MDMA and its enantiomers: potential therapeutic advantages of R(-)-MDMA. Psychopharmacology (Berl) 2018; 235:377-392. [PMID: 29248945 DOI: 10.1007/s00213-017-4812-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
The use of (±)-3,4-methylenedioxymethamphetamine ((±)-MDMA) as an adjunct to psychotherapy in the treatment of psychiatric and behavioral disorders dates back over 50 years. Only in recent years have controlled and peer-reviewed preclinical and clinical studies lent support to (±)-MDMA's hypothesized clinical utility. However, the clinical utility of (±)-MDMA is potentially mitigated by a range of demonstrated adverse effects. One potential solution could lie in the individual S(+) and R(-) enantiomers that comprise (±)-MDMA. Individual enantiomers of racemic compounds have been employed in psychiatry to improve a drug's therapeutic index. Although no research has explored the individual effects of either S(+)-MDMA or R(-)-MDMA in humans in a controlled manner, preclinical research has examined similarities and differences between the two molecules and the racemic compound. This review addresses information related to the pharmacodynamics, neurotoxicity, physiological effects, and behavioral effects of S(+)-MDMA and R(-)-MDMA that might guide preclinical and clinical research. The current preclinical evidence suggests that R(-)-MDMA may provide an improved therapeutic index, maintaining the therapeutic effects of (±)-MDMA with a reduced side effect profile, and that future investigations should investigate the therapeutic potential of R(-)-MDMA.
Collapse
|
16
|
Progress and promise for the MDMA drug development program. Psychopharmacology (Berl) 2018; 235:561-571. [PMID: 29152674 DOI: 10.1007/s00213-017-4779-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/01/2017] [Indexed: 12/23/2022]
Abstract
Pharmacotherapy is often used to target symptoms of posttraumatic stress disorder (PTSD), but does not provide definitive treatment, and side effects of daily medication are often problematic. Trauma-focused psychotherapies are more likely than drug treatment to achieve PTSD remission, but have high dropout rates and ineffective for a large percentage of patients. Therefore, research into drugs that might increase the effectiveness of psychotherapy is a logical avenue of investigation. The most promising drug studied as a catalyst to psychotherapy for PTSD thus far is 3,4-methylenedioxymethamphetamine (MDMA), commonly known as the recreational drug "Ecstasy." MDMA stimulates the release of hormones and neurochemicals that affect key brain areas for emotion and memory processing. A series of recently completed phase 2 clinical trials of MDMA-assisted psychotherapy for treatment of PTSD show favorable safety outcomes and large effect sizes that warrant expansion into multi-site phase 3 trials, set to commence in 2018. The nonprofit sponsor of the MDMA drug development program, the Multidisciplinary Association for Psychedelic Studies (MAPS), is supporting these trials to explore whether MDMA, administered on only a few occasions, can increase the effectiveness of psychotherapy. Brain imaging techniques and animal models of fear extinction are elucidating neural mechanisms underlying the robust effects of MDMA on psychological processing; however, much remains to be learned about the complexities of MDMA effects as well as the complexities of PTSD itself.
Collapse
|
17
|
Abstract
Because of the ethical and regulatory hurdles associated with human studies, much of what is known about the psychopharmacology of hallucinogens has been derived from animal models. However, developing reliable animal models has proven to be a challenging task due to the complexity and variability of hallucinogen effects in humans. This chapter focuses on three animal models that are frequently used to test the effects of hallucinogens on unconditioned behavior: head twitch response (HTR), prepulse inhibition of startle (PPI), and exploratory behavior. The HTR has demonstrated considerable utility in the neurochemical actions of hallucinogens. However, the latter two models have clearer conceptual bridges to human phenomenology. Consistent with the known mechanism of action of hallucinogens in humans, the behavioral effects of hallucinogens in rodents are mediated primarily by activation of 5-HT2A receptors. There is evidence, however, that other receptors may play secondary roles. The structure-activity relationships (SAR) of hallucinogens are reviewed in relation to each model, with a focus on the HTR in rats and mice.
Collapse
Affiliation(s)
- Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093-0804, USA.
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
18
|
The renaissance in psychedelic research: What do preclinical models have to offer. PROGRESS IN BRAIN RESEARCH 2018; 242:25-67. [DOI: 10.1016/bs.pbr.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Curry DW, Young MB, Tran AN, Daoud GE, Howell LL. Separating the agony from ecstasy: R(-)-3,4-methylenedioxymethamphetamine has prosocial and therapeutic-like effects without signs of neurotoxicity in mice. Neuropharmacology 2018; 128:196-206. [PMID: 28993129 PMCID: PMC5714650 DOI: 10.1016/j.neuropharm.2017.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/28/2017] [Accepted: 10/03/2017] [Indexed: 01/26/2023]
Abstract
S,R(+/-)-3,4-methylenedioxymethamphetamine (SR-MDMA) is an amphetamine derivative with prosocial and putative therapeutic effects. Ongoing clinical trials are investigating it as a treatment for post-traumatic stress disorder (PTSD) and other conditions. However, its potential for adverse effects such as hyperthermia and neurotoxicity may limit its clinical viability. We investigated the hypothesis that one of the two enantiomers of SR-MDMA, R-MDMA, would retain the prosocial and therapeutic effects but with fewer adverse effects. Using male Swiss Webster and C57BL/6 mice, the prosocial effects of R-MDMA were measured using a social interaction test, and the therapeutic-like effects were assessed using a Pavlovian fear conditioning and extinction paradigm relevant to PTSD. Locomotor activity and body temperature were tracked after administration, and neurotoxicity was evaluated post-mortem. R-MDMA significantly increased murine social interaction and facilitated extinction of conditioned freezing. Yet, unlike racemic MDMA, it did not increase locomotor activity, produce signs of neurotoxicity, or increase body temperature. A key pharmacological difference between R-MDMA and racemic MDMA is that R-MDMA has much lower potency as a dopamine releaser. Pretreatment with a selective dopamine D1 receptor antagonist prevented SR-MDMA-induced hyperthermia, suggesting that differential dopamine signaling may explain some of the observed differences between the treatments. Together, these results indicate that the prosocial and therapeutic effects of SR-MDMA may be separable from the stimulant, thermogenic, and potential neurotoxic effects. To what extent these findings translate to humans will require further investigation, but these data suggest that R-MDMA could be a more viable therapeutic option for the treatment of PTSD and other disorders for which SR-MDMA is currently being investigated.
