1
|
Zhong LY, Fan XR, Shi ZJ, Fan ZC, Luo J, Lin N, Liu YC, Wu L, Zeng XR, Cao JM, Wei Y. Hyperpolarization-Activated Cyclic Nucleotide-Gated Ion (HCN) Channels Regulate PC12 Cell Differentiation Toward Sympathetic Neuron. Front Cell Neurosci 2019; 13:415. [PMID: 31616252 PMCID: PMC6763607 DOI: 10.3389/fncel.2019.00415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated ion channels (HCN channels) are widely expressed in the central and peripheral nervous systems and organs, while their functions are not well elucidated especially in the sympathetic nerve. The present study aimed to investigate the roles of HCN channel isoforms in the differentiation of sympathetic neurons using PC12 cell as a model. PC12 cells derived from rat pheochromocytoma were cultured and induced by nerve growth factor (NGF) (25 ng/ml) to differentiate to sympathetic neuron-like cells. Sympathetic directional differentiation of PC12 cells were evaluated by expressions of growth-associated protein 43 (GAP-43) (a growth cone marker), tyrosine hydroxylase (TH) (a sympathetic neuron marker) and neurite outgrowth. Results show that the HCN channel isoforms (HCN1-4) were all expressed in PC12 cells; blocking HCN channels with ivabradine suppressed NGF-induced GAP-43 expression and neurite outgrowth; silencing the expression of HCN2 and HCN4 using silenced using small interfering RNAs (siRNA), rather than HCN1 and HCN3, restrained GAP-43 expression and neurite outgrowth, while overexpression of HCN2 and HCN4 channels with gene transfer promoted GAP-43 expression and neurite outgrowth. Patch clamp experiments show that PC12 cells exhibited resting potentials (RP) of about −65 to −70 mV, and also presented inward HCN channel currents and outward (K+) currents, but no inward voltage-gated Na+ current was induced; NGF did not significantly affect the RP but promoted the establishment of excitability as indicated by the increased ability to depolarize and repolarize in the evoked suspicious action potentials (AP). We conclude that HCN2 and HCN4 channel isoforms, but not HCN1 and HCN3, promote the differentiation of PC12 cells toward sympathetic neurons. NGF potentiates the establishment of excitability during PC12 cell differentiation.
Collapse
Affiliation(s)
- Li-Ying Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xin-Rong Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhang-Jing Shi
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Zhong-Cai Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Na Lin
- Department of Respiratory Medicine, Rongcheng People's Hospital, Rongcheng, China
| | - Ying-Cai Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Xiao-Rong Zeng
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology of Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yan Wei
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Driessen AK. Vagal Afferent Processing by the Paratrigeminal Nucleus. Front Physiol 2019; 10:1110. [PMID: 31555145 PMCID: PMC6722180 DOI: 10.3389/fphys.2019.01110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022] Open
Abstract
The paratrigeminal nucleus is an obscure region in the dorsal lateral medulla, which has been best characterized as a collection of interstitial cells located in the dorsal tip of the spinal trigeminal tract. The paratrigeminal nucleus receives afferent input from the vagus, trigeminal, spinal, and glossopharyngeal nerves, which contribute to its long-known roles in the baroreceptor reflex and nociceptive processing. More recently, studies have shown that this region is also involved in the processing of airway-derived sensory information. Notably, these studies highlight an underappreciated complexity in the neuronal content and circuit connectivity of the paratrigeminal nucleus. However, much remains to be understood about how paratrigeminal processing of vagal afferents is altered in disease. The aim of the present review is to provide an update of the current understanding of vagal afferent processing in the paratrigeminal nucleus and to explore how dysregulation at this site may contribute to vagal sensory neural dysfunction during disease.
