1
|
Kashfi K. Fifty Years of Diazeniumdiolate Research: A Tribute to Dr. Larry K. Keefer. Crit Rev Oncog 2023; 28:47-55. [PMID: 37824386 PMCID: PMC11076142 DOI: 10.1615/critrevoncog.2023048491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The pioneering studies of Dr. Larry Keefer and colleagues with diazeniumdiolates or NONOates as a platform have unraveled the chemical biology of many nitric oxides and have led to the design of a variety of promising therapeutic agents in oncology, gastroenterology, antimicrobials, wound healing, and the like. This dedication to Dr. Larry Keefer briefly highlights some of his studies using the diazeniumdiolate platform in the cancer arena.
Collapse
Affiliation(s)
- Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, 160 Convent Avenue, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, USA
| |
Collapse
|
2
|
Shami PJ. Development of JS-K, a First-in-Class Arylated Diazeniumdiolate, for the Treatment of Cancer. Crit Rev Oncog 2023; 28:57-62. [PMID: 37824387 DOI: 10.1615/critrevoncog.2023048725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Affiliation(s)
- Paul J Shami
- Department of Medicine, Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, 2000 Circle of Hope, Suite 2100, University of Utah, Salt Lake City
| |
Collapse
|
3
|
Salihi A, Al-Naqshabandi MA, Khudhur ZO, Housein Z, Hama HA, Abdullah RM, Hussen BM, Alkasalias T. Gasotransmitters in the tumor microenvironment: Impacts on cancer chemotherapy (Review). Mol Med Rep 2022; 26:233. [PMID: 35616143 PMCID: PMC9178674 DOI: 10.3892/mmr.2022.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide, carbon monoxide and hydrogen sulfide are three endogenous gasotransmitters that serve a role in regulating normal and pathological cellular activities. They can stimulate or inhibit cancer cell proliferation and invasion, as well as interfere with cancer cell responses to drug treatments. Understanding the molecular pathways governing the interactions between these gases and the tumor microenvironment can be utilized for the identification of a novel technique to disrupt cancer cell interactions and may contribute to the conception of effective and safe cancer therapy strategies. The present review discusses the effects of these gases in modulating the action of chemotherapies, as well as prospective pharmacological and therapeutic interfering approaches. A deeper knowledge of the mechanisms that underpin the cellular and pharmacological effects, as well as interactions, of each of the three gases could pave the way for therapeutic treatments and translational research.
Collapse
Affiliation(s)
- Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region 44002, Iraq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Mohammed A. Al-Naqshabandi
- Department of Clinical Biochemistry, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| | - Zjwan Housein
- Department of Medical Laboratory Technology, Technical Health and Medical College, Erbil Polytechnique University, Erbil, Kurdistan Region 44002, Iraq
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region 44002, Iraq
| | - Ramyar M. Abdullah
- College of Medicine, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region 44002, Iraq
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
4
|
Wang LL, Du RS, Li J, Cai ZJ, Han L, Mao Y, Zhou YY, Yu QL, Chen LH. The potential mediation of nitric oxide in the activation of mitochondrion-dependent apoptosis and yak meat tenderness during postmortem aging. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Xie J, Chen L, Huang D, Yue W, Chen J, Liu C. A nitric oxide-releasing prodrug promotes apoptosis in human renal carcinoma cells: Involvement of reactive oxygen species. OPEN CHEM 2021. [DOI: 10.1515/chem-2020-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
JS-K is a nitric oxide (NO)-releasing prodrug of the O2-arylated diazeniumdiolate group that shows pronounced cytotoxicity and antitumor properties in numerous cancer models, including in vitro as well as in vivo. Reactive oxygen species (ROS) induce carcinogenesis by altering the redox status, causing increment in vulnerability to oxidative stress.
Material and methods
To determine the effect of JS-K, a glutathione S-transferase (GST)-activated NO-donor prodrug, on the induction of ROS accumulation, proliferation, and apoptosis in human renal carcinoma cells, we measured the changes of cell proliferation, apoptosis, ROS growth, and initiation of the mitochondrial signaling pathway before and after JS-K treatment.
Results
In vitro, dose- and time-dependent development of renal carcinoma cells were controlled for JS-K, and JS-K also triggered ROS aggregation and cell apoptosis. Treatment with JS-K induces the levels of pro-apoptotic proteins (Bak and Bax) and decrease the number of anti-apoptotic protein (Bcl-2). In fact, JS-K-induced apoptosis was reversed by the antioxidant N-acetylcysteine, and oxidized glutathione, a pro-oxidant, improved JS-K-induced apoptosis. Finally, we demonstrated that in renal carcinoma cells, JS-K improved the chemosensitivity of doxorubicin.
Conclusion
Our data indicate that JS-K-released NO induce apoptosis of renal carcinoma cells by increasing ROS levels.
Collapse
Affiliation(s)
- Jindong Xie
- Department of Urology, Zhujiang Hospital, Southern Medical University , No. 253, Industrial Road , Guangzhou , 510282, Guangdong , China
| | - Lieqian Chen
- Department of Urology, The First Hospital of Huizhou , No. 20, Sanxin Road , Huizhou , 516000, Guangdong , China
| | - Dongqiang Huang
- Department of Urology, The First Hospital of Huizhou , No. 20, Sanxin Road , Huizhou , 516000, Guangdong , China
| | - Weiwei Yue
- Department of Urology, The First Hospital of Huizhou , No. 20, Sanxin Road , Huizhou , 516000, Guangdong , China
| | - Jingyu Chen
- Department of Urology, The First Hospital of Huizhou , No. 20, Sanxin Road , Huizhou , 516000, Guangdong , China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University , No. 253, Industrial Road , Guangzhou , 510282, Guangdong , China
| |
Collapse
|
6
|
Mintz J, Vedenko A, Rosete O, Shah K, Goldstein G, Hare JM, Ramasamy R, Arora H. Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics. Vaccines (Basel) 2021; 9:94. [PMID: 33513777 PMCID: PMC7912608 DOI: 10.3390/vaccines9020094] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a short-lived, ubiquitous signaling molecule that affects numerous critical functions in the body. There are markedly conflicting findings in the literature regarding the bimodal effects of NO in carcinogenesis and tumor progression, which has important consequences for treatment. Several preclinical and clinical studies have suggested that both pro- and antitumorigenic effects of NO depend on multiple aspects, including, but not limited to, tissue of generation, the level of production, the oxidative/reductive (redox) environment in which this radical is generated, the presence or absence of NO transduction elements, and the tumor microenvironment. Generally, there are four major categories of NO-based anticancer therapies: NO donors, phosphodiesterase inhibitors (PDE-i), soluble guanylyl cyclase (sGC) activators, and immunomodulators. Of these, NO donors are well studied, well characterized, and also the most promising. In this study, we review the current knowledge in this area, with an emphasis placed on the role of NO as an anticancer therapy and dysregulated molecular interactions during the evolution of cancer, highlighting the strategies that may aid in the targeting of cancer.
Collapse
Affiliation(s)
- Joel Mintz
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA;
| | - Anastasia Vedenko
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
| | - Omar Rosete
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Khushi Shah
- College of Arts and Sciences, University of Miami, Miami, FL 33146, USA;
| | - Gabriella Goldstein
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Joshua M. Hare
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Himanshu Arora
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
7
|
Ji X, Chen Q, Arutla V, Khdour O, Hu QY, Chen S. Double-component diazeniumdiolate derivatives as anti-cancer agents. Bioorg Med Chem 2020; 28:115405. [PMID: 32156499 DOI: 10.1016/j.bmc.2020.115405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/17/2020] [Accepted: 02/28/2020] [Indexed: 11/28/2022]
Abstract
In this study, we synthesized a series of double-component O2-aryl diazeniumdiolate (DDNO) derivatives, of which each molecule can release up to four nitric oxide molecules. These compounds showed cytotoxic activities to cancer cells, such as human leukemia, breast cancer and lung cancer. Among them, compound 1 (DDNO-1) showed the highest specific activity to human leukemia cells. It induced cell apopotosis and arrest cell cycle of G2/M phase. The JNK and p38 protein kinases were activated by compound 1 to induce cancer cell apoptosis. Compound 1 also increased pro-apoptotic Bax level, which is a same function compared to a reported NO donor, JS-K. More interestingly, it decreased the level of an anti-apoptotic member Bcl-2, which is an opposite effect compared to JS-K. Compound 1 could be developed as a new anti-cancer agent since it increases the Bax/Bcl-2 ratio to overcome the drug resistance.