Collapse
Affiliation(s)
- Daniel W Curry
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Matthew B Young
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Andrew N Tran
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Georges E Daoud
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Leonard L Howell
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Young MB, Norrholm SD, Khoury LM, Jovanovic T, Rauch SAM, Reiff CM, Dunlop BW, Rothbaum BO, Howell LL. Inhibition of serotonin transporters disrupts the enhancement of fear memory extinction by 3,4-methylenedioxymethamphetamine (MDMA). Psychopharmacology (Berl) 2017; 234:2883-2895. [PMID: 28741031 PMCID: PMC5693755 DOI: 10.1007/s00213-017-4684-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/24/2017] [Indexed: 12/23/2022]
Abstract
RATIONALE 3,4-Methylenedioxymethamphetamine (MDMA) persistently improves symptoms of post-traumatic stress disorder (PTSD) when combined with psychotherapy. Studies in rodents suggest that these effects can be attributed to enhancement of fear memory extinction. Therefore, MDMA may improve the effects of exposure-based therapy for PTSD, particularly in treatment-resistant patients. However, given MDMA's broad pharmacological profile, further investigation is warranted before moving to a complex clinical population. OBJECTIVES We aimed to inform clinical research by providing a translational model of MDMA's effect, and elucidating monoaminergic mechanisms through which MDMA enhances fear extinction. METHODS We explored the importance of monoamine transporters targeted by MDMA to fear memory extinction, as measured by reductions in conditioned freezing and fear-potentiated startle (FPS) in mice. Mice were treated with selective inhibitors of individual monoamine transporters prior to combined MDMA treatment and fear extinction training. RESULTS MDMA enhanced the lasting extinction of FPS. Acute and chronic treatment with a 5-HT transporter (5-HTT) inhibitor blocked MDMA's effect on fear memory extinction. Acute inhibition of dopamine (DA) and norepinephrine (NE) transporters had no effect. 5-HT release alone did not enhance extinction. Blockade of MDMA's effect by 5-HTT inhibition also downregulated 5-HT2A-mediated behavior, and 5-HT2A antagonism disrupted MDMA's effect on extinction. CONCLUSIONS We validate enhancement of fear memory extinction by MDMA in a translational behavioral model, and reveal the importance of 5-HTT and 5-HT2A receptors to this effect. These observations support future clinical research of MDMA as an adjunct to exposure therapy, and provide important pharmacological considerations for clinical use in a population frequently treated with 5-HTT inhibitors.
Collapse
Affiliation(s)
- Matthew B Young
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Rd NE #2101, Atlanta, GA, 30329, USA
| | - Seth D Norrholm
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Rd NE #2101, Atlanta, GA, 30329, USA
- Atlanta VA Medical Center, Mental Health Service Line, Decatur, GA, USA
| | | | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Rd NE #2101, Atlanta, GA, 30329, USA
- Atlanta VA Medical Center, Mental Health Service Line, Decatur, GA, USA
| | - Sheila A M Rauch
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Rd NE #2101, Atlanta, GA, 30329, USA
- Atlanta VA Medical Center, Mental Health Service Line, Decatur, GA, USA
| | - Collin M Reiff
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Rd NE #2101, Atlanta, GA, 30329, USA
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Rd NE #2101, Atlanta, GA, 30329, USA
| | - Barbara O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Rd NE #2101, Atlanta, GA, 30329, USA
| | - Leonard L Howell
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Rd NE #2101, Atlanta, GA, 30329, USA.
