1
|
Khan MS, Azeem B, Kanwal A, Ahmed IE, Zehra A, Kabir A, Ahmed W, Nasir H, Khan M, Manzoor A, Hasanain M, Moeen W, Khan M, Ahmed G. Unveiling WHIM syndrome: Mavorixafor's emerging role in immune restoration and therapy. Clin Exp Immunol 2025; 219:uxaf014. [PMID: 40065526 PMCID: PMC12001236 DOI: 10.1093/cei/uxaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/28/2024] [Accepted: 03/06/2025] [Indexed: 04/17/2025] Open
Abstract
WHIM syndrome is a rare autosomal dominant immunodeficiency disorder and is an abbreviation formed from the initial letters of its main clinical presentations: Warts, Hypogammaglobulinemia, Infections, and Myelokathexis. It stems mainly from mutations where there is a gain of function in the chemokine receptor CXCR4, which is extensively located on leukocytes and significantly affects the balance of the immune system. Many therapeutic strategies have been widely explored for several years for this immunodeficiency disorder. Mavorixafor, a CXCR4 antagonist, is a recently approved drug by the Food and Drug Administration (FDA) that is being studied for its longer half-life and oral drug route against WHIM syndrome. This review aims to investigate briefly the underlying mechanisms and pathogenesis of WHIM syndrome, and the current effective treatment approaches, for example CXCR4 antagonists or Hematopoietic Stem Cell Transplantation (HSCT), against it. The review also aims to thoroughly assess the efficacy and safety of Mavorixafor in managing WHIM syndrome, exploring its pharmacokinetics, pharmacodynamics, dosing regimens, and safety. Finally, we also investigate important additional therapeutic uses of Mavorixafor.
Collapse
Affiliation(s)
- Muhammad Sohaib Khan
- Department of Internal Medicine, DOW University of Health Sciences, Karachi, Pakistan
| | - Bismah Azeem
- Department of Internal Medicine, Avicenna Medical College, Lahore, Pakistan
| | - Ashir Kanwal
- Department of Internal Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Ifra Eeman Ahmed
- Department of Internal Medicine, Federal Medical and Dental College, Islamabad, Pakistan
| | - Anum Zehra
- Department of Internal Medicine, Ziauddin University, Karachi, Pakistan
| | - Aqsa Kabir
- Department of Internal Medicine, DOW University of Health Sciences, Karachi, Pakistan
| | | | - Hania Nasir
- Department of Internal Medicine, Sindh Medical College JSMU, Karachi, Pakistan
| | - Momina Khan
- Department of Internal Medicine, Ruth Pfau Medical College, Karachi, Pakistan
| | - Aatika Manzoor
- Department of Internal Medicine, Sindh Medical College JSMU, Karachi, Pakistan
| | - Muhammad Hasanain
- Department of Internal Medicine, DOW University of Health Sciences, Karachi, Pakistan
| | - Wania Moeen
- Department of Internal Medicine, DOW University of Health Sciences, Karachi, Pakistan
| | - Muzamil Khan
- Department of Internal Medicine, The George Washington University School of Medicine and Health Sciences, Washington D.C, USA
| | - Gulrayz Ahmed
- Department of Medicine, Hematology Oncology Division, Hematology/Oncology Fellow, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Salom D, Wu A, Liu CC, Palczewski K. The Impact of Nanobodies on G Protein-Coupled Receptor Structural Biology and Their Potential as Therapeutic Agents. Mol Pharmacol 2024; 106:155-163. [PMID: 39107078 PMCID: PMC11413913 DOI: 10.1124/molpharm.124.000974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024] Open
Abstract
The family of human G protein-coupled receptors (GPCRs) comprises about 800 different members, with about 35% of current pharmaceutical drugs targeting GPCRs. However, GPCR structural biology, necessary for structure-guided drug design, has lagged behind that of other membrane proteins, and it was not until the year 2000 when the first crystal structure of a GPCR (rhodopsin) was solved. Starting in 2007, the determination of additional GPCR structures was facilitated by protein engineering, new crystallization techniques, complexation with antibody fragments, and other strategies. More recently, the use of camelid heavy-chain-only antibody fragments (nanobodies) as crystallographic chaperones has revolutionized the field of GPCR structural biology, aiding in the determination of more than 340 GPCR structures to date. In most cases, the GPCR structures solved as complexes with nanobodies (Nbs) have revealed the binding mode of cognate or non-natural ligands; in a few cases, the same Nb has acted as an orthosteric or allosteric modulator of GPCR signaling. In this review, we summarize the multiple ingenious strategies that have been conceived and implemented in the last decade to capitalize on the discovery of nanobodies to study GPCRs from a structural perspective. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) are major pharmacological targets, and the determination of their structures at high resolution has been essential for structure-guided drug design and for insights about their functions. Single-domain antibodies (nanobodies) have greatly facilitated the structural determination of GPCRs by forming complexes directly with the receptors or indirectly through protein partners.
