1
|
Yang J, Li D, Zhang M, Lin G, Hu S, Xu H. From the updated landscape of the emerging biologics for IBDs treatment to the new delivery systems. J Control Release 2023; 361:568-591. [PMID: 37572962 DOI: 10.1016/j.jconrel.2023.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
Inflammatory bowel diseases (IBDs) treatments have shifted from small-molecular therapeutics to the oncoming biologics. The first-line biologics against the moderate-to-severe IBDs are mainly involved in antibodies against integrins, cytokines and cell adhesion molecules. Besides, other biologics including growth factors, antioxidative enzyme, anti-inflammatory peptides, nucleic acids, stem cells and probiotics have also been explored at preclinical or clinical studies. Biologics with variety of origins have their unique potentials in attenuating immune inflammation or gut mucosa healing. Great advances in use of biologics for IBDs treatments have been archived in recent years. But delivering issues for biologic have also been confronted due to their liable nature. In this review, we will focus on biologics for IBDs treatments in the recent publications; summarize the current landscapes of biologics and their promise to control disease progress. Alternatively, the confronted challenges for delivering biologics will also be analyzed. To combat these drawbacks, some new delivering strategies are provided: firstly, designing the functional materials with high affinity toward biologics; secondly, the delivering vehicle systems to encapsulate the liable biologics; thirdly, the topical adhering delivery systems as enema. To our knowledge, this review is the first study to summarize the updated usage of the oncoming biologics for IBDs, their confronted challenges in term of delivery and the potential combating strategies.
Collapse
Affiliation(s)
- Jiaojiao Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Dingwei Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Mengjiao Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Gaolong Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Sunkuan Hu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China
| | - Helin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|
2
|
Chronic Experimental Model of TNBS-Induced Colitis to Study Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:ijms23094739. [PMID: 35563130 PMCID: PMC9105049 DOI: 10.3390/ijms23094739] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 01/14/2023] Open
Abstract
Background: Inflammatory bowel disease (IBD) is a world healthcare problem. In order to evaluate the effect of new pharmacological approaches for IBD, we aim to develop and validate chronic trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Methods: Experimental colitis was induced by the rectal administration of multiple doses of TNBS in female CD-1 mice. The protocol was performed with six experimental groups, depending on the TNBS administration frequency, and two control groups (sham and ethanol groups). Results: The survival rate was 73.3% in the first three weeks and, from week 4 until the end of the experimental protocol, the mice’s survival remained unaltered at 70.9%. Fecal hemoglobin presented a progressive increase until week 4 (5.8 ± 0.3 µmol Hg/g feces, p < 0.0001) compared with the ethanol group, with no statistical differences to week 6. The highest level of tumor necrosis factor-α was observed on week 3; however, after week 4, a slight decrease in tumor necrosis factor-α concentration was verified, and the level was maintained until week 6 (71.3 ± 3.3 pg/mL and 72.7 ± 3.6 pg/mL, respectively). Conclusions: These findings allowed the verification of a stable pattern of clinical and inflammation signs after week 4, suggesting that the chronic model of TNBS-induced colitis develops in 4 weeks.
Collapse
|
3
|
Ramadass SK, Jabaris SL, Perumal RK, HairulIslam VI, Gopinath A, Madhan B. Type I collagen and its daughter peptides for targeting mucosal healing in ulcerative colitis: A new treatment strategy. Eur J Pharm Sci 2016; 91:216-24. [PMID: 27185300 DOI: 10.1016/j.ejps.2016.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 12/30/2022]
|
4
|
Angiogenesis in Inflammatory Bowel Disease. Int J Inflam 2015; 2015:970890. [PMID: 26839731 PMCID: PMC4709626 DOI: 10.1155/2015/970890] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/24/2022] Open
Abstract
Angiogenesis is an important component of pathogenesis of inflammatory bowel disease (IBD). Chronic inflammation and angiogenesis are two closely related processes. Chronic intestinal inflammation is dependent on angiogenesis and this angiogenesis is modulated by immune system in IBD. Angiogenesis is a very complex process which includes multiple cell types, growth factors, cytokines, adhesion molecules, and signal transduction. Lymphangiogenesis is a new research area in the pathogenesis of IBD. While angiogenesis supports inflammation via leukocyte migration, carrying oxygen and nutrients, on the other hand, it has a major role in wound healing. Angiogenic molecules look like perfect targets for the treatment of IBD, but they have risk for serious side effects because of their nature.