| |
Collapse
|
21
|
Berro LF, Perez Diaz M, Maltbie E, Howell LL. Effects of the serotonin 2C receptor agonist WAY163909 on the abuse-related effects and mesolimbic dopamine neurochemistry induced by abused stimulants in rhesus monkeys. Psychopharmacology (Berl) 2017; 234:2607-2617. [PMID: 28584928 PMCID: PMC5709171 DOI: 10.1007/s00213-017-4653-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/19/2017] [Indexed: 12/22/2022]
Abstract
RATIONALE Accumulating evidence shows that the serotonergic system plays a major role in psychostimulant abuse through its interactions with the dopaminergic system. Studies indicate that serotonin 5-HT2C receptors are one of the main classes of receptors involved in mediating the influence of serotonin in drug abuse. OBJECTIVE The aim of the present study was to evaluate the effects of the selective serotonin 5-HT2C receptor agonist WAY163909 on the behavioral neuropharmacology of cocaine and methamphetamine in adult rhesus macaques. METHODS Cocaine or methamphetamine self-administration and reinstatement were evaluated under second-order and fixed-ratio schedules of reinforcement, respectively. Cocaine- and methamphetamine-induced increases in dopamine were assessed through in vivo microdialysis targeting the nucleus accumbens. RESULTS Pretreatment with WAY163909 dose-dependently attenuated cocaine and methamphetamine self-administration and drug-induced reinstatement of extinguished behavior previously maintained by cocaine or methamphetamine delivery. In an additional experiment, WAY163909 induced a dose-dependent attenuation of cocaine- or methamphetamine-induced dopamine overflow in the nucleus accumbens. CONCLUSIONS Our data indicate that selective 5-HT2C receptor activation decreases drug intake and drug-seeking behavior in nonhuman primate models of psychostimulant abuse through neurochemical mechanisms involved in the modulation of mesolimbic dopamine.
Collapse
Affiliation(s)
- Laís F Berro
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E, Atlanta, GA, 30329, USA
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Psychiatry and Behavioral Science, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E, Atlanta, GA, 30329, USA
| | - Maylen Perez Diaz
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E, Atlanta, GA, 30329, USA
- Department of Psychiatry and Behavioral Science, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E, Atlanta, GA, 30329, USA
| | - Eric Maltbie
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E, Atlanta, GA, 30329, USA
- Department of Psychiatry and Behavioral Science, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E, Atlanta, GA, 30329, USA
| | - Leonard L Howell
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E, Atlanta, GA, 30329, USA.
- Department of Psychiatry and Behavioral Science, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E, Atlanta, GA, 30329, USA.
| |
Collapse
|
22
|
Pitts EG, Minerva AR, Chandler EB, Kohn JN, Logun MT, Sulima A, Rice KC, Howell LL. 3,4-Methylenedioxymethamphetamine Increases Affiliative Behaviors in Squirrel Monkeys in a Serotonin 2A Receptor-Dependent Manner. Neuropsychopharmacology 2017; 42:1962-1971. [PMID: 28425496 PMCID: PMC5561347 DOI: 10.1038/npp.2017.80] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/05/2017] [Accepted: 04/16/2017] [Indexed: 01/02/2023]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) increases sociality in humans and animals. Release of serotonin (5-HT) is thought to have an important role in the increase in social behaviors, but the mechanisms underlying these effects are poorly understood. Despite the advantages of nonhuman primate models, no studies have examined the mechanisms of the social effects of MDMA in nonhuman primates. The behavior and vocalizations of four group-housed squirrel monkeys were examined following administration of MDMA, its enantiomers, and methamphetamine. 5-HT receptor antagonists and agonists were given as drug pretreatments. Data were analyzed using linear mixed-effects models. MDMA and its enantiomers increased affiliative social behaviors and vocalizations, whereas methamphetamine had only modest effects on affiliative behaviors. Pretreatment with a 5-HT2A receptor antagonist and a 5-HT2C receptor agonist attenuated the MDMA-induced increase in social behaviors, while a 5-HT1A receptor antagonist did not alter affiliative vocalizations and increased MDMA-induced social contact. Nonhuman primates show MDMA-specific increases in affiliative social behaviors following MDMA administration, in concordance with human and rodent studies. MDMA-induced increases in social behaviors are 5-HT2A, but not 5-HT1A, receptor dependent. Understanding the neurochemical mechanisms mediating the prosocial effects of MDMA could help in the development of novel therapeutics with the unique social effects of MDMA but fewer of its limitations.
Collapse
Affiliation(s)
- Elizabeth G Pitts
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Adelaide R Minerva
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Erika B Chandler
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Jordan N Kohn
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Meghan T Logun
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Leonard L Howell
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA,Yerkes National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA, Tel: +1 404 727 7786, Fax: +1 404 727 1266, E-mail:
| |
Collapse
|
23
|
Berro LF, Andersen ML, Tufik S, Howell LL. GABA A receptor positive allosteric modulators modify the abuse-related behavioral and neurochemical effects of methamphetamine in rhesus monkeys. Neuropharmacology 2017; 123:299-309. [PMID: 28495376 DOI: 10.1016/j.neuropharm.2017.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 05/01/2017] [Accepted: 05/07/2017] [Indexed: 12/21/2022]
Abstract
GABAA receptor positive allosteric modulators (GABAA receptor modulators) are commonly used for the treatment of insomnia. Nevertheless, the effects of these compounds on psychostimulant-induced sleep impairment are poorly understood. Because GABAA receptor modulators have been shown to decrease the abuse-related effects of psychostimulants, the aim of the present study was to evaluate the effects of temazepam (0.3, 1.0 or 3.0 mg/kg) and eszopiclone (0.3, 1.0 or 3.0 mg/kg), two GABAA receptor modulators, on the behavioral neuropharmacology of methamphetamine in adult rhesus macaques (n = 5). Sleep-like measures and general daytime activity were evaluated with Actiwatch monitors. Methamphetamine self-administration (0.03 mg/kg/inf) was evaluated during morning sessions. Methamphetamine-induced dopamine overflow was assessed through in vivo microdialysis targeting the nucleus accumbens. Nighttime treatment with either temazepam or eszopiclone was ineffective in improving sleep-like measures disrupted by methamphetamine self-administration. Acute pretreatment with a low dose of temazepam before self-administration sessions increased methamphetamine self-administration without affecting normal daytime home-cage activity. At a high dose, acute temazepam pretreatment decreased methamphetamine self-administration and attenuated methamphetamine-induced increases in dopamine in the nucleus accumbens, without decreasing general daytime activity. Acute eszopiclone treatment exerted no effects on methamphetamine intake or drug-induced increases in dopamine. Our study suggests that treatments based on GABAA receptor modulators are not effective for the treatment of sleep disruption in the context of psychostimulant use. In addition, distinct GABAA receptor modulators differentially modulated the abuse-related effects of methamphetamine, with acute treatment with the high efficacy GABAA receptor modulator temazepam decreasing the behavioral and neurochemical effects of methamphetamine.
