1
|
Luo Z, Wu A, Robson S, Alper SL, Yu W. Adiponectin signaling regulates urinary bladder function by blunting smooth muscle purinergic contractility. JCI Insight 2025; 10:e188780. [PMID: 39989457 PMCID: PMC11949013 DOI: 10.1172/jci.insight.188780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/08/2025] [Indexed: 02/25/2025] Open
Abstract
Lower urinary tract symptoms (LUTS) affect approximately 50% of the population over 40 years of age and are strongly associated with obesity and metabolic syndrome. Adipose tissue plays a key role in obesity/metabolic syndrome by releasing adipokines that regulate systemic energy/lipid metabolism, insulin resistance, and inflammation. Adiponectin (ADPN), the most abundant adipokine, modulates energy/metabolism homeostasis through its insulin-sensitizing and antiinflammatory effects. Human plasma ADPN levels are inversely associated with obesity and diabetes. To the best of our knowledge, the role of adipokines such as ADPN in the LUTS associated with obesity/metabolic syndrome remains unknown. We have tested such a possible role in a global ADPN-knockout (Adpn-/-) mouse model. Adpn-/- mice exhibited increased voiding frequency, small voids, and reduced bladder smooth muscle (BSM) contractility, with absence of purinergic contraction. Molecular examination indicated significantly altered metabolic and purinergic pathways. The ADPN receptor agonist AdipoRon was found to abolish acute BSM contraction. Intriguingly, both AMPK activators and inhibitors also abolished BSM purinergic contraction. These data indicate the important contribution of what we believe is a novel ADPN signaling pathway to the regulation of BSM contractility. Dysregulation of this ADPN signaling pathway might be an important mechanism leading to LUTS associated with obesity/metabolic syndrome.
Collapse
Affiliation(s)
| | | | - Simon Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| | - Seth L. Alper
- Division of Nephrology
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Weiqun Yu
- Division of Nephrology
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Luo Z, Wu A, Robson S, Alper S, Yu W. Adiponectin Signaling Regulates Urinary Bladder Function by Blunting Smooth Muscle Purinergic Contractility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620328. [PMID: 39554160 PMCID: PMC11565761 DOI: 10.1101/2024.10.25.620328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Lower urinary tract symptoms (LUTS) affect ∼ 50% of the population aged >40 years and are strongly associated with obesity and metabolic syndrome. Adipose tissue plays a key role in obesity/metabolic syndrome by releasing adipokines that regulate systemic energy/lipid metabolism, insulin resistance, and inflammation. Adiponectin (ADPN), the most abundant adipokine, modulates energy/metabolism homeostasis through its insulin-sensitizing and anti-inflammatory effects. Human plasma ADPN levels are inversely associated with obesity and diabetes. The role of adipokines such as ADPN in the LUTS associated with obesity/metabolic syndrome remains unknown. We have tested such a possible role in a global ADPN knockout mouse model ( Adpn -/- ). Adpn -/- mice exhibited increased voiding frequency, small voids, and reduced bladder smooth muscle (BSM) contractility with absence of purinergic contraction. Molecular examination indicated significantly altered metabolic and purinergic pathways. The ADPN receptor agonist AdipoRon was found to abolish acute BSM contraction. Intriguingly, both AMPK activators and inhibitors also abolished BSM purinergic contraction. These data indicate the important contribution of a novel ADPN signaling pathway to the regulation of BSM contractility. Dysregulation of this ADPN signaling pathway might be an important mechanism leading to LUTS associated with obesity/metabolic syndrome. ARTICLE HIGHLIGHTS Lower urinary tract symptom (LUTS) is strongly associated with obesity and metabolic syndrome, however, the underlying molecular mechanisms are missing. Dysregulation of adipokine signaling could be the link for this association.Whether adiponectin, the most abundant adipokine, plays a role in regulating bladder function and dysfunction.Mice null for adiponectin exhibited increased voiding frequency, small voids, and reduced bladder smooth muscle contractility, with corresponding metabolic and purinergic pathway changes.Dysregulation of adiponectin signaling might be an important mechanism leading to LUTS associated with obesity/metabolic syndrome.