Collapse
Affiliation(s)
- David Salom
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology (D.S., A.W., K.P.) and Department of Biomedical Engineering (C.C.L.), University of California, Irvine, Irvine, California
| | - Arum Wu
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology (D.S., A.W., K.P.) and Department of Biomedical Engineering (C.C.L.), University of California, Irvine, Irvine, California
| | - Chang C Liu
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology (D.S., A.W., K.P.) and Department of Biomedical Engineering (C.C.L.), University of California, Irvine, Irvine, California
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology (D.S., A.W., K.P.) and Department of Biomedical Engineering (C.C.L.), University of California, Irvine, Irvine, California
| |
Collapse
|
3
|
Discovery of Bis-Imidazoline Derivatives as New CXCR4 Ligands. Molecules 2023; 28:molecules28031156. [PMID: 36770826 PMCID: PMC9920567 DOI: 10.3390/molecules28031156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The chemokine receptor CXCR4 and its ligand CXCL12 regulate leukocyte trafficking, homeostasis and functions and are potential therapeutic targets in many diseases such as HIV-1 infection and cancers. Here, we identified new CXCR4 ligands in the CERMN chemical library using a FRET-based high-throughput screening assay. These are bis-imidazoline compounds comprising two imidazole rings linked by an alkyl chain. The molecules displace CXCL12 binding with submicromolar potencies, similarly to AMD3100, the only marketed CXCR4 ligand. They also inhibit anti-CXCR4 mAb 12G5 binding, CXCL12-mediated chemotaxis and HIV-1 infection. Further studies with newly synthesized derivatives pointed out to a role of alkyl chain length on the bis-imidazoline properties, with molecules with an even number of carbons equal to 8, 10 or 12 being the most potent. Interestingly, these differ in the functions of CXCR4 that they influence. Site-directed mutagenesis and molecular docking predict that the alkyl chain folds in such a way that the two imidazole groups become lodged in the transmembrane binding cavity of CXCR4. Results also suggest that the alkyl chain length influences how the imidazole rings positions in the cavity. These results may provide a basis for the design of new CXCR4 antagonists targeting specific functions of the receptor.
Collapse
|
4
|
WHIM Syndrome: First Reported Case in a Patient of African Ancestry. Case Rep Hematol 2023; 2023:3888680. [PMID: 36793393 PMCID: PMC9925260 DOI: 10.1155/2023/3888680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/26/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
Background Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a rare, primary immunodeficiency syndrome characterized by warts, hypogammaglobulinemia, immunodeficiency, and characteristic bone marrow features of myelokathexis. The pathophysiology of WHIM syndrome is due to an autosomal dominant gain of function mutation in the CXCR4 chemokine receptor resulting in increased activity that impairs neutrophil migration from the bone marrow into the peripheral blood. This results in bone marrow distinctively crowded with mature neutrophils whose balance is shifted towards cellular senescence developing these characteristic, apoptotic nuclei termed myelokathexis. Despite the resultant severe neutropenia, the clinical syndrome is often mild and accompanied by a variety of associated abnormalities that we are just beginning to understand. Case Report. Diagnosis of WHIM syndrome is incredibly difficult due to phenotypic heterogeneity. To date, there are only about 105 documented cases in the scientific literature. Here, we describe the first case of WHIM syndrome documented in a patient of African ancestry. The patient in question was diagnosed at the age of 29 after a comprehensive work-up for incidental neutropenia discovered at a primary care appointment at our center in the United States. In hindsight, the patient had a history of recurrent infections, bronchiectasis, hearing loss, and VSD repair that could not be previously explained. Conclusions Despite the challenge of timely diagnosis and the wide spectrum of clinical features that we are still discovering, WHIM syndrome tends to be a milder immunodeficiency that is highly manageable. As presented in this case, most patients respond well to G-CSF injections and newer treatments such as small-molecule CXCR4 antagonists.
