1
|
Bo Y, Zhao X, Li L. Cardiotoxic effects of common and emerging drugs: role of cannabinoid receptors. Clin Sci (Lond) 2024; 138:413-434. [PMID: 38505994 DOI: 10.1042/cs20231156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Drug-induced cardiotoxicity has become one of the most common and detrimental health concerns, which causes significant loss to public health and drug resources. Cannabinoid receptors (CBRs) have recently achieved great attention for their vital roles in the regulation of heart health and disease, with mounting evidence linking CBRs with the pathogenesis and progression of drug-induced cardiotoxicity. This review aims to summarize fundamental characteristics of two well-documented CBRs (CB1R and CB2R) from aspects of molecular structure, signaling and their functions in cardiovascular physiology and pathophysiology. Moreover, we describe the roles of CB1R and CB2R in the occurrence of cardiotoxicity induced by common drugs such as antipsychotics, anti-cancer drugs, marijuana, and some emerging synthetic cannabinoids. We highlight the 'yin-yang' relationship between CB1R and CB2R in drug-induced cardiotoxicity and propose future perspectives for CBR-based translational medicine toward cardiotoxicity curation and clinical monitoring.
Collapse
Affiliation(s)
- Yiming Bo
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xin Zhao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Estrogen Dampens Central Cannabinoid Receptor 1-mediated Neuroexcitation and Pressor Response in Conscious Female Rats. Biochem Pharmacol 2022; 201:115102. [PMID: 35617998 DOI: 10.1016/j.bcp.2022.115102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022]
Abstract
Activation of the rostral ventrolateral medulla (RVLM) cannabinoid receptor-1 (CB1R) causes nNOS-dependent increases in sympathetic activity, blood pressure (BP) and heart rate (HR) in male rats. However, it remains unknown if the CB1R-mediated neurochemical and cardiovascular responses are influenced by the ovarian sex hormones, particularly estrogen (E2). Therefore, we studied the effects of intra-RVLM CB1R activation (WIN 55,212-2) on BP and HR in conscious female rats under the following hormonal states: (1) highest E2 level (proestrus sham-operated, SO); (2) E2-deprivation (ovariectomized, OVX); (3) OVX with E2 replacement (OVXE2). Intra-RVLM WIN55,212-2 elicited dose (100-400 pmol) dependent pressor and tachycardic responses, in OVX rats, which replicated the reported responses in male rats. However, in SO and OVXE2 rats, the CB1R-mediated pressor response was attenuated and the tachycardic response reverted to bradycardic response. The neurochemical findings suggested a key role for the upregulated RVLM sympathoexcitatory molecules phosphorated protein kinase B, phosphorated neuronal nitric oxide synthase and reactive oxygen species in the exaggerated CB1R-mediated BP and HR responses in OVX rats, and an E2-dependent dampening of these responses. The intra-RVLM WIN55212-2-evoked cardiovascular and neurochemical responses were CB1R-mediated because they were attenuated by prior CB1R blockade (AM251). Our findings suggest that attenuation of RVLM neuroexcitation and oxidative stress underlies the protection conferred by E2, in female rats, against the CB1R-mediated adverse cardiovascular effects.