Collapse
Affiliation(s)
- Laís F Berro
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E., Atlanta, GA 30329, USA; Department of Psychobiology, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04021002 São Paulo, SP, Brazil
| | - Monica L Andersen
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E., Atlanta, GA 30329, USA; Department of Psychobiology, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04021002 São Paulo, SP, Brazil
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, R. Napoleão de Barros, 925, 04021002 São Paulo, SP, Brazil
| | - Leonard L Howell
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road N.E., Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, 954 Gatewood Road N.E., Atlanta, GA 30329, USA.
| |
Collapse
|
24
|
Lazenka MF, Suyama JA, Bauer CT, Banks ML, Negus SS. Sex differences in abuse-related neurochemical and behavioral effects of 3,4-methylenedioxymethamphetamine (MDMA) in rats. Pharmacol Biochem Behav 2016; 152:52-60. [PMID: 27566288 DOI: 10.1016/j.pbb.2016.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/13/2016] [Accepted: 08/22/2016] [Indexed: 01/31/2023]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) is a substrate for dopamine (DA), norepinephrine and serotonin (5HT) transporters that produces greater pharmacological effects on certain endpoints in females than males in both clinical and rodent preclinical studies. To evaluate potential for sex differences in abuse-related MDMA effects, the present study compared MDMA effects on intracranial self-stimulation (ICSS) and on in vivo microdialysis measurements of DA or 5HT in the nucleus accumbens (NAc) in female and male Sprague-Dawley rats. For ICSS studies, electrodes were implanted in the medial forebrain bundle and rats trained to press for electrical stimulation over a range of frequencies (56-158Hz, 0.05 log increments) under a fixed-ratio 1 schedule, and the potency (0.32-3.2mg/kg, 10min pretreatment) and time course (3.2. mg/kg, 10-180min pretreatment) of MDMA effects were determined. For in vivo microdialysis, rats were implanted with bilateral guide cannulae targeting the NAc, and the time course of MDMA effects (1.0-3.2mg/kg, 0-180min) on DA and 5HT was determined. MDMA produced qualitatively similar effects in both sexes on ICSS (both increases in low ICSS rates maintained by low brain-stimulation frequencies and decreases in high ICSS rates maintained by high brain-stimulation frequencies) and microdialysis (increases in both DA and 5HT). The duration and peak levels of both abuse-related ICSS facilitation and increases in NAc DA were longer in females. MDMA was also more potent to increase 5HT in females. These results provide evidence for heightened sensitivity of females to abuse-related behavioral and neurochemical effects of MDMA in rats.
Collapse
Affiliation(s)
- M F Lazenka
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - J A Suyama
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - C T Bauer
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - M L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - S S Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
25
|
Ballesta S, Reymond G, Pozzobon M, Duhamel JR. Effects of MDMA Injections on the Behavior of Socially-Housed Long-Tailed Macaques (Macaca fascicularis). PLoS One 2016; 11:e0147136. [PMID: 26840064 PMCID: PMC4739726 DOI: 10.1371/journal.pone.0147136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/29/2015] [Indexed: 01/26/2023] Open
Abstract
3,4-methylenedioxy-N-methyl amphetamine (MDMA) is one of the few known molecules to increase human and rodent prosocial behaviors. However, this effect has never been assessed on the social behavior of non-human primates. In our study, we subcutaneously injected three different doses of MDMA (1.0, 1.5 or 2.0mg/kg) to a group of three, socially housed, young male long-tailed macaques. More than 200 hours of behavioral data were recorded, during 68 behavioral sessions, by an automatic color-based video device that tracked the 3D positions of each animal and of a toy. This data was then categorized into 5 exclusive behaviors (resting, locomotion, foraging, social contact and object play). In addition, received and given social grooming was manually scored. Results show several significant dose-dependent behavioral effects. At 1.5mg/kg only, MDMA induces a significant increase in social grooming behavior, thus confirming the prosocial effect of MDMA in macaques. Additionally, at 1.5 and 2.0 mg/kg MDMA injection substantially decreases foraging behavior, which is consistent with the known anorexigenic effect of this compound. Furthermore, at 2.0 mg/kg MDMA injection induces an increase in locomotor behavior, which is also in accordance with its known stimulant property. Interestingly, MDMA injected at 1.0mg/kg increases the rate of object play, which might be interpreted as a decrease of the inhibition to manipulate a unique object in presence of others, or, as an increase of the intrinsic motivation to manipulate this object. Together, our results support the effectiveness of MDMA to study the complex neurobiology of primates' social behaviors.
