1
|
Estrada-Sánchez AM, Rangel-Barajas C, Howe AG, Barton SJ, Mach RH, Luedtke RR, Rebec GV. Selective Activation of D3 Dopamine Receptors Ameliorates DOI-Induced Head Twitching Accompanied by Changes in Corticostriatal Processing. Int J Mol Sci 2023; 24:ijms24119300. [PMID: 37298250 DOI: 10.3390/ijms24119300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
D3 receptors, a key component of the dopamine system, have emerged as a potential target of therapies to improve motor symptoms across neurodegenerative and neuropsychiatric conditions. In the present work, we evaluated the effect of D3 receptor activation on the involuntary head twitches induced by 2,5-dimethoxy-4-iodoamphetamine (DOI) at behavioral and electrophysiological levels. Mice received an intraperitoneal injection of either a full D3 agonist, WC 44 [4-(2-fluoroethyl)-N-[4-[4-(2-methoxyphenyl)piperazin 1-yl]butyl]benzamide] or a partial D3 agonist, WW-III-55 [N-(4-(4-(4-methoxyphenyl)piperazin-1-yl)butyl)-4-(thiophen-3-yl)benzamide] five minutes before the intraperitoneal administration of DOI. Compared to the control group, both D3 agonists delayed the onset of the DOI-induced head-twitch response and reduced the total number and frequency of the head twitches. Moreover, the simultaneous recording of neuronal activity in the motor cortex (M1) and dorsal striatum (DS) indicated that D3 activation led to slight changes in a single unit activity, mainly in DS, and increased its correlated firing in DS or between presumed cortical pyramidal neurons (CPNs) and striatal medium spiny neurons (MSNs). Our results confirm the role of D3 receptor activation in controlling DOI-induced involuntary movements and suggest that this effect involves, at least in part, an increase in correlated corticostriatal activity. A further understanding of the underlying mechanisms may provide a suitable target for treating neuropathologies in which involuntary movements occur.
Collapse
Affiliation(s)
- Ana María Estrada-Sánchez
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa San José No. 2055, Colonia Lomas 4a Sección, San Luis Potosi C.P. 78216, Mexico
| | - Claudia Rangel-Barajas
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Andrew G Howe
- Psychology Department, University of California Los Angeles, Los Angeles, CA 90095, USA
- Intelligent Systems Laboratory, HRL Laboratories, LLC., Malibu, CA 90265, USA
| | - Scott J Barton
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania School of Medicine, Chemistry Building, 231 S. 34th St., Philadelphia, PA 19104, USA
| | - Robert R Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - George V Rebec
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Namba MD, Phillips MN, Chen PJ, Blass BE, Olive MF, Neisewander JL. HIV gp120 impairs nucleus accumbens neuroimmune function and dopamine D3 receptor-mediated inhibition of cocaine seeking in male rats. ADDICTION NEUROSCIENCE 2023; 5:100062. [PMID: 36909738 PMCID: PMC9997483 DOI: 10.1016/j.addicn.2023.100062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cocaine Use Disorders (CUDs) are associated with an increased risk of human immunodeficiency virus (HIV) infection. Cocaine and the HIV envelope protein gp120 each induce distinct deficits to mesocorticolimbic circuit function and motivated behavior; however, little is known regarding how they interact to dysregulate these functions or how such interactions impact pharmacotherapeutic efficacy. We have previously shown that the selective, weak partial agonist of the dopamine D3 receptor (D3R), MC-25-41, attenuates cocaine-seeking behavior in male rats. Here, we sought to characterize changes in striatal neuroimmune function in gp120-exposed rats across abstinence from operant access to cocaine (0.75 mg/kg, i.v.) or sucrose (45 mg/pellet), and to examine the impact of gp120 exposure on MC-25-41-reduced cocaine seeking. After establishing a history of cocaine or sucrose self-administration, rats received intracerebroventricular gp120 infusions daily the first 5 days of abstinence and were sacrificed either on day 6 or after 21 days of forced abstinence and a cue-induced cocaine seeking test. We demonstrated that MC-25-41 treatment attenuated cue-induced cocaine seeking among control rats but not gp120-exposed rats. Moreover, postmortem analysis of nucleus accumbens (NAc) core neuroimmune function indicated cocaine abstinence- and gp120-induced impairments, and the expression of several immune factors within the NAc core significantly correlated with cocaine-seeking behavior. We conclude that cocaine abstinence dysregulates striatal neuroimmune function and interacts with gp120 to inhibit the effectiveness of a D3R partial agonist in reducing cocaine seeking. These findings highlight the need to consider comorbidities, such as immune status, when evaluating the efficacy of novel pharmacotherapeutics.