Collapse
|
3
|
Ishikawa T, Matsukawa Y, Naito Y, Ishida S, Majima T, Gotoh M. Adiponectin can be a good predictor of urodynamic detrusor underactivity: a prospective study in men with lower urinary tract symptoms. World J Urol 2023; 41:1117-1124. [PMID: 36823359 DOI: 10.1007/s00345-023-04341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
PURPOSE To investigate whether circulating adiponectin, which is considered a possible marker of anti-atherogenic effects, is a useful predictor of bladder function, especially detrusor underactivity (DU), in men with lower urinary tract symptoms (LUTS). METHODS A total of 130 treatment-naïve men with non-neurogenic LUTS were prospectively stratified into two groups (the DU and non-DU groups) based on the presence or absence of DU, where DU is defined as a bladder contractility index < 100 and bladder outlet obstruction index (BOOI) < 40. The impact of serum adiponectin levels on urodynamic function, including DU, was assessed using univariate, binomial logistic regression, and receiver operating characteristic (ROC) curve analyses. RESULTS In total, data from 118 men were analyzed; 39 (33.0%) had DU (DU group) and 79 (67.0%) did not have DU (non-DU group). The median serum adiponectin in the DU group was significantly lower than in the non-DU group (6.2 vs 12.6 µg/mL, p < 0.001). In the binomial logistic regression analysis, lower adiponectin, smaller intravesical prostatic protrusion, and lower bladder voiding efficiency were significant factors related to DU. In the ROC analyses, serum adiponectin had the highest area under the curve value for DU diagnosis (0.849). Additionally, a cutoff value of 7.9 µg/mL for serum adiponectin level was identified for DU, which yielded a sensitivity and specificity of 79% and 90%, respectively. CONCLUSIONS The serum adiponectin level was significantly associated with bladder function and may be a useful marker for predicting DU in men with LUTS.
Collapse
Affiliation(s)
- Tomohiro Ishikawa
- Department of Urology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yoshihisa Matsukawa
- Department of Urology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Yushi Naito
- Department of Urology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Shohei Ishida
- Department of Urology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Tsuyoshi Majima
- Department of Urology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Momokazu Gotoh
- Department of Urology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| |
Collapse
|
4
|
Fazeli Daryasari SR, Tehranian N, Kazemnejad A, Razavinia F, Tork Tatari F, Pahlavan F. Adiponectin levels in maternal serum and umbilical cord blood at birth by mode of delivery: relationship to anthropometric measurements and fetal sex. BMC Pregnancy Childbirth 2019; 19:344. [PMID: 31590631 PMCID: PMC6781401 DOI: 10.1186/s12884-019-2460-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/15/2019] [Indexed: 02/04/2023] Open
Abstract
Background The rate of cesarean section is increasing worldwide. Adiponectin is a hormone related to anti-inflammatory and anti-atherogenic effects; and it′s concentrations may change in response to inflammatory situations including surgical intervention. The aim of the current study was to investigate serum adiponectin levels in maternal and umbilical cord blood according to different modes of delivery and their relationship with anthropometric measurements and fetal sex. Methods The study population initially comprised 90 healthy pregnant women referred to the teaching hospital. Eventually, 40 participants in the vaginal delivery group and 35 subjects in the cesarean delivery group were recruited in to the study. Umbilical cord blood and maternal serum samples were analyzed according to the standard protocol from the manufacturer. The collected data were analyzed using SPSS-16 software. P-value < 0.05 was considered as the significance level for all tests. Results Our results indicated a significant association between maternal adiponectin and the mode of delivery, with adiponectin levels significantly higher in vaginal delivery compared to cesarean section (P < 0.001). However, no difference was found in umbilical cord blood adiponectin between the two groups (P = 0.51). A significant positive correlation was found between maternal serum adiponectin in the first day after birth and umbilical cord blood adiponectin in the vaginal delivery group (P = 0.007). Nevertheless, this correlation was not statistically significant in the cesarean delivery group (P = 0.62). There was also no significant correlation between fetal sex and anthropometric measurements with maternal adiponectin (P = 0.44) and umbilical cord blood adiponectin (P = 0.86). Conclusions The result of the current study revealed that maternal adiponectin concentration was significantly higher in vaginal delivery compared to cesarean section, which might be due to the increased levels of maternal adiponectin release during labor.