Collapse
Affiliation(s)
- Sébastien Ballesta
- Centre de Neuroscience Cognitive, Centre National de la Recherche Scientifique, 69675 Bron, France
- Département de Biologie Humaine, Université Lyon 1, 69622 Villeurbanne, France
| | - Gilles Reymond
- Centre de Neuroscience Cognitive, Centre National de la Recherche Scientifique, 69675 Bron, France
- Département de Biologie Humaine, Université Lyon 1, 69622 Villeurbanne, France
| | - Matthieu Pozzobon
- Centre de Neuroscience Cognitive, Centre National de la Recherche Scientifique, 69675 Bron, France
- Département de Biologie Humaine, Université Lyon 1, 69622 Villeurbanne, France
| | - Jean-René Duhamel
- Centre de Neuroscience Cognitive, Centre National de la Recherche Scientifique, 69675 Bron, France
- Département de Biologie Humaine, Université Lyon 1, 69622 Villeurbanne, France
| |
Collapse
|
26
|
Suyama JA, Sakloth F, Kolanos R, Glennon RA, Lazenka MF, Negus SS, Banks ML. Abuse-Related Neurochemical Effects of Para-Substituted Methcathinone Analogs in Rats: Microdialysis Studies of Nucleus Accumbens Dopamine and Serotonin. J Pharmacol Exp Ther 2016; 356:182-90. [PMID: 26645638 PMCID: PMC4702071 DOI: 10.1124/jpet.115.229559] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/14/2015] [Indexed: 11/22/2022] Open
Abstract
Methcathinone (MCAT) is a monoamine releaser and parent compound to a new class of designer drugs that includes the synthetic cathinones mephedrone and flephedrone. Using MCAT and a series of para-substituted (or 4-substituted) MCAT analogs, it has been previously shown that expression of abuse-related behavioral effects in rats correlates both with the volume of the para substituent and in vitro neurochemical selectivity to promote monoamine release via the dopamine (DA) versus serotonin (5-HT) transporters in rat brain synaptosomes. The present study used in vivo microdialysis to determine the relationship between these previous measures and the in vivo neurochemical selectivity of these compounds to alter nucleus accumbens (NAc) DA and 5-HT levels. Male Sprague-Dawley rats were implanted with bilateral guide cannulae targeting the NAc. MCAT and five para-substituted analogs (4-F, 4-Cl, 4-Br, 4-CH3, and 4-OCH3) produced dose- and time-dependent increases in NAc DA and/or 5-HT levels. Selectivity was determined as the dose required to increase peak 5-HT levels by 250% divided by the dose required to increase peak DA levels by 250%. This measure of in vivo neurochemical selectivity varied across compounds and correlated with 1) in vivo expression of abuse-related behavioral effects (r = 0.89, P = 0.02); 2) in vitro selectivity to promote monoamine release via DA and 5-HT transporters (r = 0.95, P < 0.01); and 3) molecular volume of the para substituent (r = -0.85, P = 0.03). These results support a relationship between these molecular, neurochemical, and behavioral measures and support a role for molecular structure as a determinant of abuse-related neurochemical and behavioral effects of MCAT analogs.
Collapse
Affiliation(s)
- Julie A Suyama
- Department of Pharmacology and Toxicology (J.A.S., M.F.L., S.S.N., M.L.B.), Department of Medicinal Chemistry (F.S., R.K., R.A.G.), and Institute on Drug and Alcohol Studies (R.A.G., S.S.N., M.L.B.), Virginia Commonwealth University, Richmond, Virginia
| | - Farhana Sakloth
- Department of Pharmacology and Toxicology (J.A.S., M.F.L., S.S.N., M.L.B.), Department of Medicinal Chemistry (F.S., R.K., R.A.G.), and Institute on Drug and Alcohol Studies (R.A.G., S.S.N., M.L.B.), Virginia Commonwealth University, Richmond, Virginia
| | - Renata Kolanos
- Department of Pharmacology and Toxicology (J.A.S., M.F.L., S.S.N., M.L.B.), Department of Medicinal Chemistry (F.S., R.K., R.A.G.), and Institute on Drug and Alcohol Studies (R.A.G., S.S.N., M.L.B.), Virginia Commonwealth University, Richmond, Virginia
| | - Richard A Glennon
- Department of Pharmacology and Toxicology (J.A.S., M.F.L., S.S.N., M.L.B.), Department of Medicinal Chemistry (F.S., R.K., R.A.G.), and Institute on Drug and Alcohol Studies (R.A.G., S.S.N., M.L.B.), Virginia Commonwealth University, Richmond, Virginia
| | - Matthew F Lazenka
- Department of Pharmacology and Toxicology (J.A.S., M.F.L., S.S.N., M.L.B.), Department of Medicinal Chemistry (F.S., R.K., R.A.G.), and Institute on Drug and Alcohol Studies (R.A.G., S.S.N., M.L.B.), Virginia Commonwealth University, Richmond, Virginia
| | - S Stevens Negus
- Department of Pharmacology and Toxicology (J.A.S., M.F.L., S.S.N., M.L.B.), Department of Medicinal Chemistry (F.S., R.K., R.A.G.), and Institute on Drug and Alcohol Studies (R.A.G., S.S.N., M.L.B.), Virginia Commonwealth University, Richmond, Virginia
| | - Matthew L Banks
- Department of Pharmacology and Toxicology (J.A.S., M.F.L., S.S.N., M.L.B.), Department of Medicinal Chemistry (F.S., R.K., R.A.G.), and Institute on Drug and Alcohol Studies (R.A.G., S.S.N., M.L.B.), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
27
|
|
28
|