Collapse
Affiliation(s)
- Xun Ji
- Biodesign Center for BioEnergetics, Arizona State University, Tempe, AZ 85287, USA
| | - Qi Chen
- Department of Central Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, PR China
| | - Viswanath Arutla
- Biodesign Center for BioEnergetics, Arizona State University, Tempe, AZ 85287, USA
| | - Omar Khdour
- Biodesign Center for BioEnergetics, Arizona State University, Tempe, AZ 85287, USA
| | - Qiong-Ying Hu
- Department of Central Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, PR China; School of Medcine, Taizhou University, Taizhou, Zhejiang, PR China.
| | - Shengxi Chen
- Biodesign Center for BioEnergetics, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
8
|
Narayanankutty A, Job JT, Narayanankutty V. Glutathione, an Antioxidant Tripeptide: Dual Roles in Carcinogenesis and Chemoprevention. Curr Protein Pept Sci 2020; 20:907-917. [PMID: 30727890 DOI: 10.2174/1389203720666190206130003] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/14/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022]
Abstract
Glutathione (GSH or reduced glutathione) is a tripeptide of gamma-Glutamyl-cysteinylglycine and the predominant intracellular antioxidant in many organisms including humans. GSH and associated enzymes are controlled by a transcription factor-nuclear factor-2 related erythroid factor-2 (Nrf2). In cellular milieu, GSH protects the cells essentially against a wide variety of free radicals including reactive oxygen species, lipid hydroperoxides, xenobiotic toxicants, and heavy metals. It has two forms, the reduced form or reduced glutathione (GSH) and oxidized form (GSSG), where two GSH moieties combine by sulfhydryl bonds. Glutathione peroxidase (GPx) and glutathione-s-transferase (GST) essentially perform the detoxification reactions using GSH, converting it into GSSG. Glutathione reductase (GR) operates the salvage pathway by converting GSSG to GSH with the expense of NADPH and restores the cellular GSH pool. Hence, GSH and GSH-dependent enzymes are necessary for maintaining the normal redox balance in the body and help in cell survival under stress conditions. In addition, GST removes various carcinogenic compounds offering a chemopreventive property, whereas the GSH system plays a significant role in regulating the cellular survival by offering redox stability in a variety of cancers including prostate, lung, breast, and colon cancer. Studies have also indicated that GSH inhibitors, such as buthionine sulfoximine, improve the chemo-sensitivity in cancer cells. In addition, GSH and dependent enzymes provide a survival advantage for cancer cells against chemotherapeutic drugs and radiotherapy.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Postgraduate & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri (Affiliated to University of Calicut), Calicut- 673 019, Kerala, India
| | - Joice Tom Job
- Postgraduate & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri (Affiliated to University of Calicut), Calicut- 673 019, Kerala, India
| | | |
Collapse
|
9
|
Sinha BK, Perera L, Cannon RE. Reversal of drug resistance by JS-K and nitric oxide in ABCB1- and ABCG2-expressing multi-drug resistant human tumor cells. Biomed Pharmacother 2019; 120:109468. [PMID: 31605952 DOI: 10.1016/j.biopha.2019.109468] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 11/26/2022] Open
Abstract
Development of resistance to chemotherapy drugs is a significant problem in treating human malignancies in the clinic. Overexpression of ABC transporter proteins, including P-170 glycoprotein (P-gp), and breast cancer resistance protein (BCRP, ABCG2) have been implicated in this multi-drug resistance (MDR). These ABC transporters are ATP-dependent efflux proteins. We have recently shown that nitric oxide (NO) inhibits the ATPase activities of P-gp, resulting in a significant enhancement of drug accumulation and the reversal of multi-drug resistance in NCI/ADR-RES cells, a P-gp-overexpressing human MDR cell line. In this study, we used [O2-(2,4-dinitrophenyl)-1-[(4-ethoxycarbonyl)-piperazin-1 yl]-diazene-1-ium-1-2-diolate] (JS-K), a tumor-specific NO-donor to study the reversal of drug resistance in both P-gp- and BCRP-overexpressing human tumor cells. We report here that while JS-K was extremely effective in reversing adriamycin resistance in the P-gp-overexpressing tumor cells (NCI/ADR-RES); it was significantly resistant to BCRP-overexpressing (MCF-7/MX) tumor cells, suggesting that JS-K may be a substrate for BCRP. Using another NO-donor (DETNO), we show that NO directly inhibits the ATP activities of BCRP, inducing significant increases in the accumulations of both Hoechst 33342 dye and topotecan, substrates for BCRP. Furthermore, NO treatment significantly reversed topotecan and mitoxantrone resistance to MCF-7/MX tumor cells. Molecular docking studies indicated that while DETNO and JS-K bind to ATP binding site in both ABC proteins, binding score was significantly reduced, compared to the ATP binding. Our results indicate that appropriately designed NO donors may find success in reversing multidrug resistance in the clinic.
Collapse
Affiliation(s)
- Birandra K Sinha
- Laboratory of Immunity, Inflammation, Disease Laboratory, National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.
| | - Lalith Perera
- Laboratory of Genome Integrity and Structural Biology, National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Ronald E Cannon
- Laboratory of Toxicology and Toxicokinetic, National Cancer Institute at National Institute of Environmental Health Sciences, National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| |
Collapse
|
10
|
Liu B, Huang X, Li Y, Liao W, Li M, Liu Y, He R, Feng D, Zhu R, Kurihara H. JS-K, a nitric oxide donor, induces autophagy as a complementary mechanism inhibiting ovarian cancer. BMC Cancer 2019; 19:645. [PMID: 31262254 PMCID: PMC6604176 DOI: 10.1186/s12885-019-5619-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 04/16/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the second most frequent gynecological cancer and is associated with a poor prognosis because OC progression is often asymptoma-tic and is detected at a late stage. There remains an urgent need for novel targeted therapies to improve clinical outcomes in ovarian cancer. As a nitric oxide prodrug, JS-K is reported highly cytotoxic to human cancer cells such as acute myeloid leukemia, multiple myeloma and breast cancer. This study is aim to investigate the influence of JS-K on proliferation and apoptosis in ovarian cancer cells and explored possible autophagy-related mechanisms, which will contribute to future ovarian cancer therapy and supply theory support that JS-K holds great promise as a novel therapeutic agent against ovarian cancer. METHODS The cytotoxicity, extracellular ROS/RNS activity and apoptotic effect of JS-K and indicated inhibitors on ovarian cancer cells in vitro were evaluated by MTT assay, extracellular ROS/RNS assay, caspases activities assay and western blot. Further autophagy effect of JS-K and indicated inhibitors were examined by MTT assay, cell transfection, immunofluorescence analysis, transmission electron microscopy (TEM) analysis and western blot on ovarian cancer cells in vitro. In vivo, the BALB/c-nude female mice with SKOV3 ovarian cancer cells xenograft were used to examine the efficacy of JS-K treatment on tumor growth. PCNA and p62 proteins were analyzed by immunohistochemistry. RESULTS In vitro, JS-K inhibited the proliferation of ovarian cancer cells, induced apoptosis and cell nucleus shrinkage, enhanced the enzymatic activity of caspase-3/7/8/9, and significantly increased the production of ROS/RNS in ovarian cancer A2780 and SKOV3 cells, these effects were attenuated by inhibition of NAC. In addition, JS-K induced autophagy-related proteins and autophagosomes changes in ovarian cancer A2780 and SKOV3 cells. In vivo, JS-K inhibited tumor growth, decreased p62 protein expression and increased the expression levels of PCNA in xenograft models which were established using SKOV3 ovarian cancer cells. CONCLUSION Taken together, we demonstrated that ROS/RNS stress-mediated apoptosis and autophagy are mechanisms by which SKOV3 cells undergo cell death after treatment with JS-K in vitro. Moreover, JS-K inhibited SKOV3 tumor growth in vivo. An alternative therapeutic approach for triggering cell death in cancer cells could constitute a useful multimodal therapies for treating ovarian cancer, which is known for its resistance to apoptosis-inducing drugs.
Collapse
Affiliation(s)
- Bin Liu
- College of Pharmacy, Jinan University, Guangzhou, 510632 Guangdong China
- Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 Guangdong China
| | - Xiaojie Huang
- Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 Guangdong China
| | - Yifang Li
- College of Pharmacy, Jinan University, Guangzhou, 510632 Guangdong China
| | - Weiguo Liao
- Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 Guangdong China
| | - Mingyi Li
- Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 Guangdong China
| | - Yi Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning China
| | - Rongrong He
- College of Pharmacy, Jinan University, Guangzhou, 510632 Guangdong China
| | - Du Feng
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute, Guangzhou, Medical University, Guangzhou, 511436 Guangdong China
| | - Runzhi Zhu
- Laboratory of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 Guangdong China
- Center for Cell Therapy, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001 Jiangsu China
| | - Hiroshi Kurihara
- College of Pharmacy, Jinan University, Guangzhou, 510632 Guangdong China
| |
Collapse
|
11
|
Gaseous signaling molecules and their application in resistant cancer treatment: from invisible to visible. Future Med Chem 2019; 11:323-336. [PMID: 30802141 DOI: 10.4155/fmc-2018-0403] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) in cancer remains a critical obstacle for efficient chemotherapy. Many MDR reversal agents have been discovered but failed in clinical trials due to severe toxic effects. Gaseous signaling molecules (GSMs), such as oxygen, nitric oxide, hydrogen sulfide and carbon monoxide, play key roles in regulating cell biological function and MDR. Compared with other toxic chemosensitizing agents, GSMs are endogenous and biocompatible molecules with little side effects. Research show that GSM modulators, including pharmaceutical formulations of GSMs (combined with conventional chemotherapeutic drugs) and GSM-donors (small molecules with GSMs releasing property), can overcome or reverse MDR. This review discusses the roles of these four GSMs in modulating MDR, and summarizes GSMs modulators in treating cancers with drug resistance.