Collapse
Affiliation(s)
- Mark D Namba
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Megan N Phillips
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Peng-Jen Chen
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Benjamin E Blass
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
3
|
G-protein Biased Signaling Agonists of Dopamine D3 Receptor Promote Distinct Activation Patterns of ERK1/2. Pharmacol Res 2022; 179:106223. [DOI: 10.1016/j.phrs.2022.106223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 01/11/2023]
|
4
|
Angarita GA, Hadizadeh H, Cerdena I, Potenza MN. Can pharmacotherapy improve treatment outcomes in people with co-occurring major depressive and cocaine use disorders? Expert Opin Pharmacother 2021; 22:1669-1683. [PMID: 34042556 DOI: 10.1080/14656566.2021.1931684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Major depressive disorder (MDD) and cocaine use disorder (CUD) are prevalent and frequently co-occur. When co-occurring, the presence of one disorder typically negatively impacts the prognosis for the other. Given the clinical relevance, we sought to examine pharmacotherapies for co-occurring CUD and MDD. While multiple treatment options have been examined in the treatment of each condition individually, studies exploring pharmacological options for their comorbidity are fewer and not conclusive.Areas Covered: For this review, the authors searched the literature in PubMed using clinical query options for therapies and keywords relating to each condition. Then, they described potentially promising pharmacologic therapeutic options based on shared mechanisms between the two conditions and/or results from individual clinical trials conducted to date.Expert opinion: Medications like stimulants, dopamine (D3) receptors partial agonists or antagonists, antagonists of kappa opioid receptors, topiramate, and ketamine could be promising as there is significant overlap relating to reward deficiency models, antireward pathways, and altered glutamatergic systems. However, the available clinical literature on any one of these types of agents is mixed. Additionally, for some agents there is possible concern related to abuse potential (e.g. ketamine and stimulants).
Collapse
Affiliation(s)
- Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
| | - Hasti Hadizadeh
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
| | - Ignacio Cerdena
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA.,Child Study Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University, New Haven, CT, USA.,Connecticut Council on Problem Gambling, Wethersfield, CT, USA
| |
Collapse
|
5
|
Lee B, Taylor M, Griffin SA, McInnis T, Sumien N, Mach RH, Luedtke RR. Evaluation of Substituted N-Phenylpiperazine Analogs as D3 vs. D2 Dopamine Receptor Subtype Selective Ligands. Molecules 2021; 26:molecules26113182. [PMID: 34073405 PMCID: PMC8198181 DOI: 10.3390/molecules26113182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
N-phenylpiperazine analogs can bind selectively to the D3 versus the D2 dopamine receptor subtype despite the fact that these two D2-like dopamine receptor subtypes exhibit substantial amino acid sequence homology. The binding for a number of these receptor subtype selective compounds was found to be consistent with their ability to bind at the D3 dopamine receptor subtype in a bitopic manner. In this study, a series of the 3-thiophenephenyl and 4-thiazolylphenyl fluoride substituted N-phenylpiperazine analogs were evaluated. Compound 6a was found to bind at the human D3 receptor with nanomolar affinity with substantial D3 vs. D2 binding selectivity (approximately 500-fold). Compound 6a was also tested for activity in two in-vivo assays: (1) a hallucinogenic-dependent head twitch response inhibition assay using DBA/2J mice and (2) an L-dopa-dependent abnormal involuntary movement (AIM) inhibition assay using unilateral 6-hydroxydopamine lesioned (hemiparkinsonian) rats. Compound 6a was found to be active in both assays. This compound could lead to a better understanding of how a bitopic D3 dopamine receptor selective ligand might lead to the development of pharmacotherapeutics for the treatment of levodopa-induced dyskinesia (LID) in patients with Parkinson’s disease.
Collapse
Affiliation(s)
- Boeun Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.L.); (R.H.M.)
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Suzy A. Griffin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Tamara McInnis
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.L.); (R.H.M.)
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
- Correspondence:
| |
Collapse
|
6
|
Powell GL, Namba MD, Vannan A, Bonadonna JP, Carlson A, Mendoza R, Chen PJ, Luetdke RR, Blass BE, Neisewander JL. The Long-Acting D3 Partial Agonist MC-25-41 Attenuates Motivation for Cocaine in Sprague-Dawley Rats. Biomolecules 2020; 10:biom10071076. [PMID: 32708461 PMCID: PMC7408535 DOI: 10.3390/biom10071076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
The dopamine D3 receptor is a prime target for developing treatments for cocaine use disorders (CUDs). In this study, we conducted a pre-clinical investigation of the therapeutic potential of a long-acting, D3 receptor partial agonist, MC-25-41. Male rats were pre-treated with MC-25-41 (vehicle, 1.0, 3.0, 5.6, or 10 mg/kg, intraperitoneal (IP)) five minutes prior to tests of cocaine or sucrose intake on either a progressive ratio schedule of reinforcement or a variable interval 60 s multiple schedule consisting of 4, 15-min components with sucrose or cocaine available in alternating components. A separate cohort of rats was tested on a within-session, dose-reduction procedure to determine the effects of MC-25-41 on demand for cocaine using a behavioral economics analysis. Finally, rats were tested for effects of MC-25-41 on spontaneous and cocaine-induced locomotion. MC-25-41 failed to alter locomotion, but reduced reinforcement rates for both cocaine and sucrose on the low-effort, multiple schedule. However, on the higher-effort, progressive ratio schedule of cocaine reinforcement, MC-25-41 reduced infusions, and active lever presses at doses that did not alter sucrose intake. The behavioral economics analysis showed that MC-25-41 also increased cocaine demand elasticity compared to vehicle, indicating a reduction in consumption as price increases. Together, these results suggest that similar to other D3-selective antagonists and partial agonists, MC-25-41 reduces motivation for cocaine under conditions of high cost but has the added advantage of a long half-life (>10 h). These findings suggest that MC-25-41 may be a suitable pre-clinical lead compound for development of medications to treat CUDs.