Collapse
|
5
|
Huang P, Tang L, Zhang L, Ren Y, Peng H, Xiao Y, Xu J, Mao D, Liu L, Liu L. Identification of Biomarkers Associated With CD4+ T-Cell Infiltration With Gene Coexpression Network in Dermatomyositis. Front Immunol 2022; 13:854848. [PMID: 35711463 PMCID: PMC9196312 DOI: 10.3389/fimmu.2022.854848] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
Background Dermatomyositis is an autoimmune disease characterized by damage to the skin and muscles. CD4+ T cells are of crucial importance in the occurrence and development of dermatomyositis (DM). However, there are few bioinformatics studies on potential pathogenic genes and immune cell infiltration of DM. Therefore, this study intended to explore CD4+ T-cell infiltration–associated key genes in DM and construct a new model to predict the level of CD4+ T-cell infiltration in DM. Methods GSE46239, GSE142807, GSE1551, and GSE193276 datasets were downloaded. The WGCNA and CIBERSORT algorithms were performed to identify the most correlated gene module with CD4+ T cells. Matascape was used for GO enrichment and KEGG pathway analysis of the key gene module. LASSO regression analysis was used to identify the key genes and construct the prediction model. The correlation between the key genes and CD4+ T-cell infiltration was investigated. GSEA was performed to research the underlying signaling pathways of the key genes. The key gene-correlated transcription factors were identified through the RcisTarget and Gene-motif rankings databases. The miRcode and DIANA-LncBase databases were used to build the lncRNA-miRNA-mRNA network. Results In the brown module, 5 key genes (chromosome 1 open reading frame 106 (C1orf106), component of oligomeric Golgi complex 8 (COG8), envoplakin (EVPL), GTPases of immunity-associated protein family member 6 (GIMAP6), and interferon-alpha inducible protein 6 (IFI6)) highly associated with CD4+ T-cell infiltration were identified. The prediction model was constructed and showed better predictive performance in the training set, and this satisfactory model performance was validated in another skin biopsy dataset and a muscle biopsy dataset. The expression levels of the key genes promoted the CD4+ T-cell infiltration. GSEA results revealed that the key genes were remarkably enriched in many immunity-associated pathways, such as JAK/STAT signaling pathway. The cisbp_M2205, transcription factor-binding site, was enriched in C1orf106, EVPL, and IF16. Finally, 3,835 lncRNAs and 52 miRNAs significantly correlated with key genes were used to build a ceRNA network. Conclusion The C1orf106, COG8, EVPL, GIMAP6, and IFI6 genes are associated with CD4+ T-cell infiltration. The prediction model constructed based on the 5 key genes may better predict the level of CD4+ T-cell infiltration in damaged muscle and lesional skin of DM. These key genes could be recognized as potential biomarkers and immunotherapeutic targets of DM.
Collapse
Affiliation(s)
- Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Xu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dingan Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Liqun Liu, ; Lingjuan Liu,
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Liqun Liu, ; Lingjuan Liu,
| |
Collapse
|
6
|
Soave M, Stoddart LA, White CW, Kilpatrick LE, Goulding J, Briddon SJ, Hill SJ. Detection of genome-edited and endogenously expressed G protein-coupled receptors. FEBS J 2021; 288:2585-2601. [PMID: 33506623 PMCID: PMC8647918 DOI: 10.1111/febs.15729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors and major targets for FDA-approved drugs. The ability to quantify GPCR expression and ligand binding characteristics in different cell types and tissues is therefore important for drug discovery. The advent of genome editing along with developments in fluorescent ligand design offers exciting new possibilities to probe GPCRs in their native environment. This review provides an overview of the recent technical advances employed to study the localisation and ligand binding characteristics of genome-edited and endogenously expressed GPCRs.
Collapse
Affiliation(s)
- Mark Soave
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| | - Leigh A. Stoddart
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| | - Carl W. White
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
- Harry Perkins Institute of Medical Research and Centre for Medical ResearchQEII Medical CentreThe University of Western AustraliaNedlandsAustralia
- Australian Research Council Centre for Personalised Therapeutics TechnologiesAustralia
| | - Laura E. Kilpatrick
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
- Division of Biomolecular Science and Medicinal ChemistrySchool of Pharmacy, Biodiscovery InstituteUniversity of NottinghamUK
| | - Joëlle Goulding
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| | - Stephen J. Briddon
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| | - Stephen J. Hill
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| |
Collapse
|
7
|
Verhaar ER, Woodham AW, Ploegh HL. Nanobodies in cancer. Semin Immunol 2020; 52:101425. [PMID: 33272897 DOI: 10.1016/j.smim.2020.101425] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/24/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
For treatment and diagnosis of cancer, antibodies have proven their value and now serve as a first line of therapy for certain cancers. A unique class of antibody fragments called nanobodies, derived from camelid heavy chain-only antibodies, are gaining increasing acceptance as diagnostic tools and are considered also as building blocks for chimeric antigen receptors as well as for targeted drug delivery. The small size of nanobodies (∼15 kDa), their stability, ease of manufacture and modification for diverse formats, short circulatory half-life, and high tissue penetration, coupled with excellent specificity and affinity, account for their attractiveness. Here we review applications of nanobodies in the sphere of tumor biology.