Collapse
|
12
|
Zhao X, Cai A, Peng Z, Liang W, Xi H, Li P, Chen G, Yu J, Chen L. JS-K induces reactive oxygen species-dependent anti-cancer effects by targeting mitochondria respiratory chain complexes in gastric cancer. J Cell Mol Med 2019; 23:2489-2504. [PMID: 30672108 PMCID: PMC6433691 DOI: 10.1111/jcmm.14122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 11/08/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
As a nitric oxide (NO) donor prodrug, JS‐K inhibits cancer cell proliferation, induces the differentiation of human leukaemia cells, and triggers apoptotic cell death in various cancer models. However, the anti‐cancer effect of JS‐K in gastric cancer has not been reported. In this study, we found that JS‐K inhibited the proliferation of gastric cancer cells in vitro and in vivo and triggered mitochondrial apoptosis. Moreover, JS‐K induced a significant accumulation of reactive oxygen species (ROS), and the clearance of ROS by antioxidant reagents reversed JS‐K‐induced toxicity in gastric cancer cells and subcutaneous xenografts. Although JS‐K triggered significant NO release, NO scavenging had no effect on JS‐K‐induced toxicity in vivo and in vitro. Therefore, ROS, but not NO, mediated the anti‐cancer effects of JS‐K in gastric cancer. We also explored the potential mechanism of JS‐K‐induced ROS accumulation and found that JS‐K significantly down‐regulated the core proteins of mitochondria respiratory chain (MRC) complex I and IV, resulting in the reduction of MRC complex I and IV activity and the subsequent ROS production. Moreover, JS‐K inhibited the expression of antioxidant enzymes, including copper‐zinc‐containing superoxide dismutase (SOD1) and catalase, which contributed to the decrease of antioxidant enzymes activity and the subsequent inhibition of ROS clearance. Therefore, JS‐K may target MRC complex I and IV and antioxidant enzymes to exert ROS‐dependent anti‐cancer function, leading to the potential usage of JS‐K in the prevention and treatment of gastric cancer.
Collapse
Affiliation(s)
- Xudong Zhao
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Aizhen Cai
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zheng Peng
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wenquan Liang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hongqing Xi
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Peiyu Li
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Guozhu Chen
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Jiyun Yu
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Lin Chen
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
13
|
Dong SC, Sha HH, Xu XY, Hu TM, Lou R, Li H, Wu JZ, Dan C, Feng J. Glutathione S-transferase π: a potential role in antitumor therapy. Drug Des Devel Ther 2018; 12:3535-3547. [PMID: 30425455 PMCID: PMC6204874 DOI: 10.2147/dddt.s169833] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Glutathione S-transferase π (GSTπ) is a Phase II metabolic enzyme that is an important facilitator of cellular detoxification. Traditional dogma asserts that GSTπ functions to catalyze glutathione (GSH)-substrate conjunction to preserve the macromolecule upon exposure to oxidative stress, thus defending cells against various toxic compounds. Over the past 20 years, abnormal GSTπ expression has been linked to the occurrence of tumor resistance to chemotherapy drugs, demonstrating that this enzyme possesses functions beyond metabolism. This revelation reveals exciting possibilities in the realm of drug discovery, as GSTπ inhibitors and its prodrugs offer a feasible strategy in designing anticancer drugs with the primary purpose of reversing tumor resistance. In connection with the authors' current research, we provide a review on the biological function of GSTπ and current developments in GSTπ-targeting drugs, as well as the prospects of future strategies.
Collapse
Affiliation(s)
- Shu-Chen Dong
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Huan-Huan Sha
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Xiao-Yue Xu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Tian-Mu Hu
- Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Rui Lou
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Huizi Li
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Jian-Zhong Wu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Chen Dan
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Jifeng Feng
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| |
Collapse
|
14
|
Effect of mitochondrial cytochrome c release and its redox state on the mitochondrial-dependent apoptotic cascade reaction and tenderization of yak meat during postmortem aging. Food Res Int 2018; 111:488-497. [DOI: 10.1016/j.foodres.2018.05.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/16/2018] [Accepted: 05/19/2018] [Indexed: 12/31/2022]
|
15
|
Olajide OJ, Fatoye JO, Idowu OF, Ilekoya D, Gbadamosi IT, Gbadamosi MT, Asogwa NT. Reversal of behavioral decline and neuropathology by a complex vitamin supplement involves modulation of key neurochemical stressors. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:120-131. [PMID: 30005307 DOI: 10.1016/j.etap.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Metal ions are crucial for normal neurochemical signaling and perturbations in their homeostasis have been associated with neurodegenerative processes. Hypothesizing that in vivo modulation of key neurochemical processes including metal ion regulation (by transferrin receptor-1: TfR-1) in cells can improve disease outcome, we investigated the efficacy of a complex vitamin supplement (CVS) containing B-vitamins and ascorbic acid in preventing/reversing behavioral decline and neuropathology in rats. Wistar rats (eight weeks-old) were assigned into five groups (n = 8), including controls and those administered CVS (400 mg/kg/day) for two weeks before or after AlCl3 (100 mg/kg)-induced neurotoxicity. Following behavioral assessments, prefrontal cortex (PFC) and hippocampus were prepared for biochemical analyses, histology and histochemistry. CVS significantly reversed reduction of exploratory/working memory, frontal-dependent motor deficits, cognitive decline, memory dysfunction and anxiety. These correlated with CVS-dependent modulation of TfP-1 expression that were accompanied by significant reversal of neural oxidative stress in expressed superoxide dismutase, nitric oxide, catalase, glutathione peroxidase and malondialdehyde. Furthermore, CVS inhibited neural bioenergetics dysfunction, with increased labelling of glucokinase within PFC and hippocampus correlating with increased glucose-6-phosphate dehydrogenase and decreased lactate dehydrogenase expressions. These relates to inhibition of over-expressed acetylcholinesterase and increased total protein synthesis. Histological and Nissl staining of thin sections corroborated roles of CVS in reversing AlCl3-induced neuropathology. Summarily, we showed the role of CVS in normalizing important neurochemical molecules linking concurrent progression of oxidative stress, bioenergetics deficits, synaptic dysfunction and cellular hypertrophy during neurodegeneration.
Collapse
Affiliation(s)
- Olayemi Joseph Olajide
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Nigeria.
| | - John Oluwasegun Fatoye
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Nigeria
| | - Oluwakunmi Folashade Idowu
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Nigeria
| | - Damilola Ilekoya
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Nigeria
| | - Ismail Temitayo Gbadamosi
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Nigeria
| | | | - Nnaemeka Tobechukwu Asogwa
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Nigeria; Central Research Laboratories Ltd, 132b University Road, Ilorin, Nigeria
| |
Collapse
|
16
|
Huang Z, Liu L, Chen J, Cao M, Wang J. JS-K as a nitric oxide donor induces apoptosis via the ROS/Ca 2+/caspase-mediated mitochondrial pathway in HepG2 cells. Biomed Pharmacother 2018; 107:1385-1392. [PMID: 30257354 DOI: 10.1016/j.biopha.2018.08.142] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/16/2018] [Accepted: 08/25/2018] [Indexed: 02/07/2023] Open
Abstract
JS-K, (O2-(2, 4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen 1-ium-1, 2-diolate), is a novel diazeniumdiolate-based nitric oxide donor prodrug. The present study investigated the relationship between reactive oxygen species (ROS) elevation, Ca2+ overload and mitochondrial disruption in JS-K-induced apoptosis. JS-K could significantly inhibit cell growth and induce apoptosis in a dose-dependent manner. Meanwhile, JS-K caused the accumulation of ROS, overload of Ca2+, decrease of mitochondrial membrane potential, release of cytochrome c (Cyt c) from mitochondria to the cytoplasm, increase of Bax-to-Bcl-2 ratio and activation of caspase- 9/3. NAC (an antioxidant) or BAPTA (an intracellular Ca2+ chelator) could partially reverse the above events, while BAPTA had little effect on the levels of ROS. Furthermore, pre-treatment with Carboxy-PTIO (a NO scavenger) significantly blocked the increasing of ROS, cytosolic Ca2+ and reversed the loss of mitochondrial membrane potential in JS-K-induced apoptosis. Taken together, the results suggested that NO released from JS-K could significantly induce HepG2 cell apoptosis through a ROS/Ca2+/caspase-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Zile Huang
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| | - Ling Liu
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang 471003, Henan Province, China.
| | - Jingjing Chen
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| | - Mengyao Cao
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| | - Jiangang Wang
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang 471003, Henan Province, China
| |
Collapse
|
17
|
Zhang XY, Elfarra AA. Toxicity mechanism-based prodrugs: glutathione-dependent bioactivation as a strategy for anticancer prodrug design. Expert Opin Drug Discov 2018; 13:815-824. [PMID: 30101640 DOI: 10.1080/17460441.2018.1508207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION 6-Mercaptopurine (6-MP) and 6-thioguanine (6-TG), two anticancer drugs, have high systemic toxicity due to a lack of target specificity. Therefore, increasing target selectivity should improve drug safety. Areas covered: The authors examined the hypothesis that new prodrug designs based upon mechanisms of kidney-selective toxicity of trichloroethylene would reduce systemic toxicity and improve selectivity to kidney and tumor cells. Two approaches specifically were investigated. The first approach was based upon bioactivation of trichloroethylene-cysteine S-conjugate by renal cysteine S-conjugate β-lyases. The prodrugs obtained were kidney-selective but exhibited low turnover rates. The second approach was based on the toxic mechanism of trichloroethylene-cysteine S-conjugate sulfoxide, a Michael acceptor that undergoes rapid addition-elimination reactions with biological thiols. Expert opinion: Glutathione-dependent Michael addition-elimination reactions appear to be an excellent strategy to design highly efficient anticancer drugs. Targeting glutathione could be a promising approach for the development of anticancer prodrugs because cancer cells usually upregulate glutathione biosynthesis and/or glutathione S-transferases expression.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- a Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Public Health , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Adnan A Elfarra
- b Department of Comparative Biosciences and the Molecular and Environmental Toxicology Center , University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
18
|
Heckler M, Osterberg N, Guenzle J, Thiede-Stan NK, Reichardt W, Weidensteiner C, Saavedra JE, Weyerbrock A. The nitric oxide donor JS-K sensitizes U87 glioma cells to repetitive irradiation. Tumour Biol 2017; 39:1010428317703922. [PMID: 28653883 DOI: 10.1177/1010428317703922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
As a potent radiosensitizer nitric oxide (NO) may be a putative adjuvant in the treatment of malignant gliomas which are known for their radio- and chemoresistance. The NO donor prodrug JS-K (O2-(2.4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1,2-diolate) allows cell-type specific intracellular NO release via enzymatic activation by glutathione-S-transferases overexpressed in glioblastoma multiforme. The cytotoxic and radiosensitizing efficacy of JS-K was assessed in U87 glioma cells in vitro focusing on cell proliferation, induction of DNA damage, and cell death. In vivo efficacy of JS-K and repetitive irradiation were investigated in an orthotopic U87 xenograft model in mice. For the first time, we could show that JS-K acts as a potent cytotoxic and radiosensitizing agent in U87 cells in vitro. This dose- and time-dependent effect is due to an enhanced induction of DNA double-strand breaks leading to mitotic catastrophe as the dominant form of cell death. However, this potent cytotoxic and radiosensitizing effect could not be confirmed in an intracranial U87 xenograft model, possibly due to insufficient delivery into the brain. Although NO donor treatment was well tolerated, neither a retardation of tumor growth nor an extended survival could be observed after JS-K and/or radiotherapy.