Collapse
Affiliation(s)
- Alexandria K Driessen
- School of Biomedical Science, Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Farnham MMJ, Tallapragada VJ, O'Connor ET, Nedoboy PE, Dempsey B, Mohammed S, Fong AY, Lung MSY, Derakhshan F, Wilson RJA, Pilowsky PM. PACAP-PAC1 Receptor Activation Is Necessary for the Sympathetic Response to Acute Intermittent Hypoxia. Front Neurosci 2019; 13:881. [PMID: 31496933 PMCID: PMC6712064 DOI: 10.3389/fnins.2019.00881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/05/2019] [Indexed: 01/29/2023] Open
Abstract
Repetitive hypoxia is a key feature of obstructive sleep apnoea (OSA), a condition characterized by intermittent airways obstruction. Patients with OSA present with persistent increases in sympathetic activity and commonly develop hypertension. The objectives of this study were to determine if the persistent increases in sympathetic nerve activity, known to be induced by acute intermittent hypoxia (AIH), are mediated through activation of the pituitary adenylate cyclase activating polypeptide (PACAP) signaling system. Here, we show that the excitatory neuropeptide PACAP, acting in the spinal cord, is important for generating the sympathetic response seen following AIH. Using PACAP receptor knockout mice, and pharmacological agents in Sprague Dawley rats, we measured blood pressure, heart rate, pH, PaCO2, and splanchnic sympathetic nerve activity, under anaesthesia, to demonstrate that the sympathetic response to AIH is mediated via the PAC1 receptor, in a cAMP-dependent manner. We also report that both intermittent microinjection of glutamate into the rostroventrolateral medulla (RVLM) and intermittent infusion of a sub-threshold dose of PACAP into the subarachnoid space can mimic the sympathetic response to AIH. All the sympathetic responses are independent of blood pressure, pH or PaCO2 changes. Our results show that in AIH, PACAP signaling in the spinal cord helps drive persistent increases in sympathetic nerve activity. This mechanism may be a precursor to the development of hypertension in conditions of chronic intermittent hypoxia, such as OSA.
Collapse
Affiliation(s)
- Melissa M J Farnham
- The Heart Research Institute, Newtown, NSW, Australia.,Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia.,Department of Physiology, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | | | - Edward T O'Connor
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Polina E Nedoboy
- The Heart Research Institute, Newtown, NSW, Australia.,Department of Physiology, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Bowen Dempsey
- Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia
| | - Suja Mohammed
- The Heart Research Institute, Newtown, NSW, Australia.,Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia.,Department of Physiology, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Angelina Y Fong
- Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia.,Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Mandy S Y Lung
- Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia
| | - Fatemeh Derakhshan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Paul M Pilowsky
- The Heart Research Institute, Newtown, NSW, Australia.,Department of Physiology, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Hu Z, Wu Z, Gao J, Jia Q, Li N, Ouyang Y, Yao S, Chen X. Effects of HCN Channels in the Rostral Ventrolateral Medulla Contribute to the Cardiovascular Effects of Propofol. Mol Pharmacol 2018; 94:1280-1288. [PMID: 30194107 DOI: 10.1124/mol.118.111898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/30/2018] [Indexed: 11/22/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels were reported to express in the well-known vasomotor region, rostral ventrolateral medulla (RVLM), and can be inhibited by propofol. However, whether HCN channels in RVLM contribute to propofol-induced cardiovascular depression remains unclear. We recorded the hemodynamic changes when either continuous intravenous infusions or microinjections of propofol and ZD-7288 (4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium chloride; HCN channel blocker) in RVLM. Expressions of HCN channels in RVLM neurons of mice of different ages were examined by quantitative real-time polymerase chain reaction and Western blotting. The effects of propofol and ZD-7288 on HCN channels and the excitability of RVLM neurons were examined by electrophysiological recording. Propofol (1.25, 2.5, 5, and 7.5 mg/kg per minute, i.v., 10 minutes) decreased mean arterial pressure (MAP) and heart rate (HR) in a concentration-dependent manner in wild-type mice that were markedly attenuated in HCN1 knockout mice. Bilateral microinjection of propofol (1%, 0.1 μl) in RVLM caused a sharp and pronounced drop in MAP and HR values, which were abated by pretreatment with ZD-7288. In electrophysiological recording, propofol (5, 10, and 20 μM) concentration-dependently inhibited HCN current, increased input resistance, decreased firing rate, and caused membrane hyperpolarization in RVLM neurons. These actions of propofol were attenuated by ZD-7288 pretreatment. The mRNA and protein level of HCN channels increased in an age-dependent manner, which may contribute to the age-dependent increase in the sensitivity to propofol. Our results indicated that the inhibition of HCN channels in RVLM neurons may contribute to propofol-induced cardiovascular inhibition.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhilin Wu