Collapse
Affiliation(s)
- Elisha R Verhaar
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| | - Andrew W Woodham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
8
|
Soave M, Heukers R, Kellam B, Woolard J, Smit MJ, Briddon SJ, Hill SJ. Monitoring Allosteric Interactions with CXCR4 Using NanoBiT Conjugated Nanobodies. Cell Chem Biol 2020; 27:1250-1261.e5. [PMID: 32610042 PMCID: PMC7573392 DOI: 10.1016/j.chembiol.2020.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/01/2020] [Accepted: 06/12/2020] [Indexed: 01/01/2023]
Abstract
Camelid single-domain antibody fragments (nanobodies) offer the specificity of an antibody in a single 15-kDa immunoglobulin domain. Their small size allows for easy genetic manipulation of the nanobody sequence to incorporate protein tags, facilitating their use as biochemical probes. The nanobody VUN400, which recognizes the second extracellular loop of the human CXCR4 chemokine receptor, was used as a probe to monitor specific CXCR4 conformations. VUN400 was fused via its C terminus to the 11-amino-acid HiBiT tag (VUN400-HiBiT) which complements LgBiT protein, forming a full-length functional NanoLuc luciferase. Here, complemented luminescence was used to detect VUN400-HiBiT binding to CXCR4 receptors expressed in living HEK293 cells. VUN400-HiBiT binding to CXCR4 could be prevented by orthosteric and allosteric ligands, allowing VUN400-HiBiT to be used as a probe to detect allosteric interactions with CXCR4. These data demonstrate that the high specificity offered by extracellular targeted nanobodies can be utilized to probe receptor pharmacology.
Collapse
Affiliation(s)
- Mark Soave
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK
| | - Raimond Heukers
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University of Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands; QVQ Holding B.V., Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Barrie Kellam
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK; School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University of Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Stephen J Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK.
| |
Collapse
|
9
|
de Marco A. Recombinant expression of nanobodies and nanobody-derived immunoreagents. Protein Expr Purif 2020; 172:105645. [PMID: 32289357 PMCID: PMC7151424 DOI: 10.1016/j.pep.2020.105645] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Antibody fragments for which the sequence is available are suitable for straightforward engineering and expression in both eukaryotic and prokaryotic systems. When produced as fusions with convenient tags, they become reagents which pair their selective binding capacity to an orthogonal function. Several kinds of immunoreagents composed by nanobodies and either large proteins or short sequences have been designed for providing inexpensive ready-to-use biological tools. The possibility to choose among alternative expression strategies is critical because the fusion moieties might require specific conditions for correct folding or post-translational modifications. In the case of nanobody production, the trend is towards simpler but reliable (bacterial) methods that can substitute for more cumbersome processes requiring the use of eukaryotic systems. The use of these will not disappear, but will be restricted to those cases in which the final immunoconstructs must have features that cannot be obtained in prokaryotic cells. At the same time, bacterial expression has evolved from the conventional procedure which considered exclusively the nanobody and nanobody-fusion accumulation in the periplasm. Several reports show the advantage of cytoplasmic expression, surface-display and secretion for at least some applications. Finally, there is an increasing interest to use as a model the short nanobody sequence for the development of in silico methodologies aimed at optimizing the yields, stability and affinity of recombinant antibodies. There is an increasing request for immunoreagents based on nanobodies. The multiplicity of their applications requires constructs with different structural complexity. Alternative expression methods are necessary to achieve such structural requirements. In silico optimization of nanobody biophysical characteristics becomes more and more reliable.
Collapse
Affiliation(s)
- Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, S-5000, Nova Gorica, Slovenia.
| |
Collapse
|
10
|
Wang XA, Griffiths K, Foley M. Emerging Role of CXCR4 in Fibrosis. ANTI-FIBROTIC DRUG DISCOVERY 2020:211-234. [DOI: 10.1039/9781788015783-00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Recent evidence has shown that the chemokine receptor CXCR4 and its natural chemokine ligand CXCL12 promote pro-inflammatory responses in a variety of situations and this axis has emerged as a central player in tissue fibrosis. Although its role as a co-receptor for human immunodeficiency virus (HIV) and a key player in various cancers has been well established, the role of CXCR4 in various types of fibrosis has emerged only recently. This review will explore the involvement of CXCR4 in the development of fibrosis, focusing mainly on lung, kidney and eye fibrosis.