Collapse
Affiliation(s)
- Gregory L. Powell
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Mark D. Namba
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Annika Vannan
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - John Paul Bonadonna
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Andrew Carlson
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Rachel Mendoza
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Peng-Jen Chen
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (P.-J.C.); (B.E.B.)
| | - Robert R. Luetdke
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Benjamin E. Blass
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (P.-J.C.); (B.E.B.)
| | - Janet L. Neisewander
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
- Correspondence:
| |
Collapse
|
7
|
Design, synthesis, and evaluation of N-(4-(4-phenyl piperazin-1-yl)butyl)-4-(thiophen-3-yl)benzamides as selective dopamine D 3 receptor ligands. Bioorg Med Chem Lett 2019; 29:2690-2694. [PMID: 31387791 DOI: 10.1016/j.bmcl.2019.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 11/20/2022]
Abstract
As part of our on-going effort to explore the role of dopamine receptors in drug addiction and identify potential novel therapies for this condition, we have a identified a series of N-(4-(4-phenyl piperazin-1-yl)butyl)-4-(thiophen-3-yl)benzamide D3 ligands. Members of this class are highly selective for D3 versus D2, and we have identified two compounds (13g and 13r) whose rat in vivo IV pharmacokinetic properties that indicate that they are suitable for assessment in in vivo efficacy models of substance use disorders.
Collapse
|
8
|
Hayatshahi HS, Xu K, Griffin SA, Taylor M, Mach RH, Liu J, Luedtke RR. Analogues of Arylamide Phenylpiperazine Ligands To Investigate the Factors Influencing D3 Dopamine Receptor Bitropic Binding and Receptor Subtype Selectivity. ACS Chem Neurosci 2018; 9:2972-2983. [PMID: 30010318 DOI: 10.1021/acschemneuro.8b00142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have previously reported on the ability of arylamide phenylpiperazines to bind selectively to the D3 versus the D2 dopamine receptor subtype. For these studies, we used LS-3-134 as the prototypic arylamide phenylpiperazine ligand because it binds with high affinity at D3 dopamine receptor (0.17 nM) and exhibits >150-fold D3 vs D2 receptor binding selectivity. Our goal was to investigate how the composition and size of the nonaromatic ring structure at the piperazine position of substituted phenylpiperazine analogues might influence binding affinity at the human D2 and D3 dopamine receptors. Two factors were identified as being important for determining the binding affinity of bitropic arylamide phenylpiperazines at the dopamine D3 receptor subtype. One factor was the strength of the salt bridge between the highly conserved residue Asp3.32 with the protonated nitrogen of the nonaromatic ring at the piperazine position. The second factor was the configuration of the unbound ligand in an aqueous solution. These two factors were found to be related to the logarithm of the affinities using a simple correlation model, which could be useful when designing high affinity subtype selective bitropic ligands. While this model is based upon the interaction of arylamide phenylpiperazines with the D2 and D3 D2-like dopamine receptor subtypes, it provides insights into the complexity of the factors that define a bitropic mode of the binding at GPCRs.
Collapse
Affiliation(s)
- Hamed S. Hayatshahi
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Kuiying Xu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Suzy A. Griffin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| |
Collapse
|
9
|
Dopamine D3 receptor partial agonist LS-3-134 attenuates cocaine-motivated behaviors. Pharmacol Biochem Behav 2018; 175:123-129. [PMID: 30308214 DOI: 10.1016/j.pbb.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 01/09/2023]
Abstract
AIMS The dopamine D3 receptor (D3R) is a pharmacotherapeutic target for drug dependence. We have successfully imaged human D3Rs using radiolabeled LS-3-134, an arylamide phenylpiperazine with moderate selectivity for the D3R over D2R and low efficacy at the D2 and D3R. In this study, we screened for effects of LS-3-134 as a potential anti-cocaine therapeutic. METHODS Male rats were pretreated with LS-3-134 (0, 1.0, 3.2, or 5.6 mg/kg, IP) 15 min prior to tests for its effects on spontaneous and cocaine-induced locomotion. We next investigated the effects of LS-3-134 (0, 1.0, 3.2, 5.6, or 10.0 mg/kg, IP) on operant responding on a multiple variable-interval (VI) 60-second schedule with alternating cocaine (0.375 mg/kg, IV) and sucrose (45 mg) reinforcer components. Additionally, we tested LS-3-134 (5.6 mg/kg, IP) effects on a progressive ratio (PR) schedule of cocaine reinforcement, on extinction of cocaine-seeking behavior, and on reinstatement of extinguished cocaine-seeking behavior by cocaine-associated light/tone cues. RESULTS LS-3-134 did not alter spontaneous locomotion, but reduced cocaine-induced locomotion, break points on the high-effort progressive ratio schedule of reinforcement, and responding during extinction and cue reinstatement. In contrast, LS-3-134 did not alter cocaine or sucrose reinforcement on the low-effort multiple VI 60-second schedule. CONCLUSIONS The effects of LS-3-134 are similar to other dopamine D3 low efficacy partial agonists and antagonists in attenuating cocaine intake under high effort schedules of reinforcement and in attenuating cocaine-seeking behavior elicited by cocaine-associated cues. These findings are consistent with the anti-craving profile of other dopamine D3 drugs.