Serotonin 2A receptors differentially contribute to abuse-related effects of cocaine and cocaine-induced nigrostriatal and mesolimbic dopamine overflow in nonhuman primates. J Neurosci 2013; 33:13367-74. [PMID: 23946394 DOI: 10.1523/jneurosci.1437-13.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two of the most commonly used procedures to study the abuse-related effects of drugs in laboratory animals are intravenous drug self-administration and reinstatement of extinguished behavior previously maintained by drug delivery. Intravenous self-administration is widely accepted to model ongoing drug-taking behavior, whereas reinstatement procedures are accepted to model relapse to drug taking following abstinence. Previous studies indicate that 5-HT2A receptor antagonists attenuate the reinstatement of cocaine-maintained behavior but not cocaine self-administration in rodents. Although the abuse-related effects of cocaine have been closely linked to brain dopamine systems, no previous study has determined whether this dissociation is related to differential regulation of dopamine neurotransmission. To elucidate the neuropharmacological and neuroanatomical mechanisms underlying this phenomenon, we evaluated the effects of the selective 5-HT2A receptor antagonist M100907 on intravenous cocaine self-administration and drug- and cue-primed reinstatement in rhesus macaques (Macaca mulatta). In separate subjects, we evaluated the role of 5-HT2A receptors in cocaine-induced dopamine overflow in the nucleus accumbens (n = 4) and the caudate nucleus (n = 5) using in vivo microdialysis. Consistent with previous studies, M100907 (0.3 mg/kg, i.m.) significantly attenuated drug- and cue-induced reinstatement but had no significant effects on cocaine self-administration across a range of maintenance doses. Importantly, M100907 (0.3 mg/kg, i.m.) attenuated cocaine-induced (1.0 mg/kg, i.v.) dopamine overflow in the caudate nucleus but not in the nucleus accumbens. These data suggest that important abuse-related effects of cocaine are mediated by distinct striatal dopamine projection pathways.
Collapse
|
29
|
Murnane KS, Andersen ML, Rice KC, Howell LL. Selective serotonin 2A receptor antagonism attenuates the effects of amphetamine on arousal and dopamine overflow in non-human primates. J Sleep Res 2013; 22:581-8. [PMID: 23879373 PMCID: PMC3808463 DOI: 10.1111/jsr.12045] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/28/2013] [Indexed: 11/30/2022]
Abstract
The objective of the present study was to further elucidate the mechanisms involved in the wake-promoting effects of psychomotor stimulants. Many previous studies have tightly linked the effects of stimulants to dopamine neurotransmission, and some studies indicate that serotonin 2A receptors modulate these effects. However, the role of dopamine in arousal is controversial, most notably because dopamine neurons do not change firing rates across arousal states. In the present study, we examined the wake-promoting effects of the dopamine-releaser amphetamine using non-invasive telemetric monitoring. These effects were evaluated in rhesus monkeys as a laboratory animal model with high translational relevance for human disorders of sleep and arousal. To evaluate the role of dopamine in the wake-promoting effects of amphetamine, we used in vivo microdialysis targeting the caudate nucleus, as this approach provides clearly interpretable measures of presynaptic dopamine release. This is beneficial in the present context because some of the inconsistencies between previous studies examining the role of dopamine in arousal may be related to differences between postsynaptic dopamine receptors. We found that amphetamine significantly and dose-dependently increased arousal at doses that engendered higher extracellular dopamine levels. Moreover, antagonism of serotonin 2A receptors attenuated the effects of amphetamine on both wakefulness and dopamine overflow. These findings further elucidate the role of dopamine and serotonin 2A receptors in arousal, and they suggest that increased dopamine neurotransmission may be necessary for the wake-promoting effects of amphetamine, and possibly other stimulants.
Collapse
|
30
|
Manvich DF, Kimmel HL, Howell LL. Effects of serotonin 2C receptor agonists on the behavioral and neurochemical effects of cocaine in squirrel monkeys. J Pharmacol Exp Ther 2012; 341:424-34. [PMID: 22328576 PMCID: PMC3336818 DOI: 10.1124/jpet.111.186981] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 02/09/2012] [Indexed: 11/22/2022] Open
Abstract
Accumulating evidence indicates that the serotonin system modulates the behavioral and neurochemical effects of cocaine, but the receptor subtypes mediating these effects remain unknown. Recent studies have demonstrated that pharmacological activation of the serotonin 2C receptor (5-HT(2C)R) attenuates the behavioral and neurochemical effects of cocaine in rodents, but such compounds have not been systematically evaluated in nonhuman primates. The present experiments sought to determine the impact of pretreatment with the preferential 5-HT(2C)R agonist m-chlorophenylpiperazine (mCPP) and the selective 5-HT(2C)R agonist Ro 60-0175 [(α-S)-6-chloro-5-fluoro-α-methyl-1H-indole-1-ethanamine fumarate] on the behavioral and neurochemical effects of cocaine in squirrel monkeys. In subjects trained to lever-press according to a 300-s fixed-interval schedule of stimulus termination, pretreatment with either 5-HT(2C)R agonist dose-dependently and insurmountably attenuated the behavioral stimulant effects of cocaine. In subjects trained to self-administer cocaine, both compounds dose-dependently and insurmountably attenuated cocaine-induced reinstatement of previously extinguished responding in an antagonist-reversible manner, and the selective agonist Ro 60-0175 also attenuated the reinforcing effects of cocaine during ongoing cocaine self-administration. It is noteworthy that the selective agonist Ro 60-0175 exhibited behavioral specificity because it did not significantly alter nondrug-maintained responding. Finally, in vivo microdialysis studies revealed that pretreatment with Ro 60-0175 caused a reduction of cocaine-induced dopamine increases within the nucleus accumbens, but not the caudate nucleus. These results suggest that 5-HT(2C)R agonists functionally antagonize the behavioral effects of cocaine in nonhuman primates, possibly via a selective modulation of cocaine-induced dopamine increases within the mesolimbic dopamine system and may therefore represent a novel class of pharmacotherapeutics for the treatment of cocaine abuse.