Collapse
Affiliation(s)
- Seyedeh Razieh Fazeli Daryasari
- Department of Midwifery & Reproductive Health, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O.Box: 14115-111, Tehran, Iran
| | - Najmeh Tehranian
- Department of Midwifery & Reproductive Health, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O.Box: 14115-111, Tehran, Iran.
| | - Anoshirvan Kazemnejad
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Razavinia
- Department of Midwifery & Reproductive Health, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O.Box: 14115-111, Tehran, Iran
| | - Fatemeh Tork Tatari
- Department of Midwifery & Reproductive Health, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O.Box: 14115-111, Tehran, Iran
| | - Fattaneh Pahlavan
- Department of Midwifery & Reproductive Health, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O.Box: 14115-111, Tehran, Iran
| |
Collapse
|
5
|
Chen HM, Yang CM, Chang JF, Wu CS, Sia KC, Lin WN. AdipoR-increased intracellular ROS promotes cPLA2 and COX-2 expressions via activation of PKC and p300 in adiponectin-stimulated human alveolar type II cells. Am J Physiol Lung Cell Mol Physiol 2016; 311:L255-69. [PMID: 27288489 DOI: 10.1152/ajplung.00218.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 03/28/2016] [Indexed: 01/21/2023] Open
Abstract
Adiponectin, an adipokine, accumulated in lung system via T-cadherin after allergens/ozone challenge. However, the roles of adiponectin on lung pathologies were controversial. Here we reported that adiponectin stimulated expression of inflammatory proteins, cytosolic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2), and production of reactive oxygen species (ROS) in human alveolar type II A549 cells. AdipoR1/2 involved in adiponectin-activated NADPH oxidase and mitochondria, which further promoted intracellular ROS accumulation. Protein kinase C (PKC) may involve an adiponectin-activated NADPH oxidase. Similarly, p300 phosphorylation and histone H4 acetylation occurred in adiponectin-challenged A549 cells. Moreover, adiponectin-upregulated cPLA2 and COX-2 expression was significantly abrogated by ROS scavenger (N-acetylcysteine) or the inhibitors of NADPH oxidase (apocynin), mitochondrial complex I (rotenone), PKC (Ro31-8220, Gö-6976, and rottlerin), and p300 (garcinol). Briefly, we reported that adiponectin stimulated cPLA2 and COX-2 expression via AdipoR1/2-dependent activation of PKC/NADPH oxidase/mitochondria resulting in ROS accumulation, p300 phosphorylation, and histone H4 acetylation. These results suggested that adiponectin promoted lung inflammation, resulting in exacerbation of pulmonary diseases via upregulating cPLA2 and COX-2 expression together with intracellular ROS production. Understanding the adiponectin signaling pathways on regulating cPLA2 and COX-2 may help develop therapeutic strategies on pulmonary diseases.