Collapse
Affiliation(s)
- Xilun Anthony Wang
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Bundoora Melbourne 3086 Australia
| | - Katherine Griffiths
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Bundoora Melbourne 3086 Australia
| | - Michael Foley
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Bundoora Melbourne 3086 Australia
- AdAlta Limited 15/2 Park Drive Bundoora 3083 Australia
| |
Collapse
|
11
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
12
|
Bobkov V, Arimont M, Zarca A, De Groof TWM, van der Woning B, de Haard H, Smit MJ. Antibodies Targeting Chemokine Receptors CXCR4 and ACKR3. Mol Pharmacol 2019; 96:753-764. [PMID: 31481460 DOI: 10.1124/mol.119.116954] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of the chemokine system is implicated in a number of autoimmune and inflammatory diseases, as well as cancer. Modulation of chemokine receptor function is a very promising approach for therapeutic intervention. Despite interest from academic groups and pharmaceutical companies, there are currently few approved medicines targeting chemokine receptors. Monoclonal antibodies (mAbs) and antibody-based molecules have been successfully applied in the clinical therapy of cancer and represent a potential new class of therapeutics targeting chemokine receptors belonging to the class of G protein-coupled receptors (GPCRs). Besides conventional mAbs, single-domain antibodies and antibody scaffolds are also gaining attention as promising therapeutics. In this review, we provide an extensive overview of mAbs, single-domain antibodies, and other antibody fragments targeting CXCR4 and ACKR3, formerly referred to as CXCR7. We discuss their unique properties and advantages over small-molecule compounds, and also refer to the molecules in preclinical and clinical development. We focus on single-domain antibodies and scaffolds and their utilization in GPCR research. Additionally, structural analysis of antibody binding to CXCR4 is discussed. SIGNIFICANCE STATEMENT: Modulating the function of GPCRs, and particularly chemokine receptors, draws high interest. A comprehensive review is provided for monoclonal antibodies, antibody fragments, and variants directed at CXCR4 and ACKR3. Their advantageous functional properties, versatile applications as research tools, and use in the clinic are discussed.
Collapse
Affiliation(s)
- Vladimir Bobkov
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Marta Arimont
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Aurélien Zarca
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Timo W M De Groof
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Bas van der Woning
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Hans de Haard
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| |
Collapse
|
13
|
Heusinkveld LE, Majumdar S, Gao JL, McDermott DH, Murphy PM. WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure. J Clin Immunol 2019; 39:532-556. [PMID: 31313072 PMCID: PMC6698215 DOI: 10.1007/s10875-019-00665-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
WHIM syndrome is a rare combined primary immunodeficiency disease named by acronym for the diagnostic tetrad of warts, hypogammaglobulinemia, infections, and myelokathexis. Myelokathexis is a unique form of non-cyclic severe congenital neutropenia caused by accumulation of mature and degenerating neutrophils in the bone marrow; monocytopenia and lymphopenia, especially B lymphopenia, also commonly occur. WHIM syndrome is usually caused by autosomal dominant mutations in the G protein-coupled chemokine receptor CXCR4 that impair desensitization, resulting in enhanced and prolonged G protein- and β-arrestin-dependent responses. Accordingly, CXCR4 antagonists have shown promise as mechanism-based treatments in phase 1 clinical trials. This review is based on analysis of all 105 published cases of WHIM syndrome and covers current concepts, recent advances, unresolved enigmas and controversies, and promising future research directions.
Collapse
Affiliation(s)
- Lauren E Heusinkveld
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA
| | - Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
De Groof TWM, Mashayekhi V, Fan TS, Bergkamp ND, Sastre Toraño J, van Senten JR, Heukers R, Smit MJ, Oliveira S. Nanobody-Targeted Photodynamic Therapy Selectively Kills Viral GPCR-Expressing Glioblastoma Cells. Mol Pharm 2019; 16:3145-3156. [PMID: 31244224 PMCID: PMC6728091 DOI: 10.1021/acs.molpharmaceut.9b00360] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Photodynamic
therapy (PDT) eradicates tumors by the local activation
of a photosensitizer with near-infrared light. One of the aspects
hampering the clinical use of PDT is the poor selectivity of the photosensitizer.
To improve this, we have recently introduced a new approach for targeted
PDT by conjugating photosensitizers to nanobodies. Diverse G protein-coupled
receptors (GPCRs) show aberrant overexpression in tumors and are therefore
interesting targets in cancer therapy. Here we show that GPCR-targeting
nanobodies can be used in targeted PDT. We have developed a nanobody
binding the extracellular side of the viral GPCR US28, which is detected
in tumors like glioblastoma. The nanobody was site-directionally conjugated
to the water-soluble photosensitizer IRDye700DX. This nanobody–photosensitizer
conjugate selectively killed US28-expressing glioblastoma cells both
in 2D and 3D cultures upon illumination with near-infrared light.
This is the first example employing a GPCR as target for nanobody-directed
PDT. With the emerging role of GPCRs in cancer, this data provides
a new angle for exploiting this large family of receptors for targeted
therapies.