Collapse
Affiliation(s)
- Max Heckler
- 1 Department of Neurosurgery, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nadja Osterberg
- 1 Department of Neurosurgery, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jessica Guenzle
- 1 Department of Neurosurgery, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,2 Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nina Kristin Thiede-Stan
- 1 Department of Neurosurgery, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Reichardt
- 3 German Cancer Consortium (DKTK), Heidelberg, Germany.,4 German Cancer Research Center (DKFZ), Heidelberg, Germany.,5 Department of Radiology-Medical Physics, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Weidensteiner
- 5 Department of Radiology-Medical Physics, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joseph E Saavedra
- 6 Cancer and Inflammation Program, National Cancer Institute (NCI) at Frederick, Frederick, MD, USA
| | - Astrid Weyerbrock
- 1 Department of Neurosurgery, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Qiu M, Ke L, Zhang S, Zeng X, Fang Z, Liu J. JS-K, a GST-activated nitric oxide donor prodrug, enhances chemo-sensitivity in renal carcinoma cells and prevents cardiac myocytes toxicity induced by Doxorubicin. Cancer Chemother Pharmacol 2017; 80:275-286. [DOI: 10.1007/s00280-017-3359-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/07/2017] [Indexed: 01/10/2023]
|
20
|
Liu Z, Li G, Gou Y, Xiao D, Luo G, Saavedra JE, Liu J, Wang H. JS-K, a nitric oxide prodrug, induces DNA damage and apoptosis in HBV-positive hepatocellular carcinoma HepG2.2.15 cell. Biomed Pharmacother 2017; 92:989-997. [PMID: 28605880 DOI: 10.1016/j.biopha.2017.05.141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 11/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most important cause of cancer-related death, and 85% of HCC is caused by chronic HBV infection, the prognosis of patients and the reduction of HBV DNA levels remain unsatisfactory. JS-K, a nitric oxide-releasing diazeniumdiolates, is effective against various tumors, but little is known on its effects on HBV positive HCC. We found that JS-K reduced the expression of HBsAg and HBeAg in HBV-positive HepG2.2.15 cells. This study aimed to further examine anti-tumor effects of JS-K on HepG2.2.15 cells. The MTT assay and colony forming assay were used to study the cell growth inhibition of JS-K; scratch assay and transwell assay were performed to detect cell migration. The cell cycle was detected by flow cytometry. The immunofluorescence, flow cytometry analysis, and western blot were used to study DNA damage and cell apoptosis. JS-K inhibited HepG2.2.15 cell growth in a dose-dependent manner, suppressed cell colony formation and migration, arrested cells gather in the G2 phase. JS-K (1-20μM) increased the expression of DNA damage-associated protein phosphorylation H2AX (γH2AX), phosphorylation of checkpoint kinase 1 (p-Chk1), phosphorylation of checkpoint kinase 2 (p-Chk2), ataxia-telangiectasia mutated (ATM), phosphorylation of ataxia-telangiectasia mutated rad3-related (p-ATR) and apoptotic-associated proteins cleaved caspase-3, cleaved caspase-7, cleaved poly ADP-ribose polymerase (cleaved PARP). The study demonstrated JS-K is effective against HBV-positive HepG2.2.15 cells, the mechanisms are not only related to inhibition of HBsAg and HBeAg secretion, but also related with induction of DNA damage and apoptosis. JS-K is a promising anti-cancer candidate against HBV-positive HCC.
Collapse
Affiliation(s)
- Zhengyun Liu
- Key Laboratory of infectious disease, Provincial Department of Education, Zunyi Medical College Guizhou, 563000 China; Research Center for Medicine and Biology, Zunyi Medical College, Guizhou, 563000 China; Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, 563000 China
| | - Guangmin Li
- Department of emergency, Affiliated Hospital of Zunyi Medical College, China
| | - Ying Gou
- Key Laboratory of infectious disease, Provincial Department of Education, Zunyi Medical College Guizhou, 563000 China; Research Center for Medicine and Biology, Zunyi Medical College, Guizhou, 563000 China; Department of Microbiology, Zunyi Medical College, Guizhou, 563000 China
| | - Dongyan Xiao
- Key Laboratory of infectious disease, Provincial Department of Education, Zunyi Medical College Guizhou, 563000 China; Research Center for Medicine and Biology, Zunyi Medical College, Guizhou, 563000 China; Department of Microbiology, Zunyi Medical College, Guizhou, 563000 China
| | - Guo Luo
- Key Laboratory of infectious disease, Provincial Department of Education, Zunyi Medical College Guizhou, 563000 China; Research Center for Medicine and Biology, Zunyi Medical College, Guizhou, 563000 China
| | | | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, 563000 China
| | - Huan Wang
- Key Laboratory of infectious disease, Provincial Department of Education, Zunyi Medical College Guizhou, 563000 China; Research Center for Medicine and Biology, Zunyi Medical College, Guizhou, 563000 China; Department of Microbiology, Zunyi Medical College, Guizhou, 563000 China.
| |
Collapse
|
21
|
Dong R, Wang X, Wang H, Liu Z, Liu J, Saavedra JE. Effects of JS-K, a novel anti-cancer nitric oxide prodrug, on gene expression in human hepatoma Hep3B cells. Biomed Pharmacother 2017; 88:367-373. [DOI: 10.1016/j.biopha.2017.01.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 11/30/2022] Open
|
22
|
Ben-Lulu S, Ziv T, Weisman-Shomer P, Benhar M. Nitrosothiol-Trapping-Based Proteomic Analysis of S-Nitrosylation in Human Lung Carcinoma Cells. PLoS One 2017; 12:e0169862. [PMID: 28081246 PMCID: PMC5230776 DOI: 10.1371/journal.pone.0169862] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/22/2016] [Indexed: 11/30/2022] Open
Abstract
Nitrosylation of cysteines residues (S-nitrosylation) mediates many of the cellular effects of nitric oxide in normal and diseased cells. Recent research indicates that S-nitrosylation of certain proteins could play a role in tumor progression and responsiveness to therapy. However, the protein targets of S-nitrosylation in cancer cells remain largely unidentified. In this study, we used our recently developed nitrosothiol trapping approach to explore the nitrosoproteome of human A549 lung carcinoma cells treated with S-nitrosocysteine or pro-inflammatory cytokines. Using this approach, we identified about 300 putative nitrosylation targets in S-nitrosocysteine-treated A549 cells and approximately 400 targets in cytokine-stimulated cells. Among the more than 500 proteins identified in the two screens, the majority represent novel targets of S-nitrosylation, as revealed by comparison with publicly available nitrosoproteomic data. By coupling the trapping procedure with differential thiol labeling, we identified nearly 300 potential nitrosylation sites in about 150 proteins. The proteomic results were validated for several proteins by an independent approach. Bioinformatic analysis highlighted important cellular pathways that are targeted by S-nitrosylation, notably, cell cycle and inflammatory signaling. Taken together, our results identify new molecular targets of nitric oxide in lung cancer cells and suggest that S-nitrosylation may regulate signaling pathways that are critically involved in lung cancer progression.
Collapse
Affiliation(s)
- Shani Ben-Lulu
- Smoler Proteomics Center and Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomics Center and Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Pnina Weisman-Shomer
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Moran Benhar
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
23
|
Zou Y, Yan C, Knaus EE, Zhang H, Zhang Y, Huang Z. Discovery of phosphorodiamidate mustard-based O2-phosphorylated diazeniumdiolates with potent anticancer activity. RSC Adv 2017. [DOI: 10.1039/c7ra00401j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diazeniumdiolates are an important class of NO donors. Herein, we describe the design, synthesis and biological evaluation of a group of phosphorodiamidate mustard-based O2-phosphorylated diazeniumdiolates.