Collapse
|
3
|
Sun JC, Tan X, Ge LJ, Xu MJ, Wang WZ. The Release of Nitric Oxide Is Involved in the β-Arrestin1-Induced Antihypertensive Effect in the Rostral Ventrolateral Medulla. Front Physiol 2021; 12:694135. [PMID: 34220554 PMCID: PMC8249856 DOI: 10.3389/fphys.2021.694135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022] Open
Abstract
β-Arrestin1 is a multifunctional scaffold protein with the ability to interact with diverse signaling molecules independent of G protein-coupled receptors. We previously reported that overexpression of β-arrestin1 in the rostral ventrolateral medulla (RVLM) decreased blood pressure (BP) and renal sympathetic nerve activity (RSNA) in spontaneously hypertensive rats (SHRs). Nitric oxide (NO) is widely reported to be involved in central cardiovascular regulation. The goal of this study was to investigate whether NO signaling contributes to the β-arrestin1-mediated antihypertensive effect in the RVLM. It was found that bilateral injection of adeno-associated virus containing Arrb1 gene (AAV-Arrb1) into the RVLM of SHRs significantly increased NO production and NO synthase (NOS) activity. Microinjection of the non-selective NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME; 10 nmol) into the RVLM prevented the β-arrestin1-induced cardiovascular inhibitory effect. Furthermore, β-arrestin1 overexpression in the RVLM significantly upregulated the expression of phosphorylated neuronal NOS (nNOS) by 3.8-fold and extracellular regulated kinase 1/2 (ERK1/2) by 5.6-fold in SHRs. The β-arrestin1-induced decrease in BP and RSNA was significantly abolished by treatment with ERK1/2 small interfering RNA (ERK1/2 siRNA). Moreover, ERK1/2 siRNA attenuated the β-arrestin1-induced NO production, NOS activity, and nNOS phosphorylation in the RVLM. Taken together, these data demonstrate that the antihypertensive effect of β-arrestin1 in the RVLM is mediated by nNOS-derived NO release, which is associated with ERK1/2 activation.
Collapse
Affiliation(s)
- Jia-Cen Sun
- Polar Medical Research Center and Department of Physiology, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xing Tan
- Polar Medical Research Center and Department of Physiology, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lian-Jie Ge
- Polar Medical Research Center and Department of Physiology, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ming-Juan Xu
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei-Zhong Wang
- Polar Medical Research Center and Department of Physiology, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
4
|
Wang DP, Jin KY, Zhao P, Lin Q, Kang K, Hai J. Neuroprotective Effects of VEGF-A Nanofiber Membrane and FAAH Inhibitor URB597 Against Oxygen-Glucose Deprivation-Induced Ischemic Neuronal Injury. Int J Nanomedicine 2021; 16:3661-3678. [PMID: 34093011 PMCID: PMC8168836 DOI: 10.2147/ijn.s307335] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Brain ischemia is a common neurological disorder worldwide that activates a cascade of pathophysiological events involving decreases in oxygen and glucose levels. Despite substantial efforts to explore its pathogenesis, the management of ischemic neuronal injury remains an enormous challenge. Accumulating evidence suggests that VEGF modified nanofiber (NF) materials and the fatty-acid amide hydrolase (FAAH) inhibitor URB597 exert an influence on alleviating ischemic brain damage. We aimed to further investigate their effects on primary hippocampal neurons, as well as the underlying mechanisms following oxygen-glucose deprivation (OGD). METHODS Different layers of VEGF-A loaded polycaprolactone (PCL) nanofibrous membranes were first synthesized by using layer-by-layer (LBL) self-assembly of electrospinning methods. The physicochemical and biological properties of VEGF-A NF membranes, and their morphology, hydrophilicity, and controlled-release