Collapse
|
5
|
Lean QY, Gueven N, Eri RD, Bhatia R, Sohal SS, Stewart N, Peterson GM, Patel RP. Heparins in ulcerative colitis: proposed mechanisms of action and potential reasons for inconsistent clinical outcomes. Expert Rev Clin Pharmacol 2015; 8:795-811. [PMID: 26308504 DOI: 10.1586/17512433.2015.1082425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Current drug therapies for ulcerative colitis (UC) are not completely effective in managing moderate-to-severe UC and approximately 20% of patients with severe UC require surgical interventions. Heparins, polydisperse mixtures of non-anticoagulant and anticoagulant oligosaccharides, are widely used as anticoagulants. However, heparins are also reported to have anti-inflammatory properties. Unfractionated heparin was initially used in patients with UC for the treatment of rectal microthrombi. Surprisingly, it was found to be effective in reducing UC-associated symptoms. Since then, several pre-clinical and clinical studies have reported promising outcomes of heparins in UC. In contrast, some controlled clinical trials demonstrated no or only limited benefits, thus the potential of heparins for the treatment of UC remains uncertain. This review discusses potential mechanisms of action of heparins, as well as proposed reasons for their contradictory clinical effectiveness in the treatment of UC.
Collapse
Affiliation(s)
- Qi Ying Lean
- a 1 Division of Pharmacy, School of Medicine, Faculty of Health, University of Tasmania , Hobart, Tasmania, Australia.,b 2 Faculty of Pharmacy, University of Technology MARA, Puncak Alam , Selangor, Malaysia
| | - Nuri Gueven
- a 1 Division of Pharmacy, School of Medicine, Faculty of Health, University of Tasmania , Hobart, Tasmania, Australia
| | - Rajaraman D Eri
- c 3 School of Health Sciences, Faculty of Health, University of Tasmania, Launceston , Tasmania, Australia
| | - Rajesh Bhatia
- d 4 Royal Hobart Hospital , Hobart, Tasmania, Australia
| | - Sukhwinder Singh Sohal
- c 3 School of Health Sciences, Faculty of Health, University of Tasmania, Launceston , Tasmania, Australia.,e 5 Breathe Well Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, Faculty of Health, University of Tasmania , Hobart, Tasmania, Australia
| | - Niall Stewart
- a 1 Division of Pharmacy, School of Medicine, Faculty of Health, University of Tasmania , Hobart, Tasmania, Australia
| | - Gregory M Peterson
- a 1 Division of Pharmacy, School of Medicine, Faculty of Health, University of Tasmania , Hobart, Tasmania, Australia.,e 5 Breathe Well Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, Faculty of Health, University of Tasmania , Hobart, Tasmania, Australia.,f 6 Health Services Innovation Tasmania, School of Medicine, Faculty of Health, University of Tasmania , Hobart, Tasmania, Australia
| | - Rahul P Patel
- a 1 Division of Pharmacy, School of Medicine, Faculty of Health, University of Tasmania , Hobart, Tasmania, Australia
| |
Collapse
|
6
|
Chaturvedi L, Sun K, Walsh MF, Kuhn LA, Basson MD. The P-loop region of Schlafen 3 acts within the cytosol to induce differentiation of human Caco-2 intestinal epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:3029-3037. [PMID: 25261706 PMCID: PMC4487865 DOI: 10.1016/j.bbamcr.2014.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/05/2014] [Accepted: 09/17/2014] [Indexed: 01/26/2023]
Abstract