Collapse
Affiliation(s)
- Yu Zou
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Jiangsu Key Laboratory of Drug Screening
- China Pharmaceutical University
- Nanjing 210009
| | - Chang Yan
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Jiangsu Key Laboratory of Drug Screening
- China Pharmaceutical University
- Nanjing 210009
| | - Edward E. Knaus
- Faculty of Pharmacy and Pharmaceutical Sciences
- University of Alberta
- Edmonton
- Canada
| | - Huibin Zhang
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Jiangsu Key Laboratory of Drug Screening
- China Pharmaceutical University
- Nanjing 210009
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Jiangsu Key Laboratory of Drug Screening
- China Pharmaceutical University
- Nanjing 210009
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Jiangsu Key Laboratory of Drug Screening
- China Pharmaceutical University
- Nanjing 210009
| |
Collapse
|
24
|
Qiu M, Chen L, Tan G, Ke L, Zhang S, Chen H, Liu J. JS-K promotes apoptosis by inducing ROS production in human prostate cancer cells. Oncol Lett 2016; 13:1137-1142. [PMID: 28454225 PMCID: PMC5403315 DOI: 10.3892/ol.2016.5535] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/28/2016] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species (ROS) are chemical species that alter redox status, and are responsible for inducing carcinogenesis. The purpose of the present study was to assess the effects of the glutathione S transferase-activated nitric oxide donor prodrug, JS-K, on ROS accumulation and on proliferation and apoptosis in human prostate cancer cells. Cell proliferation and apoptosis, ROS accumulation and the activation of the mitochondrial signaling pathway were measured. The results demonstrated that JS-K may inhibit prostate cancer cell growth in a dose- and time-dependent manner, and induce ROS accumulation and apoptosis in a dose-dependent manner. With increasing concentrations of JS-K, expression of pro-apoptotic proteins increased, but Bcl-2 expression decreased. Additionally, the antioxidant N-acetylcysteine reversed JS-K-induced cell apoptosis; conversely, the pro-oxidant glutathione disulfide exacerbated JS-K-induced apoptosis. In conclusion, the data suggest that JS-K induces prostate cancer cell apoptosis by increasing ROS levels.
Collapse
Affiliation(s)
- Mingning Qiu
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Lieqian Chen
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Guobin Tan
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Longzhi Ke
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Sai Zhang
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Hege Chen
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Jianjun Liu
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
25
|
Sinha BK. Nitric oxide: Friend or Foe in Cancer Chemotherapy and Drug Resistance: A Perspective. ACTA ACUST UNITED AC 2016; 8:244-251. [PMID: 31844487 DOI: 10.4172/1948-5956.1000421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A successful treatment of cancers in the clinic has been difficult to achieve because of the emergence of drug resistant tumor cells. While various approaches have been tried to overcome multi-drug resistance, it has remained a major road block in achieving complete success in the clinic. Extensive research has identified various mechanisms, including overexpression of P-glycoprotein 170, modifications in activating or detoxification enzymes (phase I and II enzymes), and mutation and/or decreases in target enzymes in cancer cells. However, nitric oxide and/or nitric oxide-related species have not been considered an important player in cancer treatment and or drug resistance. Here, we examine the significance of nitric oxide in the treatment and resistance mechanisms of various anticancer drugs. Furthermore, we describe the significance of recently reported effects of nitric oxide on topoisomerases and the development of resistance to topoisomerase-poisons in tumor cells.
Collapse
Affiliation(s)
- Birandra K Sinha
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| |
Collapse
|
26
|
Ding C, Fan X, Wu G. Peroxiredoxin 1 - an antioxidant enzyme in cancer. J Cell Mol Med 2016; 21:193-202. [PMID: 27653015 PMCID: PMC5192802 DOI: 10.1111/jcmm.12955] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/17/2016] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins (PRDXs), a ubiquitous family of redox‐regulating proteins, are reported of potential to eliminate various reactive oxygen species (ROS). As a major member of the antioxidant enzymes, PRDX1 can become easily over‐oxidized on its catalytically active cysteine induced by a variety of stimuli in vitro and in vivo. In nucleus, oligomeric PRDX1 directly associates with p53 or transcription factors such as c‐Myc, NF‐κB and AR, and thus affects their bioactivities upon gene regulation, which in turn induces or suppresses cell death. Additionally, PRDX1 in cytoplasm has anti‐apoptotic potential through direct or indirect interactions with several ROS‐dependent (redox regulation) effectors, including ASK1, p66Shc, GSTpi/JNK and c‐Abl kinase. PRDX1 is proven to be a versatile molecule regulating cell growth, differentiation and apoptosis. Recent studies have found that PRDX1 and/or PRDX1‐regulated ROS‐dependent signalling pathways play an important role in the progression and metastasis of human tumours, particularly in breast, oesophageal and lung cancers. In this paper, we review the structure, effector functions of PRDX1, its role in cancer and the pivotal role of ROS in anticancer treatment.
Collapse
Affiliation(s)
- Chenbo Ding
- Medical School of Southeast University, Nanjing, China
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing, China
| | - Guoqiu Wu
- Medical School of Southeast University, Nanjing, China.,Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
27
|
Wu SC, Lu CY, Chen YL, Lo FC, Wang TY, Chen YJ, Yuan SS, Liaw WF, Wang YM. Water-Soluble Dinitrosyl Iron Complex (DNIC): a Nitric Oxide Vehicle Triggering Cancer Cell Death via Apoptosis. Inorg Chem 2016; 55:9383-92. [DOI: 10.1021/acs.inorgchem.6b01562] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Shou-Cheng Wu
- Department of Chemistry and Frontier Research Center on Fundamental
and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chung-Yen Lu
- Department of Chemistry and Frontier Research Center on Fundamental
and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi-Lin Chen
- Department of Chemistry and Frontier Research Center on Fundamental
and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Feng-Chun Lo
- Department of Chemistry and Frontier Research Center on Fundamental
and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ting-Yin Wang
- Department of Chemistry and Frontier Research Center on Fundamental
and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Jen Chen
- Department
of Biological Science and Technology, Institute of Molecular Medicine
and Bioengineering, National Chiao Tung University, Hsinchu 30013, Taiwan
| | - Shyng-Shiou Yuan
- Translational Research
Center, Department of Medical Research, and Department of Obstetrics
and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry and Frontier Research Center on Fundamental
and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yun-Ming Wang
- Department
of Biological Science and Technology, Institute of Molecular Medicine
and Bioengineering, National Chiao Tung University, Hsinchu 30013, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
28
|
Liu L, Wang D, Wang J, Wang S. The Nitric Oxide Prodrug JS-K Induces Ca(2+)-Mediated Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells. J Biochem Mol Toxicol 2015; 30:192-9. [PMID: 26616367 DOI: 10.1002/jbt.21778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 01/28/2023]
Abstract
Hepatocellular carcinoma is one of the most common and deadly forms of human malignancies. JS-K, O(2)-(2, 4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1, 2-diolate, has the ability to induce apoptosis of tumor cell lines. In the present study, JS-K inhibited the proliferation of HepG2 cells in a time- and concentration-dependent manner and significantly induced apoptosis. JS-K enhanced the ratio of Bax-to-Bcl-2, released of cytochrome c (Cyt c) from mitochondria and the activated caspase-9/3. JS-K caused an increasing cytosolic Ca(2+) and the loss of mitochondrial membrane potential. Carboxy-PTIO (a NO scavenger) and BAPTA-AM (an intracellular Ca(2+) chelator) significantly blocked an increasing cytosolic Ca(2+) in JS-K-induced HepG2 cells apoptosis, especially Carboxy-PTIO. Meanwhile, Carboxy-PTIO and BAPTA-AM treatment both attenuate JS-K-induced apoptosis through upregulation of Bcl-2, downregulation of Bax, reduction of Cyt c release from mitochondria to cytoplasm and inactivation of caspase-9/3. In summary, JS-K induced HepG2 cells apoptosis via Ca(2+)/caspase-3-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Ling Liu
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.
| | - Dongmei Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Jiangang Wang
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Shuying Wang
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| |
Collapse
|
29
|
Qiu M, Chen L, Tan G, Ke L, Zhang S, Chen H, Liu J. A reactive oxygen species activation mechanism contributes to JS-K-induced apoptosis in human bladder cancer cells. Sci Rep 2015; 5:15104. [PMID: 26458509 PMCID: PMC4602210 DOI: 10.1038/srep15104] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/16/2015] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) and cellular oxidant stress are regulators of cancer cells. The alteration of redox status, which is induced by increased generation of ROS, results in increased vulnerability to oxidative stress. The aim of this study is to investigate the influence of O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, C13H16N6O8) on proliferation and apoptosis in bladder cancer cells and explored possible ROS-related mechanisms. Our results indicated that JS-K could suppress bladder cancer cell proliferation in a concentration- and time-dependent manner and induce apoptosis and ROS accumulation in a concentration-dependent manner. With increasing concentrations of JS-K, expression of proteins that are involved in cell apoptosis increased in a concentration-dependent manner. Additionally, the antioxidant N-acetylcysteine (NAC) reversed JS-K-induced cell apoptosis; conversely, the prooxidant oxidized glutathione (GSSG) exacerbated JS-K-induced cell apoptosis. Furthermore, we found that nitrites, which were generated from the oxidation of JS-K-released NO, induced apoptosis in bladder cancer cells to a lower extent through the ROS-related pathway. In addition, JS-K was shown to enhance the chemo-sensitivity of doxorubicin in bladder cancer cells. Taken together, the data suggest that JS-K-released NO induces bladder cancer cell apoptosis by increasing ROS levels, and nitrites resulting from oxidation of NO have a continuous apoptosis-inducing effect.