of VEGF-A were then estimated. Furthermore, the effects of VEGF-A NF and URB597 on OGD-induced mitochondrial oxidative stress, inflammatory responses, neuronal apoptosis, and endocannabinoid signaling components were assessed. RESULTS The VEGF-A NF membrane and URB597 can not only promote hippocampal neuron adhesion and viability following OGD but also exhibited antioxidant/anti-inflammatory and mitochondrial membrane potential protection. The VEGF-A NF membrane and URB597 also inhibited OGD-induced cellular apoptosis through activating CB1R signaling. These results indicate that VEGF-A could be controlled-released by LBL self-assembled NF membranes. DISCUSSION The VEGF-A NF membrane and URB597 displayed positive synergistic neuroprotective effects through the inhibition of mitochondrial oxidative stress and activation of CB1R/PI3K/AKT/BDNF signaling, suggesting that a VEGF-A loaded NF membrane and the FAAH inhibitor URB597 could be of therapeutic value in ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Da-Peng Wang
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, 200065, People’s Republic of China
| | - Kai-Yan Jin
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, 200065, People’s Republic of China
| | - Peng Zhao
- Institute for Translational Medicine, Institute for Biomedical Engineering and Nanoscience, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, People’s Republic of China
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Kai Kang
- Department of Research and Surveillance Evaluation, Shanghai Center for Health Promotion, Shanghai, 200040, People’s Republic of China
| | - Jian Hai
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, 200065, People’s Republic of China
| |
Collapse
|
5
|
Ramos-Miguel A, Sánchez-Blázquez P, García-Sevilla JA. Effects of Gαi 2 and Gαz protein knockdown on alpha 2A-adrenergic and cannabinoid CB 1 receptor regulation of MEK-ERK and FADD pathways in mouse cerebral cortex. Pharmacol Rep 2021; 73:1122-1135. [PMID: 33641090 DOI: 10.1007/s43440-021-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Alpha2A-adrenergic (α2A-AR) and cannabinoid CB1 (CB1-R) receptors exert their functions modulating multiple signaling pathways, including MEK-ERK (extracellular signal-regulated kinases) and FADD (Fas-associated protein with death domain) cascades. These molecules are relevant in finding biased agonists with fewer side effects, but the mechanisms involving their modulations by α2A-AR- and CB1-R in vivo are unclear. This study investigated the roles of Gαi2 and Gαz proteins in mediating α2A-AR- and CB1-R-induced alterations of MEK-ERK and FADD phosphorylation (p-) in mouse brain cortex. METHODS Gαi2 or Gαz protein knockdown was induced in mice with selective antisense oligodeoxinucleotides (ODNs; 3 nmol/day, 5 days) prior to UK-14,304 (UK or brimonidine; 1 mg/kg) or WIN55212-2 (WIN; 8 mg/kg) acute treatments. Inactivated (p-T286) MEK1, activated (p-S217/221) MEK1/2, activated (p-T202/Y204) ERK1/2, p-S191 FADD, and the corresponding total forms of these proteins were quantified by immunoblotting. RESULTS Increased (+ 88%) p-T286 MEK1 cortical density, with a concomitant reduction (-43%) of activated ERK was observed in UK-treated mice. Both effects were attenuated by Gαi2 or Gαz antisense ODNs. Contrastingly, WIN induced Gαi2- and Gαz-independent upregulations of p-T286 MEK1 (+ 63%), p-S217/221 MEK1/2 (+ 86%), and activated ERK (+ 111%) in brain. Pro-apoptotic FADD was downregulated (- 34 to 39%) following UK and WIN administration, whereas the neuroprotective p-S191 FADD was increased (+ 74%) in WIN-treated mice only. None of these latter effects required from Gαi2 or Gαz protein integrity. CONCLUSION The results indicate that α2A-AR (UK), but not CB1-R (WIN), agonists use Gαi2 and Gαz proteins to modulate MEK-ERK, but not FADD, pathway in mouse brain cortex.