Collapse
|
10
|
Powell GL, Bonadonna JP, Vannan A, Xu K, Mach RH, Luedtke RR, Neisewander JL. Dopamine D3 receptor partial agonist LS-3-134 attenuates cocaine-motivated behaviors. Pharmacol Biochem Behav 2018; 171:46-53. [PMID: 29807065 DOI: 10.1016/j.pbb.2018.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/01/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022]
Abstract
AIMS The dopamine D3 receptor (D3R) is a pharmacotherapeutic target for drug dependence. We have successfully imaged human D3Rs using radiolabeled LS-3-134, an arylamide phenylpiperazine with moderate selectivity for the D3R over D2R and low efficacy at the D2 and D3R. In this study, we screened for effects of LS-3-134 as a potential anti-cocaine therapeutic. METHODS Male rats were pretreated with LS-3-134 (0, 1.0, 3.2, or 5.6 mg/kg, IP) 15 min prior to tests for its effects on spontaneous and cocaine-induced locomotion. We next investigated the effects of LS-3-134 (0, 1.0, 3.2, 5.6, or 10.0 mg/kg, IP) on operant responding on a multiple variable-interval (VI) 60-second schedule with alternating cocaine (0.375 mg/kg, IV) and sucrose (45 mg) reinforcer components. Additionally, we tested LS-3-134 (5.6 mg/kg, IP) effects on a progressive ratio (PR) schedule of cocaine reinforcement, on extinction of cocaine-seeking behavior, and on reinstatement of extinguished cocaine-seeking behavior by cocaine-associated light/tone cues. RESULTS LS-3-134 did not alter spontaneous locomotion, but at 5.6 mg/kg, it reduced cocaine-induced locomotion, break points on the high-effort progressive ratio schedule of reinforcement, and responding during extinction and cue reinstatement. In contrast, LS-3-134 did not alter cocaine or sucrose reinforcement on the low-effort multiple VI 60-second schedule. CONCLUSIONS The effects of LS-3-134 are similar to other dopamine D3 low efficacy partial agonists and antagonists in attenuating cocaine intake under high effort schedules of reinforcement and in attenuating cocaine-seeking behavior elicited by cocaine-associated cues. These findings are consistent with the anti-craving profile of other dopamine D3 drugs.
Collapse
Affiliation(s)
- Gregory L Powell
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Annika Vannan
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Kuiying Xu
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Robert R Luedtke
- University of North Texas Health Science Center, the Department of Pharmacology and Neuroscience, Fort Worth, TX, United States
| | | |
Collapse
|
11
|
Zhou B, Hong KH, Ji M, Cai J. Design, synthesis, and biological evaluation of structurally constrained hybrid analogues containing ropinirole moiety as a novel class of potent and selective dopamine D3 receptor ligands. Chem Biol Drug Des 2018; 92:1597-1609. [PMID: 29710404 DOI: 10.1111/cbdd.13324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 03/12/2018] [Accepted: 03/24/2018] [Indexed: 01/05/2023]
Abstract
Two series of hybrid analogues were designed, synthesized, and evaluated as a novel class of selective ligands for the dopamine D3 receptor. Binding affinities of target compounds were determined (using the method of radioligand binding assay). Compared to comparator agent BP897, compounds 2a and 2c were found to demonstrate a considerable binding affinity and selectivity for D3 receptor, and especially compound 2h was similarly potent and more selective D3R ligand than BP897, a positive reference. Thus, they may provide valuable information for the discovery and development of highly potent dopamine D3 receptor ligands with outstanding selectivity.
Collapse
Affiliation(s)
- Benhua Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, China.,School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Kwon Ho Hong
- Department of Medicinal Chemistry and the Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota
| | - Min Ji
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China.,Suzhou Key Laboratory of Biomaterials and Technologies & Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Jin Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, China.,Suzhou Key Laboratory of Biomaterials and Technologies & Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| |
Collapse
|
12
|
Dopamine D1 and D3 receptor polypharmacology as a potential treatment approach for substance use disorder. Neurosci Biobehav Rev 2018; 89:13-28. [PMID: 29577963 DOI: 10.1016/j.neubiorev.2018.03.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/29/2022]
Abstract
In the search for efficacious pharmacotherapies to treat cocaine addiction much attention has been given to agents targeting dopamine D1 or D3 receptors because of the involvement of these receptors in drug-related behaviors. D1-like and D3 receptor partial agonists and antagonists have been shown to reduce drug reward, reinstatement of drug seeking and conditioned place preference in rodents and non-human primates. However, translation of these encouraging results to clinical settings has been limited due to a number of factors including toxicity, poor pharmacokinetic properties and extrapyramidal and sedative side effects. This review highlights the role of D1 and D3 receptors in drug reward and seeking, the discovery of D1-D3 heteromers and their potential as targets in the treatment of addiction.