Collapse
Affiliation(s)
- Mingning Qiu
- Laboratory of Urology, Guangdong Medical University, Zhanjiang 524001, China
| | - Lieqian Chen
- Laboratory of Urology, Guangdong Medical University, Zhanjiang 524001, China
| | - Guobin Tan
- Laboratory of Urology, Guangdong Medical University, Zhanjiang 524001, China
| | - Longzhi Ke
- Laboratory of Urology, Guangdong Medical University, Zhanjiang 524001, China
| | - Sai Zhang
- Laboratory of Urology, Guangdong Medical University, Zhanjiang 524001, China
| | - Hege Chen
- Laboratory of Urology, Guangdong Medical University, Zhanjiang 524001, China
| | - Jianjun Liu
- Laboratory of Urology, Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
30
|
CYP3A5 mediates bioactivation and cytotoxicity of tetrandrine. Arch Toxicol 2015; 90:1737-48. [DOI: 10.1007/s00204-015-1584-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
|
31
|
Zhang R, Yang J, Zhou Y, Shami PJ, Kopeček J. N-(2-Hydroxypropyl)methacrylamide Copolymer-Drug Conjugates for Combination Chemotherapy of Acute Myeloid Leukemia. Macromol Biosci 2015. [PMID: 26222892 DOI: 10.1002/mabi.201500193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
There is a need for new treatment strategies of acute myeloid leukemia (AML). In this study, four different drugs, including cytarabine, daunorubicin, GDC-0980, and JS-K, were investigated in vitro for the two-drug combinations treatment of AML. The results revealed that cytarabine and GDC-0980 had the strongest synergism. In addition, cell cycle analysis was conducted to investigate the effect of the different combinations on cell division. For future in vivo application, N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-cytarabine and GDC-0980 conjugates were synthesized, respectively. In vitro studies demonstrated that both conjugates had potent cytotoxicity and their combination also showed strong synergy, suggesting a potential chemotherapeutic strategy for future AML treatment.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, USA
| | - Yan Zhou
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, USA
| | - Paul J Shami
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, USA.,Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, USA. .,Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
32
|
Effect of hesperidin on mice bearing Ehrlich solid carcinoma maintained on doxorubicin. Tumour Biol 2015; 36:9267-75. [DOI: 10.1007/s13277-015-3655-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/09/2015] [Indexed: 12/26/2022] Open
|
33
|
PABA/NO lead optimization: Improved targeting of cytotoxicity to glutathione S-transferase P1-overexpressing cancer cells. Bioorg Med Chem 2015; 23:4980-4988. [PMID: 26043946 DOI: 10.1016/j.bmc.2015.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/29/2015] [Accepted: 05/10/2015] [Indexed: 11/22/2022]
Abstract
PABA/NO [O(2)-{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl} 1-(N,N-dimethylamino) diazen-1-ium-1,2-diolate] is a nitric oxide (NO)-releasing arylating agent designed to be selectively activated by reaction with glutathione (GSH) on catalysis by glutathione S-transferase P1 (GSTP1), an enzyme frequently overexpressed in cancer cells. PABA/NO has proven active in several cancer models in vitro and in vivo, but its tendency to be metabolized via a variety of pathways, some that generate inactive metabolites and hydrolysis products, limits its potential as a drug. Here we show that a simple replacement of cyano for nitro at the 4 position to give compound 4b ('p-cyano-PABA/NO') has the dual effect of slowing the undesired side reactions while enhancing the proportion of NO release and arylating activity on catalysis by GSTP1. Compound 4b showed increased resistance to hydrolysis and uncatalyzed reaction with GSH, along with a more favorable product distribution in the presence of GSTP1. It also showed significant proapoptotic activity. The data suggest p-cyano-PABA/NO to be a more promising prodrug than PABA/NO, with better selectivity toward cancer cells.
Collapse
|
34
|
Kaur I, Kosak KM, Terrazas M, Herron JN, Kern SE, Boucher KM, Shami PJ. Effect of a Pluronic(®) P123 formulation on the nitric oxide-generating drug JS-K. Pharm Res 2014; 32:1395-406. [PMID: 25330743 DOI: 10.1007/s11095-014-1542-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE O(2)-(2,4-dinitrophenyl)1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] or JS-K is a nitric oxide-producing prodrug of the arylated diazeniumdiolate class with promising anti-tumor activity. JS-K has challenging solubility and stability properties. We aimed to characterize and compare Pluronic(®) P123-formulated JS-K (P123/JS-K) with free JS-K. METHODS We determined micelle size, shape, and critical micelle concentration of Pluronic(®) P123. Efficacy was evaluated in vitro using HL-60 and U937 cells and in vivo in a xenograft in NOD/SCID IL2Rγ (null) mice using HL-60 cells. We compared JS-K and P123/JS-K stability in different media. We also compared plasma protein binding of JS-K and P123/JS-K. We determined the binding and Stern Volmer constants, and thermodynamic parameters. RESULTS Spherical P123/JS-K micelles were smaller than blank P123. P123/JS-K formulation was more stable in buffered saline, whole blood, plasma and RPMI media as compared to free JS-K. P123 affected the protein binding properties of JS-K. In vitro it was as efficacious as JS-K alone when tested in HL-60 and U937 cells and in vivo greater tumor regression was observed for P123/JS-K treated NOD/SCID IL2Rγ (null) mice when compared to free JS-K-treated NOD/SCID IL2Rγ (null) mice. CONCLUSIONS Pluronic(®) P123 solubilizes, stabilizes and affects the protein binding characteristics of JS-K. P123/JS-K showed more in vivo anti-tumor activity than free JS-K.
Collapse
Affiliation(s)
- Imit Kaur
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Site-directed delivery of nitric oxide to cancers. Nitric Oxide 2014; 43:8-16. [PMID: 25124221 DOI: 10.1016/j.niox.2014.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 01/28/2023]
Abstract
Nitric oxide (NO) is a reactive gaseous free radical which mediates numerous biological processes. At elevated levels, NO is found to be toxic to cancers and hence, a number of strategies for site-directed delivery of NO to cancers are in development during the past two decades. More recently, the focus of research has been to, in conjunction with other cancer drugs deliver NO to cancers for its secondary effects including inhibition of cellular drug efflux pumps. Among the various approaches toward site-selective delivery of exogenous NO sources, enzyme activated nitric oxide donors belonging to the diazeniumdiolate category afford unique advantages including exquisite control of rates of NO generation and selectivity of NO production. For this prodrug approach, enzymes including esterase, glutathione/glutathione S-transferase, DT-diaphorase, and nitroreductase are utilized. Here, we review the design and development of various approaches to enzymatic site-directed delivery of NO to cancers and their potential.
Collapse
|
36
|
Dharmaraja AT, Ravikumar G, Chakrapani H. Arylboronate Ester Based Diazeniumdiolates (BORO/NO), a Class of Hydrogen Peroxide Inducible Nitric Oxide (NO) Donors. Org Lett 2014; 16:2610-3. [DOI: 10.1021/ol5010643] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Allimuthu T. Dharmaraja
- Indian Institute of Science
Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Govindan Ravikumar
- Indian Institute of Science
Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| | - Harinath Chakrapani
- Indian Institute of Science
Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India
| |
Collapse
|
37
|
Maciag AE, Holland RJ, Kim Y, Kumari V, Luthers C, Sehareen WS, Biswas D, Morris NL, Ji X, Anderson LM, Saavedra JE, Keefer LK. Nitric oxide (NO) releasing poly ADP-ribose polymerase 1 (PARP-1) inhibitors targeted to glutathione S-transferase P1-overexpressing cancer cells. J Med Chem 2014; 57:2292-302. [PMID: 24521039 PMCID: PMC3983374 DOI: 10.1021/jm401550d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Indexed: 11/29/2022]
Abstract
We report the antitumor effects of nitric oxide (NO) releasing derivatives of the PARP-1 inhibitor olaparib (1). Compound 5b was prepared by coupling the carboxyl group of 3b and the free amino group of arylated diazeniumdiolated piperazine 4. Analogue 5a has the same structure except that the F is replaced by H. Compound 13 is the same as 5b except that a Me2N-N(O)═NO- group was added para and ortho to the nitro groups of the dinitrophenyl ring. The resulting prodrugs are activated by glutathione in a reaction accelerated by glutathione S-transferase P1 (GSTP1), an enzyme frequently overexpressed in cancers. This metabolism generates NO plus a PARP-1 inhibitor simultaneously, consuming reducing equivalents, leading to DNA damage concomitant with inhibition of DNA repair, and in the case of 13 inducing cross-linking glutathionylation of proteins. Compounds 5b and 13 reduced the growth rates of A549 human lung adenocarcinoma xenografts with no evidence of systemic toxicity.