Collapse
Affiliation(s)
- Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country (EHU/UPV), Barrio Sarriena s/n, ES48940, Leioa, Biscay, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain. .,Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| | | | - Jesús A García-Sevilla
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain
| |
Collapse
|
6
|
A Crosstalk Between Dual-Specific Phosphatases and Dual-Specific Protein Kinases Can Be A Potential Therapeutic Target for Anti-cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:357-382. [PMID: 33539023 DOI: 10.1007/978-3-030-49844-3_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While protein tyrosine kinases (PTKs) play an initiative role in growth factor-mediated cellular processes, protein tyrosine phosphatases (PTPs) negatively regulates these processes, acting as tumor suppressors. Besides selective tyrosine dephosphorylation of PTKs via PTPs may affect oncogenic pathways during carcinogenesis. The PTP family contains a group of dual-specificity phosphatases (DUSPs) that regulate the activity of Mitogen-activated protein kinases (MAPKs), which are key effectors in the control of cell growth, proliferation and survival. Abnormal MAPK signaling is critical for initiation and progression stages of carcinogenesis. Since depletion of DUSP-MAPK phosphatases (MKPs) can reduce tumorigenicity, altering MAPK signaling by DUSP-MKP inhibitors could be a novel strategy in anti-cancer therapy. Moreover, Cdc25A is, a DUSP and a key regulator of the cell cycle, promotes cell cycle progression by dephosphorylating and activating cyclin-dependent kinases (CDK). Cdc25A-CDK pathway is a novel mechanism in carcinogenesis. Besides the mammalian target of rapamycin (mTOR) kinase inhibitors or mammalian target of rapamycin complex 1 (mTORC1) inhibition in combination with the dual phosphatidylinositol 3 kinase (PI3K)/mTOR or AKT kinase inhibitors are more effective in inhibiting the phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and cap-dependent translation. Dual targeting of the Akt and mTOR signaling pathways regulates cellular growth, proliferation and survival. Like the Cdc2-like kinases (CLK), dual-specific tyrosine phosphorylation-regulated kinases (DYRKs) are essential for the regulation of cell fate. The crosstalk between dual-specific phosphatases and dual- specific protein kinases is a novel drug target for anti-cancer therapy. Therefore, the focus of this chapter involves protein kinase modules, critical biochemical checkpoints of cancer therapy and the synergistic effects of protein kinases and anti-cancer molecules.
Collapse
|
7
|
Haspula D, Clark MA. Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases. Int J Mol Sci 2020; 21:E7693. [PMID: 33080916 PMCID: PMC7590033 DOI: 10.3390/ijms21207693] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task. An impaired endocannabinoid tone often manifests as changes in expression and/or functions of type 1 and/or type 2 cannabinoid receptors. It becomes important to understand how alterations in cannabinoid receptor cellular signaling can lead to disruptions in major physiological and biological functions, as they are often associated with the pathogenesis of several neurological, cardiovascular, metabolic, and inflammatory diseases. This review focusses mostly on the pathophysiological roles of type 1 and type 2 cannabinoid receptors, and it attempts to integrate both cellular and physiological functions of the cannabinoid receptors. Apart from an updated review of pre-clinical and clinical studies, the adequacy/inadequacy of cannabinoid-based therapeutics in various pathological conditions is also highlighted. Finally, alternative strategies to modulate endocannabinoid tone, and future directions are also emphasized.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Michelle A. Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
8
|
MAPK activation patterns of AT1R and CB1R in SHR versus Wistar astrocytes: Evidence of CB1R hypofunction and crosstalk between AT1R and CB1R. Cell Signal 2017; 40:81-90. [PMID: 28887229 DOI: 10.1016/j.cellsig.2017.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/22/2017] [Accepted: 09/03/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Angiotensin (Ang) II and cannabinoids regulate physiologically relevant astroglial functions via receptor-mediated activation of Mitogen-activated protein kinases (MAPKs). In this study, we investigated the consequences of astroglial Ang II type 1 receptor (AT1R) and Cannabinoid type 1 receptor (CB1R) activation, alone and in combination, on MAPK activation in the presence and absence of hypertensive states. In addition, we also investigated a novel unidirectional crosstalk mechanism between AT1R and CB1R, that involves PKC-mediated phosphorylation of CB1R. METHODS Astrocytes were isolated from the brainstem and cerebellum of Spontaneously hypertensive rats (SHRs) and normotensive Wistar rats. The cells were treated with either 100nM Ang II or 10nM Arachidonyl-2'-chloroethylamide (ACEA), both alone and in combination, for varying time periods, and the extent of phosphorylation of MAPKs, ERK and p38, and the phosphorylated forms of CB1R (p-CB1R), were measured using western blotting. RESULTS Ang II treatment resulted in a greater activation of MAPKs in SHR brainstem astrocytes, but not SHR cerebellar astrocytes when compared to Wistar rats. ACEA-mediated MAPK activation was significantly lower in brainstem astrocytes of SHRs when compared to Wistar rats. ACEA negatively modulates AT1R-mediated MAPK activation in both cerebellar and brainstem astrocytes of both models. The effect however was diminished in brainstem astrocytes. Ang II caused a significant increase in phosphorylation of CB1R in cerebellar astrocytes, while its effect was diminished in brainstem astrocytes of both models. CONCLUSION Both Ang II and ACEA-induced MAPK activation were significantly altered in SHR astrocytes when compared to Wistar astrocytes. A possible reduction in CB1R functionality, coupled with a hyperfunctional AT1R in the brainstem, could well be significant factors in the development of hypertensive states. AT1R-mediated phosphorylation of CB1R could be critical for impaired cerebellar development characterized by a hyperactive RAS.