Collapse
|
13
|
Antinori S, Fattore L, Saba P, Fratta W, Gessa GL, Devoto P. Levodopa prevents the reinstatement of cocaine self-administration in rats via potentiation of dopamine release in the medial prefrontal cortex. Addict Biol 2018; 23:556-568. [PMID: 28429835 DOI: 10.1111/adb.12509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 01/04/2023]
Abstract
Dopamine agonists have been proposed as therapeutic tools for cocaine addiction. We have recently demonstrated that indirect dopamine agonists, including levodopa (L-DOPA), markedly increase cocaine-induced dopamine release in the medial prefrontal cortex (mPFC) of rats leading to the suppression of cocaine-seeking behavior. This study was aimed to understand the behavioral and neurochemical effects of L-DOPA on cocaine-taking and cocaine-seeking in rats. After reaching a stable pattern of intravenous cocaine self-administration under a continuous fixed ratio (FR-1) schedule of reinforcement, male rats were treated with L-DOPA at different steps of the self-administration protocol. We found that L-DOPA reduced cocaine self-administration under FR-1 schedule of reinforcement and decreased the breaking points and the amount of cocaine self-administered under the progressive ratio schedule of reinforcement. Levodopa also decreased cocaine-seeking behavior both in a saline substitution test and in the cue priming-induced reinstatement test, without affecting general motor activity. Importantly, L-DOPA greatly potentiated cocaine-induced dopamine release in the mPFC of self-administering rats while reducing their cocaine intake. In the same brain area, L-DOPA also increased dopamine levels during cue priming-induced reinstatement of cocaine-seeking behavior. The potentiating effect was also evident in the mPFC but not nucleus accumbens core of drug-naïve rats passively administered with cocaine. Altogether, these findings demonstrate that L-DOPA efficaciously reduces the reinforcing and motivational effects of cocaine likely potentiating dopamine transmission in the mPFC. Its ability to prevent cue priming-induced reinstatement of cocaine-seeking suggests that it might be effective in reducing the risk to relapse to cocaine in abstinent patients.
Collapse
Affiliation(s)
- Silvia Antinori
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences; University of Cagliari; Italy
| | - Liana Fattore
- Institute of Neuroscience-Cagliari; National Research Council (CNR); Italy
- Center of Excellence ‘Neurobiology of Addiction’; University of Cagliari; Italy
| | - Pierluigi Saba
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences; University of Cagliari; Italy
| | - Walter Fratta
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences; University of Cagliari; Italy
- Center of Excellence ‘Neurobiology of Addiction’; University of Cagliari; Italy
| | - Gian Luigi Gessa
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences; University of Cagliari; Italy
- Institute of Neuroscience-Cagliari; National Research Council (CNR); Italy
- ‘Guy Everett Laboratory’; University of Cagliari; Italy
| | - Paola Devoto
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences; University of Cagliari; Italy
- Center of Excellence ‘Neurobiology of Addiction’; University of Cagliari; Italy
- ‘Guy Everett Laboratory’; University of Cagliari; Italy
| |
Collapse
|
14
|
Design, synthesis and biological evaluation of bitopic arylpiperazine-hexahydro-pyrazinoquinolines as preferential dopamine D3 receptor ligands. Bioorg Chem 2018; 77:125-135. [PMID: 29353729 DOI: 10.1016/j.bioorg.2017.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/18/2017] [Accepted: 12/29/2017] [Indexed: 11/23/2022]
Abstract
Three series of bitobic arylpiperazine-phenyl-hexahydropyrazinoquino- lines analogues were designed, synthesizedand evaluated as a novel class of selective ligands for the dopamine D3 receptor. Compounds 15a (Ki of 11.7 ± 1.8 and 373 nM at D3 and D2, respectively), 15c (Ki of 5.49 and 264 nM at D3 and D2, respectively), 15e (Ki of 14.9 and 325 nM at D3 and D2, respectively), 15i (Ki of 13.8 and 401 nM at D3 and D2, respectively) and 15l (Ki of 13.6 and 870 nM at D3 and D2, respectively) were found to demonstrate good binding affinity and selectivity, and especially compound 15c showeda similar binding affinity and selectivity compared with the contrast drug BP897.