Collapse
Affiliation(s)
- Hsiao-Mei Chen
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, Xinzhuang, New Taipei City, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, Kwei-San, Tao-Yuan, Taiwan; Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Jia-Feng Chang
- PhD Program in Nutrition and Food Science, Fu Jen Catholic University, Xinzhuang, New Taipei City, Taiwan; Department of Internal Medicine, En-Chu-Kong Hospital, Sanxia, New Taipei City, Taiwan
| | - Chi-Sheng Wu
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, Xinzhuang, New Taipei City, Taiwan
| | - Kee-Chin Sia
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, Xinzhuang, New Taipei City, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, Xinzhuang, New Taipei City, Taiwan
| |
Collapse
|
6
|
Hypolite JA, Malykhina AP. Regulation of urinary bladder function by protein kinase C in physiology and pathophysiology. BMC Urol 2015; 15:110. [PMID: 26538012 PMCID: PMC4634593 DOI: 10.1186/s12894-015-0106-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/22/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Protein kinase C (PKC) is expressed in many tissues and organs including the urinary bladder, however, its role in bladder physiology and pathophysiology is still evolving. The aim of this review was to evaluate available evidence on the involvement of PKC in regulation of detrusor contractility, muscle tone of the bladder wall, spontaneous contractile activity and bladder function under physiological and pathophysiological conditions. METHODS This is a non-systematic review of the published literature which summarizes the available animal and human data on the role of PKC signaling in the urinary bladder under different physiological and pathophysiological conditions. A wide PubMed search was performed including the combination of the following keywords: "urinary bladder", "PKC", "detrusor contractility", "bladder smooth muscle", "detrusor relaxation", "peak force", "detrusor underactivity", "partial bladder outlet obstruction", "voltage-gated channels", "bladder nerves", "PKC inhibitors", "PKC activators". Retrieved articles were individually screened for the relevance to the topic of this review with 91 citations being selected and included in the data analysis. DISCUSSION Urinary bladder function includes the ability to store urine at low intravesical pressure followed by a subsequent release of bladder contents due to a rapid phasic contraction that is maintained long enough to ensure complete emptying. This review summarizes the current concepts regarding the potential contribution of PKC to contractility, physiological voiding, and related signaling mechanisms involved in the control of both the storage and emptying phases of the micturition cycle, and in dysfunctional voiding. Previous studies linked PKC activation exclusively with an increase in generation of the peak force of smooth muscle contraction, and maximum force generation in the lower urinary tract. More recent data suggests that PKC presents a broader range of effects on urinary bladder function including regulation of storage, emptying, excitability of the detrusor, and bladder innervation. In this review, we evaluated the mechanisms of peripheral and local regulation of PKC signaling in the urinary bladder, and their impact on different phases of the micturition cycle under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Joseph A Hypolite
- Division of Urology, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, 12700 E 19th Ave. Mail Stop C317, Aurora, CO, 80045, USA.
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, 12700 E 19th Ave. Mail Stop C317, Aurora, CO, 80045, USA.
| |
Collapse
|
7
|
Bae WJ, Choi YS, Kim SJ, Cho HJ, Hong SH, Kim SW, Hwang TK, Kim DJ, Lee JY. Effects of Moderate Alcohol Intake in the Bladder of the Otsuka Long Evans Tokushima Fatty Diabetic Rats. J Korean Med Sci 2015; 30:1313-20. [PMID: 26339173 PMCID: PMC4553680 DOI: 10.3346/jkms.2015.30.9.1313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/14/2015] [Indexed: 01/21/2023] Open
Abstract
Diabetes is related with a number of cystopathic complications. However, there have been no studies about the influence of alcohol consumption in the bladder of type 2 diabetes. Thus, we investigated the effect of moderate alcohol intake in the bladder of the Otsuka Long Evans Tokushima Fatty (OLETF) diabetic rat. The non-diabetic Long-Evans Tokushima Otsuka (LETO, n=14) and the OLETF control group (n=14) were fed an isocaloric diet; the LETO (n=14) and the OLETF ethanol group (n=14) were fed 36% ethanol 7 g/kg/day. After ten weeks, muscarinic receptors, RhoGEFs, myogenic change, and the level of oxidative stress were evaluated. Moderate alcohol intake significantly decreased excessive muscarinic receptor and Rho kinase expressions in the OLETF rats compared with the LETO rats. In addition, iNOS and collagen expression were not changed in the OLETF rats in spite of alcohol consumption. Superoxide dismutase levels, which is involved in antioxidant defense, in the LETO rats were significantly decreased after alcohol consumption, however those in the OLETF rats were similar. Moderate alcohol consumption reduces the oxidative stress, and may prevent molecular and pathologic changes of the bladder of rats with type 2 diabetes.