Collapse
Affiliation(s)
- Anna E. Maciag
- Chemical
Biology Laboratory, Leidos Biomedical Research,
Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ryan J. Holland
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Youseung Kim
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Vandana Kumari
- Macromolecular
Crystallography Laboratory, National Cancer
Institute, Frederick, Maryland 21702, United
States
| | - Christina
E. Luthers
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Waheed S. Sehareen
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Debanjan Biswas
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Nicole L. Morris
- Laboratory
Animal Sciences Program, Leidos Biomedical
Research, Inc., Frederick National Laboratory for Cancer
Research, Frederick, Maryland 21702, United States
| | - Xinhua Ji
- Macromolecular
Crystallography Laboratory, National Cancer
Institute, Frederick, Maryland 21702, United
States
| | - Lucy M. Anderson
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Joseph E. Saavedra
- Chemical
Biology Laboratory, Leidos Biomedical Research,
Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Larry K. Keefer
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
38
|
Imbesi S, Musolino C, Allegra A, Saija A, Morabito F, Calapai G, Gangemi S. Oxidative stress in oncohematologic diseases: an update. Expert Rev Hematol 2013; 6:317-25. [PMID: 23782085 DOI: 10.1586/ehm.13.21] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An increased risk of cancer in various organs has been related to oxidative stress and several studies have revealed the mechanism by which continued oxidative stress can lead to chronic inflammation, which in turn could mediate most chronic diseases including cancer. A variety of transcription factors may be activated in consequence of oxidative stress, leading to the expression of over 500 different genes, including those for growth factors, inflammatory cytokines, chemokines, cell cycle regulatory molecules and anti-inflammatory molecules. In this review, the data related to the action of oxidative stress on the onset of various oncohematologic diseases are summarized, thus bringing together some of the latest information available on the pathogenetic role of oxidative stress in cancer. The authors evaluate the most recent publications on this topic, and, in particular, show the newest evidence of a relationship between oxidative stress and hematological malignancies, such as chronic lymphocytic leukemia, Hodgkin's lymphoma, multiple myeloma and chronic Ph-negative myeloproliferative diseases. A separate section is devoted to the implications of a change of oxidative stress in patients undergoing bone marrow transplantation. Finally, particular attention is given to the new markers of oxidative stress, such as carbonyl groups, advanced glycation end products, advanced oxidation protein products and S-nitrosylated proteins, which are certainly more stable, reliable, cheaper and more easily identifiable than those already used in clinical practice. New approaches that aim to evaluate subcellular and microenvironment redox potential may be useful in developing cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Selene Imbesi
- Department of Clinical & Experimental Medicine, School & Unit of Allergy and Clinical Immunology, University of Messina, Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
39
|
Ahmed MB, Nabih ES, Louka ML, Abdel Motaleb FI, El Sayed MA, Elwakiel HM. Evaluation of nestin in lung adenocarcinoma: relation to VEGF and Bcl-2. Biomarkers 2013; 19:29-33. [PMID: 24283983 DOI: 10.3109/1354750x.2013.863975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Nestin is a marker of multipotent precursor cells that is up regulated in cancer. OBJECTIVE To explore its diagnostic role and its relationship to vascular endothelial growth factor (VEGF) and Bcl-2 in lung adenocarcinoma. MATERIALS AND METHODS Evaluation of nestin expression in lung biopsies by real-time PCR and serum VEGF and Bcl-2 by ELISA in 27 adenocarcinoma patients and 15 control subjects. RESULTS Nestin was significantly higher in lung adenocarcinoma patients especially with advanced grade and stage and it was significantly correlated to VEGF and Bcl-2. CONCLUSION Nestin can be considered as a potential diagnostic marker in lung adenocarcinoma.
Collapse
|
40
|
Sharma K, Sengupta K, Chakrapani H. Nitroreductase-activated nitric oxide (NO) prodrugs. Bioorg Med Chem Lett 2013; 23:5964-7. [DOI: 10.1016/j.bmcl.2013.08.066] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/25/2013] [Accepted: 08/14/2013] [Indexed: 01/27/2023]
|
41
|
Wang YN, Collins J, Holland RJ, Keefer LK, Ivanic J. Decoding nitric oxide release rates of amine-based diazeniumdiolates. J Phys Chem A 2013; 117:6671-7. [PMID: 23834533 PMCID: PMC3763926 DOI: 10.1021/jp404589p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amine-based diazeniumdiolates (NONOates) have garnered widespread use as nitric oxide (NO) donors, and their potential for nitroxyl (HNO) release has more recently been realized. While NO release rates can vary significantly with the type of amine, half-lives of seconds to days under physiological conditions, there is as yet no way to determine a priori the NO or HNO production rates of a given species, and no discernible trends have manifested other than that secondary amines produce only NO (i.e., no HNO). As a step to understanding these complex systems, here we describe a procedure for modeling amine-based NONOates in water solvent that provides an excellent correlation (R(2) = 0.94) between experimentally measured dissociation rates of seven secondary amine species and their computed NO release activation energies. The significant difference in behavior of NONOates in the gas and solvent phases is also rigorously demonstrated via explicit additions of quantum mechanical water molecules. The presented results suggest that the as-yet unsynthesized simplest amine-based NONOate, the diazeniumdiolated ammonia anion [H2N-N(O)═NO(-)], could serve as an unperturbed HNO donor. These results provide a step forward toward the accurate modeling of general NO and/or HNO donors as well as for the identification of tailored prodrug candidates.
Collapse
Affiliation(s)
- Yan-Ni Wang
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Jack Collins
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Ryan J. Holland
- Drug Design Section, Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702
| | - Larry K. Keefer
- Drug Design Section, Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702
| | - Joseph Ivanic
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| |
Collapse
|
42
|
Kaur I, Terrazas M, Kosak KM, Kern SE, Boucher KM, Shami PJ. Cellular distribution studies of the nitric oxide-generating antineoplastic prodrug O(2) -(2,4-dinitrophenyl)1-((4-ethoxycarbonyl)piperazin-1-yl)diazen-1-ium-1,2-diolate formulated in Pluronic P123 micelles. ACTA ACUST UNITED AC 2013; 65:1329-36. [PMID: 23927471 DOI: 10.1111/jphp.12100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/24/2013] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Nitric oxide (NO) possesses antitumour activity. It induces differentiation and apoptosis in acute myeloid leukaemia (AML) cells. The NO prodrug O(2) -(2,4-dinitrophenyl)1-((4-ethoxycarbonyl)piperazin-1-yl)diazen-1-ium-1,2-diolate, or JS-K, has potent antileukaemic activity. JS-K is also active in vitro and in vivo against multiple myeloma, prostate cancer, non-small-cell lung cancer, glioma and liver cancer. Using the Pluronic P123 polymer, we have developed a micelle formulation for JS-K to increase its solubility and stability. The goal of the current study was to investigate the cellular distribution of JS-K in AML cells. METHODS We investigated the intracellular distribution of JS-K (free drug) and JS-K formulated in P123 micelles (P123/JS-K) using HL-60 AML cells. We also studied the S-glutathionylating effects of JS-K on proteins in the cytoplasmic and nuclear cellular fractions. KEY FINDINGS Both free JS-K and P123/JS-K accumulate primarily in the nucleus. Both free JS-K and P123/JS-K induced S-glutathionylation of nuclear proteins, although the effect produced was more pronounced with P123/JS-K. Minimal S-glutathionylation of cytoplasmic proteins was observed. CONCLUSIONS We conclude that a micelle formulation of JS-K increases its accumulation in the nucleus. Post-translational protein modification through S-glutathionylation may contribute to JS-K's antileukaemic properties.
Collapse
Affiliation(s)
- Imit Kaur
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | |
Collapse
|
43
|
Sharma K, Iyer A, Sengupta K, Chakrapani H. INDQ/NO, a Bioreductively Activated Nitric Oxide Prodrug. Org Lett 2013; 15:2636-9. [DOI: 10.1021/ol400884v] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Kavita Sharma
- Departments of Chemistry and Biology, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India
| | - Aishwarya Iyer
- Departments of Chemistry and Biology, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India
| | - Kundan Sengupta
- Departments of Chemistry and Biology, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India
| | - Harinath Chakrapani
- Departments of Chemistry and Biology, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India
| |
Collapse
|
44
|
Ng JY, Boelen L, Wong JWH. Bioinformatics analysis reveals biophysical and evolutionary insights into the 3-nitrotyrosine post-translational modification in the human proteome. Open Biol 2013; 3:120148. [PMID: 23389939 PMCID: PMC3603447 DOI: 10.1098/rsob.120148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Protein 3-nitrotyrosine is a post-translational modification that commonly arises from the nitration of tyrosine residues. This modification has been detected under a wide range of pathological conditions and has been shown to alter protein function. Whether 3-nitrotyrosine is important in normal cellular processes or is likely to affect specific biological pathways remains unclear. Using GPS-YNO2, a recently described 3-nitrotyrosine prediction algorithm, a set of predictions for nitrated residues in the human proteome was generated. In total, 9.27 per cent of the proteome was predicted to be nitratable (27 922/301 091). By matching the predictions against a set of curated and experimentally validated 3-nitrotyrosine sites in human proteins, it was found that GPS-YNO2 is able to predict 73.1 per cent (404/553) of these sites. Furthermore, of these sites, 42 have been shown to be nitrated endogenously, with 85.7 per cent (36/42) of these predicted to be nitrated. This demonstrates the feasibility of using the predicted dataset for a whole proteome analysis. A comprehensive bioinformatics analysis was subsequently performed on predicted and all experimentally validated nitrated tyrosine. This found mild but specific biophysical constraints that affect the susceptibility of tyrosine to nitration, and these may play a role in increasing the likelihood of 3-nitrotyrosine to affect processes, including phosphorylation and DNA binding. Furthermore, examining the evolutionary conservation of predicted 3-nitrotyrosine showed that, relative to non-nitrated tyrosine residues, 3-nitrotyrosine residues are generally less conserved. This suggests that, at least in the majority of cases, 3-nitrotyrosine is likely to have a deleterious effect on protein function and less likely to be important in normal cellular function.