Collapse
|
15
|
Yu C, Zhou X, Fu Q, Peng Q, Oh KW, Hu Z. A New Insight into the Role of CART in Cocaine Reward: Involvement of CaMKII and Inhibitory G-Protein Coupled Receptor Signaling. Front Cell Neurosci 2017; 11:244. [PMID: 28860971 PMCID: PMC5559471 DOI: 10.3389/fncel.2017.00244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/02/2017] [Indexed: 11/13/2022] Open
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides are neuropeptides that are expressed in brain regions associated with reward, such as the nucleus accumbens (NAc), and play a role in cocaine reward. Injection of CART into the NAc can inhibit the behavioral effects of cocaine, and injecting CART into the ventral tegmental area (VTA) reduces cocaine-seeking behavior. However, the exact mechanism of these effects is not clear. Recent research has demonstrated that Ca2+/calmodulin-dependent protein kinase II (CaMKII) and inhibitory G-protein coupled receptor (GPCR) signaling are involved in the mechanism of the effect of CART on cocaine reward. Hence, we review the role of CaMKII and inhibitory GPCR signaling in the effect of CART on cocaine reward and provide a new insight into the mechanism of that effect. In this article, we will first review the biological function of CART and discuss the role of CART in cocaine reward. Then, we will focus on the role of CaMKII and inhibitory GPCR signaling in cocaine reward. Furthermore, we will discuss how CaMKII and inhibitory GPCR signaling are involved in the mechanistic action of CART in cocaine reward. Finally, we will provide our opinions regarding the future directions of research on the role of CaMKII and inhibitory GPCR signaling in the effect of CART on cocaine reward.
Collapse
Affiliation(s)
- ChengPeng Yu
- The Second Clinic Medical College, School of Medicine, Nanchang UniversityNanchang, China
| | - XiaoYan Zhou
- Department of Pathophysiology, College of Medicine, Nanchang UniversityNanchang, China
| | - Qiang Fu
- Department of Respiration, The Fourth Affiliated Hospital, Nanchang UniversityNanchang, China.,Department of Respiration, Department Two, Jiangxi Provincial People's HospitalNanchang, China
| | - QingHua Peng
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang UniversityNanchang, China
| | - Ki-Wan Oh
- College of Pharmacy, Chungbuk National UniversityCheongju, South Korea
| | - ZhenZhen Hu
- Department of Pathophysiology, College of Medicine, Nanchang UniversityNanchang, China.,Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University Medical CollegeNanchang, China
| |
Collapse
|
16
|
Worhunsky PD, Matuskey D, Gallezot JD, Gaiser EC, Nabulsi N, Angarita GA, Calhoun VD, Malison RT, Potenza MN, Carson RE. Regional and source-based patterns of [ 11C]-(+)-PHNO binding potential reveal concurrent alterations in dopamine D 2 and D 3 receptor availability in cocaine-use disorder. Neuroimage 2017; 148:343-351. [PMID: 28110088 DOI: 10.1016/j.neuroimage.2017.01.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/01/2016] [Accepted: 01/18/2017] [Indexed: 01/09/2023] Open
Abstract
Dopamine type 2 and type 3 receptors (D2R/D3R) appear critical to addictive disorders. Cocaine-use disorder (CUD) is associated with lower D2R availability and greater D3R availability in regions primarily expressing D2R or D3R concentrations, respectively. However, these CUD-related alterations in D2R and D3R have not been concurrently detected using available dopaminergic radioligands. Furthermore, receptor availability in regions of mixed D2R/D3R concentration in CUD remains unclear. The current study aimed to extend investigations of CUD-related alterations in D2R and D3R availability using regional and source-based analyses of [11C]-(+)-PHNO positron emission tomography (PET) of 26 individuals with CUD and 26 matched healthy comparison (HC) participants. Regional analysis detected greater binding potential (BPND) in CUD in the midbrain, consistent with prior [11C]-(+)-PHNO research, and lower BPND in CUD in the dorsal striatum, consistent with research using non-selective D2R/D3R radiotracers. Exploratory independent component analysis (ICA) identified three sources of BPND (striatopallidal, pallidonigral, and mesoaccumbens sources) that represent systems of brain regions displaying coherent variation in receptor availability. The striatopallidal source was associated with estimates of regional D2R-related proportions of BPND (calculated using independent reports of [11C]-(+)-PHNO receptor binding fractions), was lower in intensity in CUD and negatively associated with years of cocaine use. By comparison, the pallidonigral source was associated with estimates of regional D3R distribution, was greater in intensity in CUD and positively associated with years of cocaine use. The current study extends previous D2R/D3R research in CUD, demonstrating both lower BPND in the D2R-rich dorsal striatum and greater BPND in the D3R-rich midbrain using a single radiotracer. In addition, exploratory ICA identified sources of [11C]-(+)-PHNO BPND that were correlated with regional estimates of D2R-related and D3R-related proportions of BPND, were consistent with regional differences in CUD, and suggest receptor alterations in CUD may also be present in regions of mixed D2R/D3R concentration.