Schlafen 3 (Slfn3) mediates rodent enterocyte differentiation in vitro and in vivo, required for intestinal function. Little is known about Schlafen protein structure-function relationships. To define the Slfn3 domain that promotes differentiation, we studied villin and sucrase isomaltase (SI) promoter activity in Slfn3-null human Caco-2BBE cells transfected with full-length rat Slfn3 DNA or truncated constructs. Confocal microscopy and Western blots showed that Slfn3 is predominantly cytosolic. Villin promoter activity, increased by wild type Slfn3, was further enhanced by adding a nuclear exclusion sequence, suggesting that Slfn3 does not affect transcription by direct nuclear action. We therefore sought to dissect the region in Slfn3 stimulating promoter activity. Since examination of the Slfn3 N-terminal region revealed sequences similar to both an aminopeptidase (App) and a divergent P-loop resembling those in NTPases, we initially divided Slfn3 into an N-terminal domain containing the App and P-loop regions, and a C-terminal region. Only the N-terminal construct stimulated promoter activity. Further truncation indicated that both the App and the smaller P-loop constructs enhanced promoter activity similarly to the N-terminal sequence. Point mutations within the N-terminal region (R128L, altering a critical active site residue in the App domain, and L212D, conserved in Schlafens but variable in P-loop proteins) did not affect activity. These results show that Slfn3 acts in the cytosol to trigger a secondary signal cascade that elicits differentiation marker expression and narrows the active domain to the third of the Slfn3 sequence homologous to P-loop NTPases, a first step in understanding its mechanism of action.
Collapse
Affiliation(s)
| | - Kelian Sun
- Department of Surgery, Michigan State University, East Lansing, MI, USA.
| | - Mary F Walsh
- Department of Surgery, Michigan State University, East Lansing, MI, USA.
| | - Leslie A Kuhn
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Computer Science & Engineering, Michigan State University, East Lansing, MI, USA.
| | - Marc D Basson
- Department of Surgery, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
7
|
Animal models of inflammatory bowel disease: a review. Inflammopharmacology 2014; 22:219-33. [PMID: 24906689 DOI: 10.1007/s10787-014-0207-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/09/2014] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) represents a group of idiopathic chronic inflammatory intestinal conditions associated with various areas of the GI tract, including two types of inflammatory conditions, i.e., ulcerative colitis (UC) and Crohn's disease (CD). Both UC and CD are chronic inflammatory disorders of the intestine; in UC, inflammation starts in the rectum and generally extends proximally in a continuous manner through the entire colon. Bloody diarrhea, presence of blood and mucus mixed with stool, accompanied by lower abdominal cramping, are the characteristic symptoms of the disease. While in CD, inflammatory condition may affect any part of the GI tract from mouth to anus. It mainly causes abdominal pain, diarrhea, vomiting and weight loss. Although the basic etiology of IBD is unknown, there are several factors that may contribute to the pathogenesis of this disease, such as dysregulation of immune system or commensal bacteria, oxidative stress and inflammatory mediators. In order to understand these different etiological factors, a number of experimental models are available in the scientific research, including chemical-induced, spontaneous, genetically engineered and transgenic models. These models represent a major source of information about biological systems and are clinically relevant to the human IBD. Since there is less collective data available in one single article discussing about all these models, in this review an effort is made to study the outline of pathophysiology and various types of animal models used in the research study of IBD and other disease-related complications.