Collapse
Affiliation(s)
- Timo W M De Groof
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Vida Mashayekhi
- Division of Cell Biology, Department of Biology , Utrecht University , 3584 CH Utrecht , The Netherlands
| | - Tian Shu Fan
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Nick D Bergkamp
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Javier Sastre Toraño
- Chemical Biology and Drug Discovery, Department of Pharmaceutical Sciences , Utrecht University , 3584 CG Utrecht , The Netherlands
| | - Jeffrey R van Senten
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Raimond Heukers
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands.,QVQ B.V. , Yalelaan 1 , 3484 CL Utrecht , The Netherlands
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Sabrina Oliveira
- Division of Cell Biology, Department of Biology , Utrecht University , 3584 CH Utrecht , The Netherlands.,Pharmaceutics, Department of Pharmaceutical Sciences , Utrecht University , 3584 CG Utrecht , The Netherlands
| |
Collapse
|
15
|
Dotta L, Notarangelo LD, Moratto D, Kumar R, Porta F, Soresina A, Lougaris V, Plebani A, Smith CIE, Norlin AC, Gòmez Raccio AC, Bubanska E, Bertolini P, Amendola G, Visentini M, Fiorilli M, Venuti A, Badolato R. Long-Term Outcome of WHIM Syndrome in 18 Patients: High Risk of Lung Disease and HPV-Related Malignancies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:1568-1577. [DOI: 10.1016/j.jaip.2019.01.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
|
16
|
De Clercq E. Mozobil® (Plerixafor, AMD3100), 10 years after its approval by the US Food and Drug Administration. Antivir Chem Chemother 2019; 27:2040206619829382. [PMID: 30776910 PMCID: PMC6379795 DOI: 10.1177/2040206619829382] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AMD3100 (plerixafor, Mozobil®) was first identified as an anti-HIV agent
specifically active against the T4-lymphotropic HIV strains, as it selectively
blocked the CXCR4 receptor. Through interference with the interaction of CXCR4
with its natural ligand, SDF-1 (also named CXCL12), it also mobilized the
CD34+stem cells from the bone marrow into the peripheral blood
stream. In December 2008, AMD3100 was formally approved by the US FDA for
autologous transplantation in patients with Non-Hodgkin’s Lymphoma or multiple
myeloma. It may be beneficially used in various other malignant diseases as well
as hereditary immunological disorders such as WHIM syndrome, and
physiopathological processes such as hepatopulmonary syndrome.
Collapse
|
17
|
De Groof TWM, Bobkov V, Heukers R, Smit MJ. Nanobodies: New avenues for imaging, stabilizing and modulating GPCRs. Mol Cell Endocrinol 2019; 484:15-24. [PMID: 30690070 DOI: 10.1016/j.mce.2019.01.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/30/2022]
Abstract
The family of G protein-coupled receptors (GPCRs) is the largest class of membrane proteins and an important drug target due to their role in many (patho)physiological processes. Besides small molecules, GPCRs can be targeted by biologicals including antibodies and antibody fragments. This review describes the use of antibodies and in particular antibody fragments from camelid-derived heavy chain-only antibodies (nanobodies/VHHs/sdAbs) for detecting, stabilizing, modulating and therapeutically targeting GPCRs. Altogether, it becomes increasingly clear that the small size, structure and protruding antigen-binding loops of nanobodies are favorable features for the development of selective and potent GPCRs-binding molecules. This makes them attractive tools to modulate GPCR activity but also as targeting modalities for GPCR-directed therapeutics. In addition, these antibody-fragments are important tools in the stabilization of particular conformations of these receptors. Lastly, nanobodies, in contrast to conventional antibodies, can also easily be expressed intracellularly which render nanobodies important tools for studying GPCR function. Hence, GPCR-targeting nanobodies are ideal modalities to image, stabilize and modulate GPCR function.
Collapse
Affiliation(s)
- Timo W M De Groof
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Vladimir Bobkov
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands; Argenx BVBA, Industriepark Zwijnaarde 7, 9052, Zwijnaarde, Belgium
| | - Raimond Heukers
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands; QVQ Holding B.V., Yalelaan 1, 3484 CL, Utrecht, the Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Jank L, Pinto-Espinoza C, Duan Y, Koch-Nolte F, Magnus T, Rissiek B. Current Approaches and Future Perspectives for Nanobodies in Stroke Diagnostic and Therapy. Antibodies (Basel) 2019; 8:antib8010005. [PMID: 31544811 PMCID: PMC6640704 DOI: 10.3390/antib8010005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022] Open
Abstract
Antibody-based biologics are the corner stone of modern immunomodulatory therapy. Though highly effective in dampening systemic inflammatory processes, their large size and Fc-fragment mediated effects hamper crossing of the blood brain barrier (BBB). Nanobodies (Nbs) are single domain antibodies derived from llama or shark heavy-chain antibodies and represent a new generation of biologics. Due to their small size, they display excellent tissue penetration capacities and can be easily modified to adjust their vivo half-life for short-term diagnostic or long-term therapeutic purposes or to facilitate crossing of the BBB. Furthermore, owing to their characteristic binding mode, they are capable of antagonizing receptors involved in immune signaling and of neutralizing proinflammatory mediators, such as cytokines. These qualities combined make Nbs well-suited for down-modulating neuroinflammatory processes that occur in the context of brain ischemia. In this review, we summarize recent findings on Nbs in preclinical stroke models and how they can be used as diagnostic and therapeutic reagents. We further provide a perspective on the design of innovative Nb-based treatment protocols to complement and improve stroke therapy.