Collapse
|
9
|
PTEN, a negative regulator of PI3K/Akt signaling, sustains brain stem cardiovascular regulation during mevinphos intoxication. Neuropharmacology 2017; 123:175-185. [DOI: 10.1016/j.neuropharm.2017.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 01/06/2023]
|
10
|
Sallam MY, El-Gowilly SM, Abdel-Galil AGA, El-Mas MM. Cyclosporine counteracts endotoxemia-evoked reductions in blood pressure and cardiac autonomic dysfunction via central sGC/MAPKs signaling in rats. Eur J Pharmacol 2017; 797:143-152. [DOI: 10.1016/j.ejphar.2017.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 12/23/2022]
|
11
|
Modulation by Central MAPKs/PI3K/sGc of the TNF-α/iNOS-dependent Hypotension and Compromised Cardiac Autonomic Control in Endotoxic Rats. J Cardiovasc Pharmacol 2016; 68:171-81. [DOI: 10.1097/fjc.0000000000000400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Fouda MA, El-Gowelli HM, El-Gowilly SM, El-Mas MM. The estrogen-dependent baroreflex dysfunction caused by nicotine in female rats is mediated via NOS/HO inhibition: Role of sGC/PI3K/MAPKERK. Toxicol Appl Pharmacol 2015; 289:466-73. [DOI: 10.1016/j.taap.2015.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/07/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022]
|
13
|
Ibrahim BM, Abdel-Rahman AA. A pivotal role for enhanced brainstem Orexin receptor 1 signaling in the central cannabinoid receptor 1-mediated pressor response in conscious rats. Brain Res 2015; 1622:51-63. [PMID: 26096126 DOI: 10.1016/j.brainres.2015.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 01/02/2023]
Abstract
Orexin receptor 1 (OX1R) signaling is implicated in cannabinoid receptor 1 (CB1R) modulation of feeding. Further, our studies established the dependence of the central CB1R-mediated pressor response on neuronal nitric oxide synthase (nNOS) and extracellular signal-regulated kinase1/2 (ERK1/2) phosphorylation in the RVLM. Here, we tested the novel hypothesis that brainstem orexin-A/OX1R signaling plays a pivotal role in the central CB1R-mediated pressor response. Our multiple labeling immunofluorescence findings revealed co-localization of CB1R, OX1R and the peptide orexin-A within the C1 area of the rostral ventrolateral medulla (RVLM). Activation of central CB1R following intracisternal (i.c.) WIN55,212-2 (15μg/rat) in conscious rats caused significant increases in BP and orexin-A level in RVLM neuronal tissue. Additional studies established a causal role for orexin-A in the central CB1R-mediated pressor response because (i) selective blockade of central CB1R (AM251, 30μg/rat; i.c.) abrogated WIN55,212-2-evoked increases in RVLM orexin-A level, (ii) the selective OX1R antagonist SB-408124 (10nmol/rat; i.c.) attenuated orexin-A (3nmol/rat; i.c.) or WIN55,212-2 (15μg/rat; i.c.)-evoked pressor response while selective CB1R blockade (AM251) had no effect on orexin-A (3nmol/rat; i.c.)-evoked pressor response, (iii) direct CB1R activation in the RVLM (WIN55,212-2; 0.1μg/rat) increased RVLM orexin-A and BP. Finally, SB-408124 attenuated WIN55,212-2-evoked increases in RVLM nNOS and ERK1/2 phosphorylation and BP. Our findings suggest that orexin-A/OX1R dependent activation of the RVLM nNOS/ERK1/2 cascade is essential neurochemical mechanism for the central CB1R-mediated pressor response in conscious rats.