Collapse
|
8
|
Jacob S, Zhu Y, Asmussen S, Ito H, Herndon DN, Enkhbaatar P, Hawkins HK, Cox RA. Tiotropium bromide suppresses smoke inhalation and burn injury-induced ERK 1/2 and SMAD 2/3 signaling in sheep bronchial submucosal glands. Toxicol Mech Methods 2014; 24:250-8. [PMID: 24417427 DOI: 10.3109/15376516.2013.879504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effects of tiotropium bromide on ERK 1/2, SMAD 2/3 and NFκB signaling in bronchial submucosal gland (SMG) cells of sheep after smoke inhalation and burn injury (S + B) were studied. We hypothesized that tiotropium would modify intracellular signaling processes within SMG cells after injury. Bronchial tissues were obtained from uninjured (sham, n = 6), S + B injured sheep 48 h after injury (n = 6), and injured sheep nebulized with tiotropium (n = 6). The percentage (mean ± SD) of cells showing nuclear localization of phosphorylated ERK 1/2, pSMAD 2/3, and NFκB (p65) was determined by immunohistochemistry. Nuclear pERK 1/2 staining was increased in injured animals as compared to sham, (66 ± 20 versus 14 ± 9), p = 0.0022, as was nuclear pSMAD, 84 ± 10 versus 20 ± 10, p = 0.0022. There was a significant decrease in pERK 1/2 labeling in the tiotropium group compared to the injured group (31 ± 20 versus 66 ± 20, p = 0.013), and also a decrease in pSMAD labeling, 62 ± 17 versus 84 ± 10, p = 0.04. A significant increase for NFκB (p65) was noted in injured animals as compared to sham (73 ± 16 versus 7 ± 6, p = 0.0022). Tiotropium-treated animals showed decreased p65 labeling as compared to injured (35 ± 17 versus 74 ± 16, p = 0.02). The decrease in nuclear expression of pERK, pSMAD and NFκB molecules in SMG cells with tiotropium treatment is suggestive that their activation after injury is mediated in part through muscarinic receptors.
Collapse
Affiliation(s)
- Sam Jacob
- Shriners Hospital for Children and the University of Texas Medical Branch , Galveston, TX , USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Jiang XW, Zhang Y, Zhang H, Lu K, Yang SK, Sun GL. Double-blind, randomized, controlled clinical trial of the effects of diosmectite and basic fibroblast growth factor paste on the treatment of minor recurrent aphthous stomatitis. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116:570-5. [DOI: 10.1016/j.oooo.2013.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/03/2013] [Accepted: 07/07/2013] [Indexed: 11/24/2022]
|
10
|
Kumar VS, Rajmane AR, Adil M, Kandhare AD, Ghosh P, Bodhankar SL. Naringin ameliorates acetic acid induced colitis through modulation of endogenous oxido-nitrosative balance and DNA damage in rats. J Biomed Res 2013; 28:132-45. [PMID: 24683411 PMCID: PMC3968284 DOI: 10.7555/jbr.27.20120082] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/15/2012] [Accepted: 02/27/2013] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to evaluate the effect of naringin on experimentally induced inflammatory bowel disease in rats. Naringin (20, 40 and 80 mg/kg) was given orally for 7 days to Wistar rats before induction of colitis by intrarectal instillation of 2 mL of 4% (v/v) acetic acid solution. The degree of colonic mucosal damage was analyzed by examining mucosal damage, ulcer area, ulcer index and stool consistency. Intrarectal administration of 4% acetic acid resulted in significant modulation of serum alkaline phosphatase, lactate dehydrogenase, superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA) and myeloperoxidase (MPO) content along with colonic nitric oxide (NO), xanthine oxidase (XO) level and protein carbonyl content in the colonic tissue as well as in blood. Naringin (40 and 80 mg/kg) exerted a dose dependent (P < 0.05) ameliorative effect, as it significantly increased hematological parameter as well as colonic SOD and GSH. There was a significant (P < 0.05) and dose dependant inhibition of macroscopical score, ulcer area along with colonic MDA, MPO activity by the 7 days of pretreatment of naringin (40 and 80 mg/kg). Biochemical studies revealed a significant (P < 0.05) dose dependant inhibition in serum alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) levels by pretreatment of naringin. Increased levels of colonic NO, XO, protein carbonyl content and DNA damage were also significantly decreased by naringin pretreatment. The findings of the present investigation propose that naringin has an anti-inflammatory, anti-oxidant and anti-apoptotic potential effect at colorectal sites as it modulates the production and expression of oxidative mediators such as MDA, MPO, NO and XO, thus reducing DNA damage.
Collapse
Affiliation(s)
- Venkatashivam Shiva Kumar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra 411038, India
| | - Anuchandra Ramchandra Rajmane
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra 411038, India
| | - Mohammad Adil
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra 411038, India
| | - Amit Dattatraya Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra 411038, India
| | - Pinaki Ghosh
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra 411038, India
| | - Subhash Laxman Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra 411038, India
| |
Collapse
|