Collapse
Affiliation(s)
- Larissa Jank
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Carolina Pinto-Espinoza
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Yinghui Duan
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
19
|
Sadeghian-Rizi T, Behdani M, Khanahmad H, Sadeghi HM, Jahanian-Najafabadi A. Generation and Characterization of a Functional Nanobody Against Inflammatory Chemokine CXCL10, as a Novel Strategy for the Treatment of Multiple Sclerosis. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2019; 18:141-148. [PMID: 30426906 DOI: 10.2174/1871527317666181114134518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/21/2018] [Accepted: 10/11/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND & OBJECTIVE Chemokines and their receptors play a pivotal role in the pathogenesis of various autoimmune diseases such as multiple sclerosis, infectious diseases, and also in cancer metastasis via attraction of the pathogenic immune cells into the inflammation sites. METHODS Inflammatory chemokine CXCL10 as a T helper (Th)1-chemokine directs chemotaxis of many cell subsets especially Th1 into the central nervous system (CNS) via its receptor CXCR3 and it has been put forward as a potential therapeutic target in the treatment of multiple sclerosis. Nanobodies are the smallest intact antigen binding fragments derived from heavy chain-only antibodies occurring in camelids with unique biochemical and biophysical features which render them superior to conventional antibodies or antibody fragments. Here, we describe the generation, selection, and characterization of CXCL10-specific Nanobodies from camel immunized with CXCL10. The obtained Nanobodies displayed high affinity towards CXCL10 about 10-11-10-8 M. RESULTS Then a Nanobody with the highest affinity named 3Nb12 was selected and investigated as a migration inhibitor of CXCR3+ cells. Chemotaxis assay results showed that 3Nb12 blocked CXCL10- CXCR3 binding and potently inhibited chemotaxis of CXCR3-transfected HEK293T cells. CONCLUSION The nanobody 3Nb12 might be a promising specific and powerful blocking agent of CXCL10 function, which can be used for diagnostic, therapeutic and research purposes in MS.
Collapse
Affiliation(s)
- Tahereh Sadeghian-Rizi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Behdani
- Medical Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hamid Mirmohammad Sadeghi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
20
|
Abstract
Cysteine-X-cysteine chemokine receptor 4 (CXCR4) is a broadly expressed and multifunctional G protein-coupled chemokine receptor critical for organogenesis, hematopoiesis, and antimicrobial host defense. In the hematopoietic system, the binding of CXCR4 to its cognate chemokine ligand, CXCL12, mediates leukocyte trafficking, distribution, survival, activation, and proliferation. Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a rare, autosomal dominant, combined immunodeficiency disorder caused by mutations in the C-terminus of CXCR4 that prevent receptor downregulation and therefore result in pathologically increased signaling. The "M" in the acronym WHIM refers to myelokathexis, the retention of neutrophils in the bone marrow resulting in neutropenia, which explains in part the increased susceptibility to bacterial infection. However, WHIM patients also present with B and T lymphopenia, which may explain the susceptibility to human papillomavirus (HPV), the cause of warts. The impact of WHIM mutations on lymphocytes and adaptive immunity has received less attention than myelokathexis and is the focus of this review.