Collapse
Affiliation(s)
- Daniel F Manvich
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
31
|
Murnane KS, Kimmel HL, Rice KC, Howell LL. The neuropharmacology of prolactin secretion elicited by 3,4-methylenedioxymethamphetamine ("ecstasy"): a concurrent microdialysis and plasma analysis study. Horm Behav 2012; 61:181-90. [PMID: 22197270 PMCID: PMC3278534 DOI: 10.1016/j.yhbeh.2011.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 10/14/2022]
Abstract
3,4-methylenedioxymethamphetamine (MDMA) is a substituted phenethylamine that is widely abused as the street drug "ecstasy". Racemic MDMA (S,R(+/-)-MDMA) and its stereoisomers elicit complex spectrums of psychobiological, neurochemical, and hormonal effects. In this regard, recent findings demonstrated that S,R(+/-)-MDMA and its stereoisomer R(-)-MDMA elicit increases in striatal extracellular serotonin levels and plasma levels of the hormone prolactin in rhesus monkeys. In the present mechanistic study, we evaluated the role of the serotonin transporter and the 5-HT(2A) receptor in S,R(+/-)-MDMA- and R(-)-MDMA-elicited prolactin secretion in rhesus monkeys through concurrent microdialysis and plasma analysis determinations and drug interaction experiments. Concurrent neurochemical and hormone determinations showed a strong positive temporal correlation between serotonin release and prolactin secretion. Consistent with their distinct mechanisms of action and previous studies showing that the serotonin transporter inhibitor fluoxetine attenuates the behavioral and neurochemical effects of S,R(+/-)-MDMA, pretreatment with fluoxetine attenuated serotonin release elicited by either S,R(+/-)-MDMA or R(-)-MDMA. As hypothesized, at a dose that had no significant effects on circulating prolactin levels when administered alone, fluoxetine also attenuated prolactin secretion elicited by S,R(+/-)-MDMA. In contrast, combined pretreatment with both fluoxetine and the selective 5-HT(2A) receptor antagonist M100907 was required to attenuate prolactin secretion elicited by R(-)-MDMA, suggesting that this stereoisomer of S,R(+/-)-MDMA elicits prolactin secretion through both serotonin release and direct agonism of 5-HT(2A) receptors. Accordingly, these findings inform our understanding of the neuropharmacology of both S,R(+/-)-MDMA and R(-)-MDMA and the regulation of prolactin secretion.
Collapse
Affiliation(s)
- K S Murnane
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
32
|
Lourenço TC, Bósio GC, Cassiano NM, Cass QB, Moreau RLM. Chiral separation of 3,4-methylenedioxymethamphetamine (MDMA) enantiomers using batch chromatography with peak shaving recycling and its effects on oxidative stress status in rat liver. J Pharm Biomed Anal 2012; 73:13-7. [PMID: 22342062 DOI: 10.1016/j.jpba.2012.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/19/2012] [Accepted: 01/21/2012] [Indexed: 11/12/2022]
Abstract
This work reports the multimiligram separation of 3,4-methylenedioxy-methamphetamine (MDMA) enantiomers using batch chromatography with peak shaving recycling. The effect of both enantiomers compared to the racemic mixture was examined on the oxidative stress status of rat liver. The enantiomeric purification was performed using a based cyclodextrin chiral selector and methanol:ammonium acetate buffer (pH 6.0, 100mM) (30:70, v/v) as mobile phase. The average mass rate obtained was 40.0mg/day, providing 45.0mg of the (R)-(-)-MDMA (e.r. 99.0%) and 75.0mg (e.r. 96.0%) of (S)-(+)-MDMA. Racemic MDMA and both enantiomers were administered per orally to Wistar rats and oxidative stress status parameters, as liver total glutathione levels and malondialdehyde (MDA) production in liver were evaluated. There was a significant decrease in hepatic glutathione content in the racemic MDMA and the (R)-(-)-MDMA-treated rats when compared to the control and to (S)-(+)-MDMA. These results demonstrate that the R-enantiomer is the enantiomer that contributes to the depletion of hepatic glutathione induced by the racemic mixture. The high reactivity of the R-enantiomer of MDMA in the liver can also be observed in animals treated with (R)-(-)-MDMA. The production of malondialdehyde (MDA) by (R)-(-)-MDMA was significantly higher when compared to the other treated groups and control.