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jie Gao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qi Jia
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Na Li
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yeling Ouyang
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiangdong Chen
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
5
|
Luster BR, Urbano FJ, Garcia-Rill E. Intracellular mechanisms modulating gamma band activity in the pedunculopontine nucleus (PPN). Physiol Rep 2016; 4:4/12/e12787. [PMID: 27354537 PMCID: PMC4923228 DOI: 10.14814/phy2.12787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/11/2016] [Indexed: 02/04/2023] Open
Abstract
The pedunculopontine nucleus is a part of the reticular activating system, and is active during waking and REM sleep. Previous results showed that all PPN cells tested fired maximally at gamma frequencies when depolarized. This intrinsic membrane property was shown to be mediated by high‐threshold N‐ and P/Q‐type Ca2+ channels. Recent studies show that the PPN contains three independent populations of neurons which can generate gamma band oscillations through only N‐type channels, only P/Q‐type channels, or both N‐ and P/Q‐type channels. This study investigated the intracellular mechanisms modulating gamma band activity in each population of neurons. We performed in vitro patch‐clamp recordings of PPN neurons from Sprague–Dawley rat pups, and applied 1‐sec ramps to induce intrinsic membrane oscillations. Our results show that there are two pathways modulating gamma band activity in PPN neurons. We describe populations of neurons mediating gamma band activity through only N‐type channels and the cAMP/PKA pathway (presumed “REM‐on” neurons), through only P/Q‐type channels and the CaMKII pathway (presumed “Wake‐on” neurons), and a third population which can mediate gamma activity through both N‐type channels and cAMP/PK and P/Q‐type channels and CaMKII (presumed “Wake/REM‐on” neurons). These novel results suggest that PPN gamma oscillations are modulated by two independent pathways related to different Ca2+ channel types.
Collapse
Affiliation(s)
- Brennon R Luster
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
6
|
Accorsi-Mendonça D, da Silva MP, Souza GMPR, Lima-Silveira L, Karlen-Amarante M, Amorim MR, Almado CEL, Moraes DJA, Machado BH. Pacemaking Property of RVLM Presympathetic Neurons. Front Physiol 2016; 7:424. [PMID: 27713705 PMCID: PMC5031694 DOI: 10.3389/fphys.2016.00424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
Despite several studies describing the electrophysiological properties of RVLM presympathetic neurons, there is no consensus in the literature about their pacemaking property, mainly due to different experimental approaches used for recordings of neuronal intrinsic properties. In this review we are presenting a historical retrospective about the pioneering studies and their controversies on the intrinsic electrophysiological property of auto-depolarization of these cells in conjunction with recent studies from our laboratory documenting that RVLM presympathetic neurons present pacemaking capacity. We also discuss whether increased sympathetic activity observed in animal models of neurogenic hypertension (CIH and SHR) are dependent on changes in the intrinsic electrophysiological properties of these cells or due to changes in modulatory inputs from neurons of the respiratory network. We also highlight the key role of INaP as the major current contributing to the pacemaking property of RVLM presympathetic neurons.
Collapse
Affiliation(s)
- Daniela Accorsi-Mendonça
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - George M P R Souza
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - Ludmila Lima-Silveira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - Marlusa Karlen-Amarante
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - Mateus R Amorim
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - Carlos E L Almado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| |
Collapse
|