Collapse
Affiliation(s)
- Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
McDermott DH, Murphy PM. WHIM syndrome: Immunopathogenesis, treatment and cure strategies. Immunol Rev 2018; 287:91-102. [DOI: 10.1111/imr.12719] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Affiliation(s)
- David H. McDermott
- Molecular Signaling Section; Laboratory of Molecular Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda Maryland
| | - Philip M. Murphy
- Molecular Signaling Section; Laboratory of Molecular Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda Maryland
| |
Collapse
|
22
|
Bobkov V, Zarca AM, Van Hout A, Arimont M, Doijen J, Bialkowska M, Toffoli E, Klarenbeek A, van der Woning B, van der Vliet HJ, Van Loy T, de Haard H, Schols D, Heukers R, Smit MJ. Nanobody-Fc constructs targeting chemokine receptor CXCR4 potently inhibit signaling and CXCR4-mediated HIV-entry and induce antibody effector functions. Biochem Pharmacol 2018; 158:413-424. [PMID: 30342023 DOI: 10.1016/j.bcp.2018.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
|
23
|
Haselberg R, De Vijlder T, Heukers R, Smit MJ, Romijn EP, Somsen GW, Domínguez-Vega E. Heterogeneity assessment of antibody-derived therapeutics at the intact and middle-up level by low-flow sheathless capillary electrophoresis-mass spectrometry. Anal Chim Acta 2018; 1044:181-190. [DOI: 10.1016/j.aca.2018.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 01/18/2023]
|
24
|
CXCR4-targeting nanobodies differentially inhibit CXCR4 function and HIV entry. Biochem Pharmacol 2018; 158:402-412. [PMID: 30342024 DOI: 10.1016/j.bcp.2018.10.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/15/2018] [Indexed: 01/10/2023]
Abstract
The chemokine receptor CXCR4 and its ligand CXCL12 contribute to a variety of human diseases, such as cancer. CXCR4 is also a major co-receptor facilitating HIV entry. Accordingly, CXCR4 is considered as an attractive therapeutic target. Drug side effects and poor pharmacokinetic properties have been major hurdles that have prevented the implementation of CXCR4-directed inhibitors in treatment regimes. We evaluated the activity of a new and promising class of biologics, namely CXCR4-targeting nanobodies, with the purpose of identifying nanobodies that would preferentially inhibit HIV infection, while minimally disturbing other CXCR4-related functions. All CXCR4-interacting nanobodies inhibited CXCL12 binding and receptor-mediated calcium mobilization with comparable relative potencies. Importantly, the anti-HIV-1 activity of the nanobodies did not always correlate with their ability to modulate CXCR4 signaling and function, indicating that the anti-HIV and anti-CXCR4 activity are not entirely overlapping and may be functionally separated. Three nanobodies with divergent activity profiles (VUN400, VUN401 and VUN402) were selected for in depth biological evaluation. While all three nanobodies demonstrated inhibitory activity against a wide range of HIV (X4) strains, VUN402 poorly blocked CXCL12-induced CXCR4 internalization, chemotaxis and changes in cell morphology. Each of these nanobodies recognized distinct, although partially overlapping epitopes on CXCR4, which might underlie their distinct activity profiles. Our results demonstrate the potential of CXCR4-targeting nanobody VUN402 as a novel lead and starting point for the development of a more potent and selective anti-HIV agent.
Collapse
|
25
|
Heukers R, Fan TS, de Wit RH, van Senten JR, De Groof TWM, Bebelman MP, Lagerweij T, Vieira J, de Munnik SM, Smits-de Vries L, van Offenbeek J, Rahbar A, van Hoorick D, Söderberg-Naucler C, Würdinger T, Leurs R, Siderius M, Vischer HF, Smit MJ. The constitutive activity of the virally encoded chemokine receptor US28 accelerates glioblastoma growth. Oncogene 2018; 37:4110-4121. [PMID: 29706656 PMCID: PMC6062493 DOI: 10.1038/s41388-018-0255-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/04/2018] [Accepted: 03/14/2018] [Indexed: 01/10/2023]
Abstract
Glioblastoma (GBM) is the most aggressive and an incurable type of brain cancer. Human cytomegalovirus (HCMV) DNA and encoded proteins, including the chemokine receptor US28, have been detected in GBM tumors. US28 displays constitutive activity and is able to bind several human chemokines, leading to the activation of various proliferative and inflammatory signaling pathways. Here we show that HCMV, through the expression of US28, significantly enhanced the growth of 3D spheroids of U251− and neurospheres of primary glioblastoma cells. Moreover, US28 expression accelerated the growth of glioblastoma cells in an orthotopic intracranial GBM-model in mice. We developed highly potent and selective US28-targeting nanobodies, which bind to the extracellular domain of US28 and detect US28 in GBM tissue. The nanobodies inhibited chemokine binding and reduced the constitutive US28-mediated signaling with nanomolar potencies and significantly impaired HCMV/US28-mediated tumor growth in vitro and in vivo. This study emphasizes the oncomodulatory role of HCMV-encoded US28 and provides a potential therapeutic approach for HCMV-positive tumors using the nanobody technology.
Collapse
Affiliation(s)
- Raimond Heukers
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Tian Shu Fan
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Raymond H de Wit
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Jeffrey R van Senten
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Timo W M De Groof
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Maarten P Bebelman
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Tonny Lagerweij
- Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | - Joao Vieira
- Ablynx N.V., Technologiepark 21, Zwijnaarde, 9052, Belgium
| | - Sabrina M de Munnik
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Laura Smits-de Vries
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Jody van Offenbeek
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Afsar Rahbar
- Department of Medicine Solna, Experimental Cardiovascular Research Unit and Department of Medicine and Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, 171 77, Sweden
| | | | - Cecilia Söderberg-Naucler
- Department of Medicine Solna, Experimental Cardiovascular Research Unit and Department of Medicine and Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, 171 77, Sweden
| | - Thomas Würdinger
- Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Marco Siderius
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Henry F Vischer
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands.
| |
Collapse
|