Collapse
Affiliation(s)
- Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong Sun Choi
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Su Jin Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyuk Jin Cho
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Hoo Hong
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tae-Kon Hwang
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dai Jin Kim
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Youl Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Prostate Institute, The Catholic University of Korea, Seoul, Korea
- Department of Bioinformatics, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
8
|
A short review of adipokines, smooth muscle and uterine contractility. Life Sci 2015; 125:2-8. [PMID: 25711427 DOI: 10.1016/j.lfs.2015.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/02/2015] [Indexed: 12/11/2022]
Abstract
Obesity is a major health problem worldwide. The prevalence of obesity is increasing in both developed and developing countries. In the UK, for example, 60% of adults are overweight and 25% are obese. Obesity is associated with many pathological complications including respiratory, cardiovascular and endocrine, but it also affects fertility and is associated with many reproductive complications. This has led us and others to investigate links between women with high BMI, pregnancy outcome and uterine function. These studies in turn have led investigators to ask how obesity can have such an impact on reproduction and, as part of this, to consider the role of the adipokines released from adipose tissues. Our focus in this short review is on adipokines and myometrial activity, and for completeness we overview their effects on other smooth muscles. To date four adipokines (leptin, visfatin, apelin and ghrelin) have been investigated and all affect myometrial contractility, but some more potently than others. We consider the possible mechanisms involved in how adipokines may modify uterine contractility, and discuss the potential impact on labor and delivery.
Collapse
|
9
|
Nobe K, Takenouchi Y, Kasono K, Hashimoto T, Honda K. Two types of overcontraction are involved in intrarenal artery dysfunction in type II diabetic mouse. J Pharmacol Exp Ther 2014; 351:77-86. [PMID: 25085043 DOI: 10.1124/jpet.114.216747] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Contractile responses in small intrarenal arteries are associated with diabetic nephropathy. However, the mechanisms that induce and maintain altered small vessel contraction are not clearly understood. To further understand intrarenal artery dysfunction in diabetes, phenylephrine (PE)-induced force development was assessed in the intrarenal artery [interlobar artery (ILA)] in control (lean) and type II diabetic (ob/ob) mice. PE-induced dose-dependent force development in the ILA was significantly greater in ob/ob mice than in lean mice (592.8 ± 5.2 and 770.1 ± 12.1 µ/mm tissue, respectively, following administration of 30 µM PE, n = 5). Under high-glucose conditions (twice the normal concentration of glucose), PE-induced force development in the ILA was only enhanced in ob/ob mice (946.0 ± 18.2 µN/mm tissue; n = 5). ILA dysfunction reduces blood flow to the glomerulus and may induce diabetic nephropathy. Basal overcontraction of the ILA in ob/ob mice under normal-glucose conditions was reduced by pretreatment with rottlerin, a calcium-independent protein kinase C (PKCδ) inhibitor. Total PKC activity was also reduced by rottlerin. Under high-glucose conditions, the enhanced ILA contraction in diabetic mice was suppressed by rho A and rho kinase inhibitors. Our results indicate two types of ILA dysfunction in diabetes, as follows: 1) a basal increase in PE-induced contraction under normal-glucose conditions, and 2) extracellular glucose-dependent enhancement of PE-induced contraction. We believe that these dysfunctions are mediated by the activation of the PKCδ and rho A-rho kinase pathways, respectively.
Collapse
Affiliation(s)
- Koji Nobe
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan (K.N., Y.T., K.K.); and Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan (T.H., K.H.)
| | - Yasuhiro Takenouchi
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan (K.N., Y.T., K.K.); and Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan (T.H., K.H.)
| | - Keizo Kasono
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan (K.N., Y.T., K.K.); and Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan (T.H., K.H.)
| | - Terumasa Hashimoto
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan (K.N., Y.T., K.K.); and Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan (T.H., K.H.)
| | - Kazuo Honda
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan (K.N., Y.T., K.K.); and Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan (T.H., K.H.)
| |
Collapse
|