Collapse
Affiliation(s)
- Patrick D Worhunsky
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
| | - David Matuskey
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - Edward C Gaiser
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | | | - Vince D Calhoun
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Electrical & Computer Engineering, University of New Mexico, Albuquerque, NM, USA; The Mind Research Network, Albuquerque, NM, USA
| | - Robert T Malison
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Child Study Center, Yale School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA; National Center on Addiction and Substance Abuse, Yale School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
17
|
Cortés A, Moreno E, Rodríguez-Ruiz M, Canela EI, Casadó V. Targeting the dopamine D3 receptor: an overview of drug design strategies. Expert Opin Drug Discov 2016; 11:641-64. [PMID: 27135354 DOI: 10.1080/17460441.2016.1185413] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Dopamine is a neurotransmitter widely distributed in both the periphery and the central nervous system (CNS). Its physiological effects are mediated by five closely related G protein-coupled receptors (GPCRs) that are divided into two major subclasses: the D1-like (D1, D5) and the D2-like (D2, D3, D4) receptors. D3 receptors (D3Rs) have the highest density in the limbic areas of the brain, which are associated with cognitive and emotional functions. These receptors are therefore attractive targets for therapeutic management. AREAS COVERED This review summarizes the functional and pharmacological characteristics of D3Rs, including the design and clinical relevance of full agonists, partial agonists and antagonists, as well as the capacity of these receptors to form active homodimers, heterodimers or higher order receptor complexes as pharmacological targets in several neurological and neurodegenerative disorders. EXPERT OPINION The high sequence homology between D3R and the D2-type challenges the development of D3R-selective compounds. The design of new D3R-preferential ligands with improved physicochemical properties should provide a better pharmacokinetic/bioavailability profile and lesser toxicity than is found with existing D3R ligands. It is also essential to optimize D3R affinity and, especially, D3R vs. D2-type binding and functional selectivity ratios. Developing allosteric and bitopic ligands should help to improve the D3R selectivity of these drugs. As most evidence points to the ability of GPCRs to form homomers and heteromers, the most promising therapeutic strategy in the future is likely to involve the application of heteromer-selective drugs. These selective ligands would display different affinities for a given receptor depending on the receptor partners within the heteromer. Therefore, designing novel compounds that specifically target and modulate D1R-D3R heteromers would be an interesting approach for the treatment of levodopa (L-DOPA)-induced dyskinesias.
Collapse
Affiliation(s)
- Antoni Cortés
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Estefanía Moreno
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Mar Rodríguez-Ruiz
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Enric I Canela
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Vicent Casadó
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| |
Collapse
|
18
|
Rangel-Barajas C, Malik M, Mach RH, Luedtke RR. Pharmacological modulation of abnormal involuntary DOI-induced head twitch response movements in male DBA/2J mice: II. Effects of D3 dopamine receptor selective compounds. Neuropharmacology 2015; 93:179-90. [PMID: 25698528 DOI: 10.1016/j.neuropharm.2014.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 12/27/2022]
Abstract
We recently reported on the characterization of the hallucinogen 2,5-dimethoxy-4-methylamphetamine's (DOI) ability to elicit a head twitch response (HTR) in DBA/2J mice and the ability of D2 vs. D3 dopamine receptor selective compounds to modulate that response. For these studies, the ability of D3 vs. D2 dopamine receptor selective compounds to attenuate the DOI-dependent HTR was examined. WC 10, a D3 dopamine receptor weak partial agonist with 40-fold binding selectivity for D3 vs. D2 dopamine receptors, produced a dose-dependent decrease in the DOI-induced HTR (IC50 = 3.7 mg/kg). WC 44, a D3 receptor selective full agonist, also inhibited the DOI-induced HTR (IC50 = 5.1 mg/kg). The effect of two D3 receptor selective partial agonists, LAX-4-136 and WW-III-55, were also evaluated. These analogs exhibit 150-fold and 800-fold D3 vs. D2 binding selectivity, respectively. Both compounds inhibited the HTR with similar potency but with different maximum efficacies. At 10 mg/kg WW-III-55 inhibited the HTR by 95%, while LAX-4-136 administration resulted in a 50% reduction. In addition, DOI (5 mg/kg) was administered at various times after LAX-4-136 or WW-III-55 administration to compare the duration of action. The homopiperazine analog LAX-4-136 exhibited greater stability. An assessment of our test compounds on motor performance and coordination was performed using a rotarod test. None of the D3 dopamine receptor selective compounds significantly altered latency to fall, suggesting that these compounds a) did not attenuate the DOI-dependent HTR due to sedative or adverse motor effects and b) may have antipsychotic/antihallucinogenic activity.
Collapse
Affiliation(s)
- Claudia Rangel-Barajas
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Maninder Malik
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Robert H Mach
- Radiochemistry Laboratory, Neurology Department, University of Pennsylvania School of Medicine, Chemistry Building, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Robert R Luedtke
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.