Collapse
Affiliation(s)
- Badr Mostafa Ibrahim
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27858, United States
| | - Abdel A Abdel-Rahman
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27858, United States.
| |
Collapse
|
14
|
Enhanced vascular PI3K/Akt-NOX signaling underlies the peripheral NMDAR-mediated pressor response in conscious rats. J Cardiovasc Pharmacol 2014; 63:395-405. [PMID: 24336015 DOI: 10.1097/fjc.0000000000000059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The molecular mechanisms for peripheral N-methyl-D-aspartate receptor (NMDAR)-mediated vascular oxidative stress and pressor response are not known. We conducted integrative (in vivo) and ex vivo biochemical studies to test the hypothesis that reactive oxygen species (ROS)-dependent calcium influx, triggered by the activation of vascular kinases, underlies the NMDAR-mediated pressor response. Pharmacological inhibition of phosphoinositide 3-kinase (PI3K)/Akt (wortmannin, 15 μg/kg), protein kinase C (chelerythrine: 5 mg/kg, intravenous), Ca²⁺ influx (nifedipine, 0.35 or 0.75 mg/kg), or NADPH oxidase (NOX: apocynin, 5 mg/kg) attenuated the peripheral NMDAR-mediated pressor response in conscious male Sprague-Dawley rats. NMDAR activation enhanced the phosphorylation of Akt, ERK1, JNK and p38 (Western blot), and NOX activity in vascular tissues collected during the pressor response caused by NMDA infusion (180 μg·kg⁻¹·min⁻¹, 30 minutes). Furthermore, ex vivo studies showed that wortmannin, chelerythrine, or apocynin abrogated the NMDAR-mediated vascular nitric oxide (NO) and ROS generation and NOX activation in the vasculature. These findings implicate vascular PI3K/Akt-protein kinase C signaling in the peripheral NMDAR-mediated increases in vascular NO and NOX activation (ROS), which ultimately lead to calcium influx and pressor response in conscious rats.
Collapse
|
15
|
Ibrahim BM, Fan M, Abdel-Rahman AA. Oxidative stress and autonomic dysregulation contribute to the acute time-dependent myocardial depressant effect of ethanol in conscious female rats. Alcohol Clin Exp Res 2014; 38:1205-15. [PMID: 24754626 DOI: 10.1111/acer.12363] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 12/23/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND The molecular mechanisms of the acute hypotensive and indirectly assessed cardiac depressant effect of ethanol (EtOH)-evoked myocardial depression and hypotension in female rats are not known. We tested the hypothesis that a time-dependent myocardial depression caused by EtOH is initiated by its direct and indirect (cardiac vagal dominance) effects and is exacerbated by gradual development of oxidative stress. METHODS In conscious female rats, we directly measured left ventricular developed pressure (LVDP), the maximal rise of ventricular pressure over time (dP/dtmax ), blood pressure (BP), heart rate (HR), and sympathovagal activity following intragastric EtOH (1 g/kg) or water over 90 minutes. Catalytic activity of acetaldehyde (ACA)-generating (alcohol dehydrogenase [ADH] and catalase) and eliminating aldehyde dehydrogenase [ALDH2] enzymes along with mediators of oxidative stress were measured in myocardial tissues collected at 30, 60, or 90 minutes after EtOH or water. RESULTS EtOH reduced myocardial function (LVDP and dP/dtmax ) within 5 to 10 minutes before the steady fall in BP in conscious proestrus rats. Further, EtOH shifted the sympathovagal balance, analyzed by spectral analysis of high frequency and low frequency of interbeat intervals, toward vagal dominance. Prior vagal blockade (atropine) or antioxidant (tempol) treatment attenuated EtOH-evoked myocardial depression and hypotension. Ex vivo studies revealed time-dependent: (i) enhancement of ADH, but not ALDH2 activity (indicative of elevated ACA levels), (ii) increases in phosphorylated Akt and ERK1/2, NADPH-oxidase activity, reactive oxygen species, malondialdehyde, and 4-hydroxy-2-nonenal-modified proteins. These molecular responses along with reduced myocardial catalase activity were most evident at 90 minutes post-EtOH when the reductions in cardiac function and BP reached their nadir. CONCLUSIONS Vagal dominance and time-dependent myocardial oxidative stress along with the accumulation of cardiotoxic aldehydes mediate EtOH-evoked myocardial dysfunction and hypotension in conscious proestrus female rats.