Collapse
Affiliation(s)
- John Y Ng
- Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney 2052, Australia
| | | | | |
Collapse
|
45
|
Maciag AE, Holland RJ, Robert Cheng YS, Rodriguez LG, Saavedra JE, Anderson LM, Keefer LK. Nitric oxide-releasing prodrug triggers cancer cell death through deregulation of cellular redox balance. Redox Biol 2013; 1:115-24. [PMID: 24024144 PMCID: PMC3757670 DOI: 10.1016/j.redox.2012.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/03/2012] [Accepted: 12/11/2012] [Indexed: 11/17/2022] Open
Abstract
JS-K is a nitric oxide (NO)-releasing prodrug of the O (2)-arylated diazeniumdiolate family that has demonstrated pronounced cytotoxicity and antitumor properties in a variety of cancer models both in vitro and in vivo. The current study of the metabolic actions of JS-K was undertaken to investigate mechanisms of its cytotoxicity. Consistent with model chemical reactions, the activating step in the metabolism of JS-K in the cell is the dearylation of the diazeniumdiolate by glutathione (GSH) via a nucleophilic aromatic substitution reaction. The resulting product (CEP/NO anion) spontaneously hydrolyzes, releasing two equivalents of NO. The GSH/GSSG redox couple is considered to be the major redox buffer of the cell, helping maintain a reducing environment under basal conditions. We have quantified the effects of JS-K on cellular GSH content, and show that JS-K markedly depletes GSH, due to JS-K's rapid uptake and cascading release of NO and reactive nitrogen species. The depletion of GSH results in alterations in the redox potential of the cellular environment, initiating MAPK stress signaling pathways, and inducing apoptosis. Microarray analysis confirmed signaling gene changes at the transcriptional level and revealed alteration in the expression of several genes crucial for maintenance of cellular redox homeostasis, as well as cell proliferation and survival, including MYC. Pre-treating cells with the known GSH precursor and nucleophilic reducing agent N-acetylcysteine prevented the signaling events that lead to apoptosis. These data indicate that multiplicative depletion of the reduced glutathione pool and deregulation of intracellular redox balance are important initial steps in the mechanism of JS-K's cytotoxic action.
Collapse
Key Words
- ATF, activating transcription factor
- Arylated diazeniumdiolate
- DAF-FM, 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate
- DCF-DA, 5-(and 6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate
- DMSO, dimethyl sulfoxide
- FBS, fetal bovine serum
- GSH, glutathione
- GSSG, glutathione disulfide (oxidized GSH)
- Glutathione
- HBSS, Hank's balanced salt solution
- IPA, Ingenuity Pathway Analysis
- JS-K, O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate
- LC/MS, liquid chromatography/mass spectrometry
- Leukemia
- MAPK, mitogen-activated protein kinase
- NAC, N-acetylcysteine
- NO, nitric oxide
- NSCLC, non-small cell lung cancer
- Nitric oxide
- PARP, poly (ADP-ribose) polymerase
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SAPK/JNK, stress activated protein kinase/c-jun N-terminal kinase.
Collapse
Affiliation(s)
- Anna E. Maciag
- Basic Science Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ryan J. Holland
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Y.-S. Robert Cheng
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Luis G. Rodriguez
- Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joseph E. Saavedra
- Basic Science Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lucy M. Anderson
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Larry K. Keefer
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
46
|
Reynolds MM, Witzeling SD, Damodaran VB, Medeiros TN, Knodle RD, Edwards MA, Lookian PP, Brown MA. Applications for nitric oxide in halting proliferation of tumor cells. Biochem Biophys Res Commun 2013; 431:647-51. [PMID: 23337501 DOI: 10.1016/j.bbrc.2013.01.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Tumor resistance to cytotoxic therapeutics coupled with dose-limiting toxicity is a serious hurdle in the field of medical oncology. In the face of this obstacle, nitric oxide has emerged as a powerful adjuvant for the hypersensitization of tumors to more traditional chemo- and radio-therapeutics. Furthermore, emerging evidence indicates that nitric oxide donors have the potential to function independently in the clinical management of cancer. Herein, we discuss the role of nitric oxide in cancer and the potential for nitric oxide donors to support conventional therapeutics.
Collapse
Affiliation(s)
- Melissa M Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1052, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Holland RJ, Maciag AE, Kumar V, Shi L, Saavedra JE, Prud'homme RK, Chakrapani H, Keefer LK. Cross-linking protein glutathionylation mediated by O2-arylated bis-diazeniumdiolate "Double JS-K". Chem Res Toxicol 2012; 25:2670-7. [PMID: 23106594 PMCID: PMC3524378 DOI: 10.1021/tx3003142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Attachment of glutathione (GSH) to cysteine residues in proteins (S-glutathionylation) is a reversible post-translational modification that can profoundly alter protein structure and function. Often serving in a protective role, for example, by temporarily saving protein thiols from irreversible oxidation and inactivation, glutathionylation can be identified and semiquantitatively assessed using anti-GSH antibodies, thought to be specific for recognition of the S-glutathionylation modification. Here, we describe an alternate mechanism of protein glutathionylation in which the sulfur atoms of the GSH and the protein's thiol group are covalently bound via a cross-linking agent, rather than through a disulfide bond. This form of thiol cross-linking has been shown to occur and has been confirmed by mass spectrometry at the solution chemistry level, as well as in experiments documenting the potent antiproliferative activity of the bis-diazeniumdiolate Double JS-K in H1703 cells in vitro and in vivo. The modification is recognized by the anti-GSH antibody as if it were authentic S-glutathionylation, requiring mass spectrometry to distinguish between them.
Collapse
Affiliation(s)
- Ryan J Holland
- Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
CYP3A-mediated apoptosis of dauricine in cultured human bronchial epithelial cells and in lungs of CD-1 mice. Toxicol Appl Pharmacol 2012; 261:248-54. [DOI: 10.1016/j.taap.2012.03.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/10/2012] [Accepted: 03/31/2012] [Indexed: 10/28/2022]
|
49
|
Nandurdikar RS, Maciag AE, Holland RJ, Cao Z, Shami PJ, Anderson LM, Keefer LK, Saavedra JE. Structural modifications modulate stability of glutathione-activated arylated diazeniumdiolate prodrugs. Bioorg Med Chem 2012; 20:3094-9. [PMID: 22480849 PMCID: PMC3590845 DOI: 10.1016/j.bmc.2012.02.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/13/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
JS-K, a diazeniumdiolate-based nitric oxide (NO)-releasing prodrug, is currently in late pre-clinical development as an anti-cancer drug candidate. This prodrug was designed to be activated by glutathione (GSH) to release NO. To increase the potency of JS-K, we are investigating the effect of slowing the reaction of the prodrugs with GSH. Herein, we report the effect of replacement of nitro group(s) by other electron-withdrawing group(s) in JS-K and its homo-piperazine analogues on GSH activation and the drugs' biological activity. We show that nitro-to-cyano substitution increases the half-life of the prodrug in the presence of GSH without compromising the compound's in vivo antitumor activity.
Collapse
Affiliation(s)
- Rahul S. Nandurdikar
- Drug Design Section, Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Anna E. Maciag
- Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Ryan J. Holland
- Drug Design Section, Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Zhao Cao
- Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Paul J. Shami
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Lucy M. Anderson
- Drug Design Section, Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Larry K. Keefer
- Drug Design Section, Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Joseph E. Saavedra
- Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
50
|
Duan S, Cai S, Xie Y, Bagby T, Ren S, Forrest ML. Synthesis and characterization of a multi-arm poly(acrylic acid) star polymer for application in sustained delivery of cisplatin and a nitric oxide prodrug. ACTA ACUST UNITED AC 2012; 50:2715-2724. [PMID: 26549934 DOI: 10.1002/pola.26059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Functionalized polymeric nanocarriers have been recognized as drug delivery platforms for delivering therapeutic concentrations of chemotherapies. Of this category, star-shaped multiarm polymers are emerging candidates for targeted delivery of anti-cancer drugs, due to their compact structure, narrow size distribution, large surface area and high water solubility. In this study, we synthesized a multi-arm poly(acrylic acid) star polymer via MADIX/RAFT polymerization and characterized it using NMR and size exclusion chromatography. The poly(acrylic acid) star polymer demonstrated excellent water solubility and extremely low viscosity, making it highly suited for targeted drug delivery. Subsequently, we selected a hydrophilic drug, cisplatin, and a hydrophobic nitric oxide-donating prodrug, O2-(2,4-dinitrophenyl) 1-[4-(2-hydroxy)ethyl]-3-methylpiperazin-1-yl]diazen-1-ium-1,2-diolate, as two model compounds to evaluate the feasibility of using poly(acrylic acid) star polymers for delivery of chemotherapeutics. After synthesizing and characterizing two poly(acrylic acid) star polymer-based nanoconjugates, poly(acrylic acid)-cisplatin (acid-Pt) and poly(acrylic acid)-nitric oxide prodrug (acid-NO), the in vitro drug release kinetics of both acid-Pt and acid-NO were determined at physiological conditions. In summary, we have designed and evaluated a polymeric nanocarrier for sustained-delivery of chemotherapies, either as a single treatment or a combination therapy regimen.
Collapse
Affiliation(s)
- Shaofeng Duan
- University of Kansas, 2095 Constant Ave, Lawrence, KS 66047
| | - Shuang Cai
- University of Kansas, 2095 Constant Ave, Lawrence, KS 66047
| | - Yumei Xie
- University of Kansas, 2095 Constant Ave, Lawrence, KS 66047
| | - Taryn Bagby
- University of Kansas, 2095 Constant Ave, Lawrence, KS 66047
| | - Shenqiang Ren
- University of Kansas, 1251 Wescoe Hall Drive, 3012 Malott Hall, Lawrence, KS 66045
| | | |
Collapse
|