| |
Collapse
|
19
|
Keck TM, John WS, Czoty PW, Nader MA, Newman AH. Identifying Medication Targets for Psychostimulant Addiction: Unraveling the Dopamine D3 Receptor Hypothesis. J Med Chem 2015; 58:5361-80. [PMID: 25826710 PMCID: PMC4516313 DOI: 10.1021/jm501512b] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The dopamine D3 receptor (D3R) is a target for developing medications to treat substance use disorders. D3R-selective compounds with high affinity and varying efficacies have been discovered, providing critical research tools for cell-based studies that have been translated to in vivo models of drug abuse. D3R antagonists and partial agonists have shown especially promising results in rodent models of relapse-like behavior, including stress-, drug-, and cue-induced reinstatement of drug seeking. However, to date, translation to human studies has been limited. Herein, we present an overview and illustrate some of the pitfalls and challenges of developing novel D3R-selective compounds toward clinical utility, especially for treatment of cocaine abuse. Future research and development of D3R-selective antagonists and partial agonists for substance abuse remains critically important but will also require further evaluation and development of translational animal models to determine the best time in the addiction cycle to target D3Rs for optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Thomas M Keck
- †Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - William S John
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Paul W Czoty
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Michael A Nader
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Amy Hauck Newman
- †Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
20
|
Rangel-Barajas C, Malik M, Taylor M, Neve KA, Mach RH, Luedtke RR. Characterization of [(3) H]LS-3-134, a novel arylamide phenylpiperazine D3 dopamine receptor selective radioligand. J Neurochem 2014; 131:418-31. [PMID: 25041389 DOI: 10.1111/jnc.12825] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 12/23/2022]
Abstract
LS-3-134 is a substituted N-phenylpiperazine derivative that has been reported to exhibit: (i) high-affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, (ii) > 100-fold D3 versus D2 dopamine receptor subtype binding selectivity, and (iii) low-affinity binding (Ki > 5000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin-dependent activation of the adenylyl cyclase inhibition assay, LS-3-134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [(3) H]-labeled LS-3-134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10-15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [(3) H]LS-3-134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies, we propose that [(3) H]LS-3-134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype.
Collapse
Affiliation(s)
- Claudia Rangel-Barajas
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | | | | | | | | | |
Collapse
|
21
|
Ananthan S, Saini SK, Zhou G, Hobrath JV, Padmalayam I, Zhai L, Bostwick JR, Antonio T, Reith MEA, McDowell S, Cho E, McAleer L, Taylor M, Luedtke RR. Design, synthesis, and structure-activity relationship studies of a series of [4-(4-carboxamidobutyl)]-1-arylpiperazines: insights into structural features contributing to dopamine D3 versus D2 receptor subtype selectivity. J Med Chem 2014; 57:7042-60. [PMID: 25126833 PMCID: PMC4148173 DOI: 10.1021/jm500801r] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Antagonist and partial agonist modulators
of the dopamine D3 receptor
(D3R) have emerged as promising therapeutics for the treatment of
substance abuse and neuropsychiatric disorders. However, development
of druglike lead compounds with selectivity for the D3 receptor has
been challenging because of the high sequence homology between the
D3R and the dopamine D2 receptor (D2R). In this effort, we synthesized
a series of acylaminobutylpiperazines incorporating aza-aromatic units
and evaluated their binding and functional activities at the D3 and
D2 receptors. Docking studies and results from evaluations against
a set of chimeric and mutant receptors suggest that interactions at
the extracellular end of TM7 contribute to the D3R versus D2R selectivity
of these ligands. Molecular insights from this study could potentially
enable rational design of potent and selective D3R ligands.
Collapse
Affiliation(s)
- Subramaniam Ananthan
- Organic Chemistry Department, Southern Research Institute , Birmingham, Alabama 35205, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Neisewander JL, Cheung THC, Pentkowski NS. Dopamine D3 and 5-HT1B receptor dysregulation as a result of psychostimulant intake and forced abstinence: Implications for medications development. Neuropharmacology 2013; 76 Pt B:301-19. [PMID: 23973315 DOI: 10.1016/j.neuropharm.2013.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
Addiction to psychostimulants, including cocaine and amphetamine, is associated with dysregulation of dopamine and serotonin (5-HT) neurotransmitter systems. Neuroadaptations in these systems vary depending on the stage of the drug taking-abstinence-relapse cycle. Consequently, the effects of potential treatments that target these systems may vary depending on whether they are given during abstinence or relapse. In this review, we discuss evidence that dopamine D3 receptors (D3Rs) and 5-HT1B receptors (5-HT1BRs) are dysregulated in response to both chronic psychostimulant use and subsequent abstinence. We then review findings from preclinical self-administration models which support targeting D3Rs and 5-HT1BRs as potential medications for psychostimulant dependence. Potential side effects of the treatments are discussed and attention is given to studies reporting positive treatment outcomes that depend on: 1) whether testing occurs during self-administration versus abstinence, 2) whether escalation of drug self-administration has occurred, 3) whether the treatments are given repeatedly, and 4) whether social factors influence treatment outcomes. We conclude that D3/D2 agonists may decrease psychostimulant intake; however, side effects of D3/D2R full agonists may limit their therapeutic potential, whereas D3/D2R partial agonists have fewer undesirable side effects. D3-selective antagonists may not reduce psychostimulant intake during relapse, but nonetheless, may decrease motivation for seeking psychostimulants with relatively few side-effects. 5-HT1BR agonists provide a striking example of treatment outcomes that are dependent on the stage of the addiction cycle. Specifically, these agonists initially increase cocaine's reinforcing effects during maintenance of self-administration, but after a period of abstinence they reduce psychostimulant seeking and the resumption of self-administration. In conclusion, we suggest that factors contributing to dysregulation of monoamine systems, including drug history, abstinence, and social context, should be considered when evaluating potential treatments to better model treatment effects in humans. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Janet L Neisewander
- School of Life Sciences, P.O. Box 874501, Arizona State University, Tempe, AZ 85287-4501, USA.
| | | | | |
Collapse
|