Collapse
Affiliation(s)
- Badr M Ibrahim
- Department of Pharmacology and Toxicology (BMI, MF, AAR-R), Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | | | | |
Collapse
|
16
|
Penumarti A, Abdel-Rahman AA. Neuronal nitric oxide synthase-dependent elevation in adiponectin in the rostral ventrolateral medulla underlies g protein-coupled receptor 18-mediated hypotension in conscious rats. J Pharmacol Exp Ther 2014; 351:44-53. [PMID: 25100751 PMCID: PMC4165025 DOI: 10.1124/jpet.114.216036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/05/2014] [Indexed: 12/28/2022] Open
Abstract
Direct activation of the endocannabinoid receptor G protein-coupled receptor 18 (GPR18) in the rostral ventrolateral medulla (RVLM) of conscious rats by abnormal cannabidiol (Abn CBD; trans-4-[3-methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl]-5-pentyl-1,3-benzenediol) elevates local nitric oxide (NO) and adiponectin (ADN) levels and reduces oxidative stress and blood pressure (BP). However, the molecular mechanisms for GPR18-mediated neurochemical responses, including the nitric oxide synthase isoform that generates NO, and their potential causal link to the BP reduction are not known. We hypothesized that GPR18-mediated enhancement of Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), and neuronal nitric oxide synthase (nNOS) phosphorylation, triggered by a reduction in cAMP, accounts for the NO/ADN-dependent reductions in RVLM oxidative stress and BP. Intra-RVLM GPR18 activation (Abn CBD; 0.4 μg) enhanced RVLM Akt, ERK1/2, and nNOS phosphorylation as well as ADN levels during the hypotensive response. Prior GPR18 blockade with O-1918 (1,3-dimethoxy-5-methyl-2-[(1R,6R)-3-methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl]benzene) produced the opposite effects and abrogated Abn CBD-evoked neurochemical and BP responses. Pharmacological inhibition of RVLM phosphoinositide 3-kinase (PI3K)/Akt (wortmannin), ERK1/2 (PD98059 [2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one]), or nNOS (N(ω)-propyl-l-arginine), or activation of adenylyl cyclase (forskolin) virtually abolished intra-RVLM Abn CBD-evoked hypotension and the increases in Akt, ERK1/2, and nNOS phosphorylation and in ADN levels in the RVLM. Our pharmacological and neurochemical findings support a pivotal role for PI3K, Akt, ERK1/2, nNOS, and adenylyl cyclase, via modulation of NO, ADN, and cAMP levels, in GPR18 regulation of the RVLM redox state and BP in conscious rats.