Collapse
Affiliation(s)
- Tiago C Lourenço
- Departamento de Química, Universidade Federal de São Carlos, São Carlos - SP, Brazil
| | | | | | | | | |
Collapse
|
33
|
Martinez CM, Neudörffer A, Largeron M. A convenient biomimetic synthesis of optically active putative neurotoxic metabolites of MDMA (“ecstasy”) from R-(−)- and S-(+)-N-methyl-α-methyldopamine precursors. Org Biomol Chem 2012; 10:3739-48. [DOI: 10.1039/c2ob25245g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Lewin AH, Miller GM, Gilmour B. Trace amine-associated receptor 1 is a stereoselective binding site for compounds in the amphetamine class. Bioorg Med Chem 2011; 19:7044-8. [PMID: 22037049 DOI: 10.1016/j.bmc.2011.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/23/2011] [Accepted: 10/05/2011] [Indexed: 10/16/2022]
Abstract
The demonstrated ability of amphetamine to functionally activate the rat trace amine associated receptor 1 (rTAAR1) and the subsequent reports of amphetamine activation of TAAR1 in rhesus monkey mouse, human, and human-rat chimeric TAAR1-expressing cell lines has led to speculation as to the role of this receptor in the central nervous system (CNS) responses associated with amphetamine and its analogs. The agonist potencies of ten pairs of enantiomeric amphetamines, including several with known CNS activity, at primate TAAR1 stably expressed in RD-HGA16 cells, robustly indicate the S-configuration to be associated with higher potency. Moreover, the rank order of potency to activate TAAR1 parallels the stimulant action reported by humans for the specific amphetamines. Taken together, these data suggest that TAAR1 is a stereoselective binding site for amphetamine and that activation of TAAR1 is involved in the modulation of the stimulant properties of amphetamine and its congeners. In addition, the observed parallel between hTAAR1 and rhTAAR1 responses supports the rhesus monkey as a highly translational model for developing novel TAAR1-directed compounds as therapeutics for amphetamine-related addictions.
Collapse
Affiliation(s)
- Anita H Lewin
- Research Triangle Institute, PO Box 12194, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
35
|
Abstract
RATIONALE Neuroimaging techniques have led to significant advances in our understanding of the neurobiology of drug taking and the treatment of drug addiction in humans. Neuroimaging approaches provide a powerful translational approach that can link findings from humans and laboratory animals. OBJECTIVE This review describes the utility of neuroimaging toward understanding the neurobiological basis of drug taking and documents the close concordance that can be achieved among neuroimaging, neurochemical, and behavioral endpoints. RESULTS The study of drug interactions with dopamine and serotonin transporters in vivo has identified pharmacological mechanisms of action associated with the abuse liability of stimulants. Neuroimaging has identified the extended limbic system, including the prefrontal cortex and anterior cingulate, as important neuronal circuitry that underlies drug taking. The ability to conduct within-subject longitudinal assessments of brain chemistry and neuronal function has enhanced our efforts to document long-term changes in dopamine D2 receptors, monoamine transporters, and prefrontal metabolism due to chronic drug exposure. Dysregulation of dopamine function and brain metabolic changes in areas involved in reward circuitry have been linked to drug taking behavior, cognitive impairment, and treatment response. CONCLUSIONS Experimental designs employing neuroimaging should consider well-documented determinants of drug taking, including pharmacokinetic considerations, subject history, and environmental variables. Methodological issues to consider include limited molecular probes, lack of neurochemical specificity in brain activation studies, and the potential influence of anesthetics in animal studies. Nevertheless, these integrative approaches should have important implications for understanding drug taking behavior and the treatment of drug addiction.
Collapse
|
36
|
Howell LL, Murnane KS. Nonhuman primate positron emission tomography neuroimaging in drug abuse research. J Pharmacol Exp Ther 2011; 337:324-34. [PMID: 21317354 PMCID: PMC3083112 DOI: 10.1124/jpet.108.136689] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/09/2010] [Indexed: 11/22/2022] Open
Abstract
Positron emission tomography (PET) neuroimaging in nonhuman primates has led to significant advances in our current understanding of the neurobiology and treatment of stimulant addiction in humans. PET neuroimaging has defined the in vivo biodistribution and pharmacokinetics of abused drugs and related these findings to the time course of behavioral effects associated with their addictive properties. With novel radiotracers and enhanced resolution, PET neuroimaging techniques have also characterized in vivo drug interactions with specific protein targets in the brain, including neurotransmitter receptors and transporters. In vivo determinations of cerebral blood flow and metabolism have localized brain circuits implicated in the effects of abused drugs and drug-associated stimuli. Moreover, determinations of the predisposing factors to chronic drug use and long-term neurobiological consequences of chronic drug use, such as potential neurotoxicity, have led to novel insights regarding the pathology and treatment of drug addiction. However, similar approaches clearly need to be extended to drug classes other than stimulants. Although dopaminergic systems have been extensively studied, other neurotransmitter systems known to play a critical role in the pharmacological effects of abused drugs have been largely ignored in nonhuman primate PET neuroimaging. Finally, the study of brain activation with PET neuroimaging has been replaced in humans mostly by functional magnetic resonance imaging (fMRI). There has been some success in implementing pharmacological fMRI in awake nonhuman primates. Nevertheless, the unique versatility of PET imaging will continue to complement the systems-level strengths of fMRI, especially in the context of nonhuman primate drug abuse research.
Collapse
Affiliation(s)
- Leonard Lee Howell
- Division of Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA.
| | | |
Collapse
|