Collapse
Affiliation(s)
- Anusha Penumarti
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|
17
|
Activation of CB1 inhibits NGF-induced sensitization of TRPV1 in adult mouse afferent neurons. Neuroscience 2014; 277:679-89. [PMID: 25088915 DOI: 10.1016/j.neuroscience.2014.07.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/12/2014] [Accepted: 07/02/2014] [Indexed: 01/02/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. We found that CB1, NGF receptor tyrosine kinase A (trkA), and TRPV1 are present in cultured adult mouse small- to medium-sized afferent neurons and treatment with NGF (100ng/ml) for 30 min significantly increased the number of neurons that responded to capsaicin (as indicated by increased intracellular Ca(2 +) concentration). Pretreatment with the CB1 agonist ACEA (10nM) inhibited the NGF-induced response, and this effect of ACEA was reversed by a selective CB1 antagonist. Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling.
Collapse
|
18
|
Cannabinoid receptor 1 signaling in cardiovascular regulating nuclei in the brainstem: A review. J Adv Res 2013; 5:137-45. [PMID: 25685481 PMCID: PMC4294710 DOI: 10.1016/j.jare.2013.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 03/11/2013] [Accepted: 03/26/2013] [Indexed: 02/07/2023] Open
Abstract
Cannabinoids elicit complex hemodynamic responses in experimental animals that involve both peripheral and central sites. Centrally administered cannabinoids have been shown to predominantly cause pressor response. However, very little is known about the mechanism of the cannabinoid receptor 1 (CB1R)-centrally evoked pressor response. In this review, we provided an overview of the contemporary knowledge regarding the cannabinoids centrally elicited cardiovascular responses and the possible underlying signaling mechanisms. The current review focuses on the rostral ventrolateral medulla (RVLM) as the primary brainstem nucleus implicated in CB1R-evoked pressor response.
Collapse
|
19
|
Ibrahim BM, Abdel-Rahman AA. Enhancement of rostral ventrolateral medulla neuronal nitric-oxide synthase-nitric-oxide signaling mediates the central cannabinoid receptor 1-evoked pressor response in conscious rats. J Pharmacol Exp Ther 2012; 341:579-86. [PMID: 22366659 PMCID: PMC3362886 DOI: 10.1124/jpet.112.192369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/23/2012] [Indexed: 11/22/2022] Open
Abstract
Our recent studies implicated brainstem GABAergic signaling in the central cannabinoid receptor 1 (CB(1)R)-mediated pressor response in conscious rats. Given the well established link between neuronal nitric-oxide synthase (nNOS)/nitric oxide (NO) signaling and GABAergic transmission in brainstem cardiovascular regulating areas, we elucidated the role of nNOS-generated NO in the central CB(1)R-elicited pressor response. Compared with vehicle, intracisternal (i.c.) microinjection of the CB(1)R agonist (R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate (WIN55212-2) (15 μg/rat) significantly enhanced nNOS phosphorylation as well as the total nitrate and nitrite content in the rostral ventrolateral medulla (RVLM) at 5, 10, and 30 min, which paralleled the elicited pressor response. These findings were corroborated by: 1) the parallel dose-related increases in blood pressure and RVLM-NO levels, measured in real time by in vivo electrochemistry, elicited by intra-RVLM WIN55212-2 (100, 200, or 300 pmol /80 nl; n = 5) in conscious rats; and 2) the significantly higher phosphorylated nNOS (p-nNOS) levels in the WIN55212-2-injected RVLM compared with the contralateral RVLM. Subsequent neurochemical studies showed that WIN55212-2 (15 μg/rat i.c.) significantly increased the number and percentage of neurons immunostained for nNOS (nitroxidergic neurons) and c-Fos (marker of neuronal activity) within the RVLM. The increases in blood pressure and the neurochemical responses elicited by intracisternal WIN55212-2 were attenuated by prior central CB(1)R blockade by N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251; 30 μg/rat i.c.) or selective nNOS inhibition by N(ω)-propyl-(L)-arginine (1 μg/rat i.c.). These findings implicate RVLM p-nNOS/NO signaling as a molecular mechanism in the central CB(1)R-evoked pressor effect in conscious rats.
Collapse
Affiliation(s)
- Badr Mostafa Ibrahim
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | |
Collapse
|